Academic literature on the topic 'Abiotic stresse'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Abiotic stresse.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Abiotic stresse"

1

Han, Hongyan, Xiaopeng Mu, Pengfei Wang, Zewen Wang, Hongbo Fu, Yu Gary Gao, and Junjie Du. "Identification of LecRLK gene family in Cerasus humilis through genomic-transcriptomic data mining and expression analyses." PLOS ONE 16, no. 7 (July 12, 2021): e0254535. http://dx.doi.org/10.1371/journal.pone.0254535.

Full text
Abstract:
Lectin receptor-like protein kinases (LecRLKs) have been shown to be involved in plants’ responses to various biotic and abiotic stresse factors. Cerasus humilis is an important fruit species widely planted for soil and water conservation in northern China due to its strong tolerance to drought and salinity stresses. In this study, a total of 170 LecRLK family genes (125 G-types, 43 L-types and 2 C-types) were identified in the newly released whole-genome sequences of C. humilis. Furthermore, nine representative LecRLK genes in young plants of C. humilis under varying drought and salinity stresses were selected for qRT-PCR analysis. Our systematic comparative analyses revealed the active participation of these nine LecRLK genes in the salt and drought stress responses of C. humilis. The results from our study have provided a solid foundation for future functional verification of these LecRLK family genes and will likely help facilitate the more rapid and effective development of new stress resistant Cerasus humilis cultivars.
APA, Harvard, Vancouver, ISO, and other styles
2

Puzanskiy, R. K., V. V. Yemelyanov, and M. F. Shishova. "METABOLOMICS AS A MODERN APPROACH FOR THE INVESTIGATION OF POTATO PLANT ADAPTATION TO BIOTIC AND ABIOTIC STRESSE FACTORS (review)." Sel'skokhozyaistvennaya Biologiya 53, no. 1 (February 2018): 15–28. http://dx.doi.org/10.15389/agrobiology.2018.1.15eng.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brini, Faiçal, and Walid Saibi. "Oxidative stress and antioxidant defense in Brassicaceae plants under abiotic stresses." SDRP Journal of Plant Science 5, no. 1 (2021): 232–44. http://dx.doi.org/10.25177/jps.5.1.ra.10694.

Full text
Abstract:
Brassicaceae plants, as an important source of primary and secondary metabolites, are becoming a research model in plant science. Plants have developed different ways to ward off environmental stress factors. This is lead to the activation of various defense mechanisms resulting in a qualitative and/or quantitative change in plant metabolite production. Reactive oxygen species (ROS) is being continuously produced in cell during normal cellular processes. Under stress conditions, there are excessive production of ROS causing progressive oxidative damage and ultimately cell death. Despite their destructive activity, ROS are considered as important secondary messengers of signaling pathway that control metabolic fluxes and a variety of cellular processes. Plant response to environmental stress depends on the delicate equilibrium between ROS production, and their scavenging. This balance of ROS level is required for performing its dual role of acting as a defensive molecule in signaling pathway or a destructive molecule. Efficient scavenging of ROS produced during various environmental stresses requires the action of several non-enzymatic as well as enzymatic antioxidants present in the tissues. In this review, we describe the ROS production and its turnover and the role of ROS as messenger molecules as well as inducers of oxidative damage in Brassicaceae plants. Further, the antioxidant defense mechanisms comprising of enzymatic and non-enzymatic antioxidants have been discussed. Keywords: Abiotic stress, Antioxidant defence, Brassicaceae, Oxidative stress, ROS
APA, Harvard, Vancouver, ISO, and other styles
4

Odukoya, Johnson, Ronnie Lambert, and Ruben Sakrabani. "Understanding the Impacts of Crude Oil and its Induced Abiotic Stresses on Agrifood Production: A Review." Horticulturae 5, no. 2 (June 23, 2019): 47. http://dx.doi.org/10.3390/horticulturae5020047.

Full text
Abstract:
In many parts of the world, the agricultural sector is faced with a number of challenges including those arising from abiotic environmental stresses which are the key factors responsible for most reductions in agrifood production. Crude oil contamination, an abiotic stress factor and a common environmental contaminant, at toxic levels has negative impacts on plants. Although various attempts have been made to demonstrate the impact of abiotic stresses on crops, the underlying factors responsible for the effects of crude oil and its induced abiotic stresses on the composition of the stressed plants are poorly understood. Hence, this review provides an in-depth examination of the: (1) effect of petroleum hydrocarbons on plants; (2) impact of abiotic environmental stresses on crop quality; (3) mechanistic link between crude oil stress and its induced abiotic stresses; as well as (4) mode of action/plant response mechanism to these induced stresses. The paper clearly reveals the implications of crude oil-induced abiotic stresses arising from the soil-root-plant route and from direct application on plant leaves.
APA, Harvard, Vancouver, ISO, and other styles
5

Handayani, Tri, and Kazuo Watanabe. "The combination of drought and heat stress has a greater effect on potato plants than single stresses." Plant, Soil and Environment 66, No. 4 (April 30, 2020): 175–82. http://dx.doi.org/10.17221/126/2020-pse.

Full text
Abstract:
Several research groups have examined the effects of drought stress and heat stress on potato, but few investigations of the effects of combined drought-heat stress have been reported. Using five potato lines, the potato plants’ responses to drought stress, heat stress, as well as combined drought-heat stress were studied, to get the insight in phenotypic shift due to abiotic stresses. The experiment was conducted as a growth room experimental under non-stress and abiotic stresses (drought, heat, and combined drought-heat) conditions. The results demonstrated that potato plants responded to the abiotic stresses by decreasing their plant height, leaf size, cell membrane stability, and relative water content (RWC). However, increasing their leaf chlorophyll content under drought and combined drought-heat stresses. Generally, the combined drought-heat stress had a greater effect on the tested traits. The potato line L1 (84.194.30) showed the lowest level of wilting in all three types of abiotic stress, supported by a small RWC change compared to the control condition; L1 is thus considered relatively tolerant to abiotic stress. The potato lines’ different responses to each type of abiotic stress indicate that the potato lines have different levels of sensitivity to each abiotic stress.
APA, Harvard, Vancouver, ISO, and other styles
6

Hinojosa, Leonardo, Juan González, Felipe Barrios-Masias, Francisco Fuentes, and Kevin Murphy. "Quinoa Abiotic Stress Responses: A Review." Plants 7, no. 4 (November 29, 2018): 106. http://dx.doi.org/10.3390/plants7040106.

Full text
Abstract:
Quinoa (Chenopodium quinoa Willd.) is a genetically diverse Andean crop that has earned special attention worldwide due to its nutritional and health benefits and its ability to adapt to contrasting environments, including nutrient-poor and saline soils and drought stressed marginal agroecosystems. Drought and salinity are the abiotic stresses most studied in quinoa; however, studies of other important stress factors, such as heat, cold, heavy metals, and UV-B light irradiance, are severely limited. In the last few decades, the incidence of abiotic stress has been accentuated by the increase in unpredictable weather patterns. Furthermore, stresses habitually occur as combinations of two or more. The goals of this review are to: (1) provide an in-depth description of the existing knowledge of quinoa’s tolerance to different abiotic stressors; (2) summarize quinoa’s physiological responses to these stressors; and (3) describe novel advances in molecular tools that can aid our understanding of the mechanisms underlying quinoa’s abiotic stress tolerance.
APA, Harvard, Vancouver, ISO, and other styles
7

Mohammed, S. H., and Maarouf I. Mohammed. "Impact of Abiotic Stress on Quality Traits of Maize Forage at Two Growth Stages." Journal of Horticulture and Plant Research 7 (August 2019): 60–68. http://dx.doi.org/10.18052/www.scipress.com/jhpr.7.60.

Full text
Abstract:
Maize (Zeamays L.) forage quality traits are reported to show varying responses to abiotic stress. Four trials were conducted in Sudan (Africa) during the summer and winter seasons (2013 – 2014) at two locations: Shambat (normal soils) and Soba (salt affected soils) to investigate the effects of abiotic stress on the nutritive value of maize forage. In each trial nine maize genotypes were studied under two watering regimes arranged in split plot experiment in randomized complete block design. The compound effect of salt, water and heat stresses created by the combination of locations, seasons and watering regimes were used to investigate the effect of abiotic stress on forage quality at silk initiation and dough growth stages. Character associations under stressed and none stressed conditions were studied. NDF, ADF, CP, forage yield and related traits were measured. Abiotic stress significantly lowered the nutritive value in terms of crude protein, digestibility and intake potential. Digestibility under stressed condition was slightly improved as growth stage advanced from silk initiation to dough stage. Correlations under non stress conditions between forage yield and quality traits were either favorable with NDF and weak or insignificant with ADF and CP. Under stress conditions, similar trend generally exists apart from the unfavorable correlation of CP with each of yield and ADF, in addition to earliness with NDF. The compound effect of salt, water and heat stresses have adverse impact on the nutritive value of maize forage. Varieties combining high performance in quality and forage yield could be developed under non-stressed or stressed conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Deeb, Taghleb, Mohammad Abo Gamar, Najib El-Assi, Hmoud Al-Debei, Rabea Al-Sayaydeh, and Ayed M. Al-Abdallat. "Stress-Inducible Overexpression of SlDDF2 Gene Improves Tolerance against Multiple Abiotic Stresses in Tomato Plant." Horticulturae 8, no. 3 (March 7, 2022): 230. http://dx.doi.org/10.3390/horticulturae8030230.

Full text
Abstract:
Dehydration-responsive element-binding protein 1 (DREB1)/C-repeat binding factor (CBF) family plays a key role in plant tolerance against different abiotic stresses. In this study, an orthologous gene of the DWARF AND DELAYED FLOWERING (DDF) members in Arabidopsis, SlDDF2, was identified in tomato plants. The SlDDF2 gene expression was analyzed, and a clear induction in response to ABA treatment, cold, salinity, and drought stresses was observed. Furthermore, two transgenic lines (SlDDF2-IOE#6 and SlDDF2-IOE#9) with stress-inducible overexpression of SlDDF2 under Rd29a promoter were generated. Under stress conditions, the gene expression of SlDDF2 was significantly higher in both transgenic lines. The growth performance, as well as physiological parameters, were evaluated in wild-type and transgenic plants. The transgenic lines showed growth retardation phenotypes and had higher chlorophyll content under stress conditions in plants. However, the relative decrease in growth performance (plant height, leaf number, and leaf area) in stressed transgenic lines was lower than that in stressed wild-type plants, compared with nonstressed conditions. The reduction in the relative water content and water loss rate was also lower in the transgenic lines. Compared with wild-type plants, transgenic lines showed enhanced tolerance to different abiotic stresses including water deficit, salinity, and cold. In conclusion, stress-inducible expression of SlDDF2 can be a useful tool to improve tolerance against multiple abiotic stresses in tomato plants.
APA, Harvard, Vancouver, ISO, and other styles
9

Kajla, Mamta, Vinaya Kumar Yadav, Jaswant Khokhar, Samar Singh, R. S. Chhokar, Raj Pal Meena, and R. K. Sharma. "Increase in wheat production through management of abiotic stresses : A review." Journal of Applied and Natural Science 7, no. 2 (December 1, 2015): 1070–80. http://dx.doi.org/10.31018/jans.v7i2.733.

Full text
Abstract:
About 9% of area on earth is under crops out of which 91% is under various stresses. On an average, about 50% yield losses are due to abiotic stresses mostly due to high temperature (20%), low temperature (7%), salinity (10%), drought (9%) and other abiotic stresses (4%). As there is no scope for increasing area under agriculture, the increased productivity from these stressed land is a must to meet the ever increasing demand. Further, the severity of abiotic stresses is likely to increase due to changing climate leading to adverse effect on crops. Therefore, abiotic stresses like drought, salinity, sodicity, acidity, water logging, heat, nutrient toxicities/ deficiencies etc need to be effectively addressed through adoption of management practices like tillage and planting options, residue management, sowing time, stress tolerant cultivars, irrigation scheduling and integrated nutrient management to conserve natural resources, mitigating their adverse effect and sustainable wheat production.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Junli, Gaoyang Qiu, Chen Liu, Hua Li, Xiaodong Chen, Qinglin Fu, Yicheng Lin, and Bin Guo. "Salicylic Acid, a Multifaceted Hormone, Combats Abiotic Stresses in Plants." Life 12, no. 6 (June 14, 2022): 886. http://dx.doi.org/10.3390/life12060886.

Full text
Abstract:
In recent decades, many new and exciting findings have paved the way to the better understanding of plant responses in various environmental changes. Some major areas are focused on role of phytohormone during abiotic stresses. Salicylic acid (SA) is one such plant hormone that has been implicated in processes not limited to plant growth, development, and responses to environmental stress. This review summarizes the various roles and functions of SA in mitigating abiotic stresses to plants, including heating, chilling, salinity, metal toxicity, drought, ultraviolet radiation, etc. Consistent with its critical roles in plant abiotic tolerance, this review identifies the gaps in the literature with regard to the complex signalling network between SA and reactive oxygen species, ABA, Ca2+, and nitric oxide. Furthermore, the molecular mechanisms underlying signalling networks that control development and stress responses in plants and underscore prospects for future research on SA concerning abiotic-stressed plants are also discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Abiotic stresse"

1

Feilke, Kathleen. "Biochemical characterization of the plastid terminal oxidase and its implication in photosynthesis." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS051/document.

Full text
Abstract:
L'oxydase terminale plastidiale (PTOX) est présente uniquement chez les organismesphotosynthétiques. PTOX oxyde le plastoquinol (PQH2) et réduit l'oxygène en eau.PTOX est impliquée dans la synthèse des caroténoïdes, dans le transportphotosynthétique d'électrons et dans la chlororespiration. De plus, son activité estconsidérée comme pouvant jouer un rôle en tant que soupape de sécurité, permettant de maintenir oxydé le pool de plastoquinones (PQ) et d'éviter la surréduction duchloroplaste et ainsi la photoinhibition. Chez la majorité des plantes testées, les niveaux de PTOX sont plus élevés dans des conditions de stress (une exposition à forte intensité lumineuse, par exemple). D'autre part, la surexpression de PTOX chez Arabidopsis thaliana n'a pas rendu les plantes moins sensibles à la photoinhibition. Par ailleurs, il semble que PTOX surexprimée chez Nicotiana tabacum a induit la génération des espèces réactives de l'oxygène (ERO) et une photoinhibition importante sous forte lumière.Le but de cette thèse était la caractérisation de l'activité enzymatique de PTOX enutilisant la protéine purifiée et de comprendre pourquoi PTOX protège du stressphotooxydant dans certaines conditions et pourquoi elle augmente ce stress quand elle est surexprimée in planta.L'analyse biochimique de PTOX recombinante purifiée a démontré que l'enzymeexiste principalement sous forme tétramérique. Cette forme se dissocie partiellement,principalement en dimères. Le turnover maximal de l'enzyme purifié correspond à 320électrons par seconde et par molécule de PTOX. Nous avons démontré que PTOXgénère des ERO dans une réaction secondaire dépendante de la concentration dusubstrat (PQH2) et du pH de la solution. À pH 8 (représentant le pH du stroma deschloroplastes actifs), PTOX a une activité antioxydante quand la concentration de PQH2 est basse et prooxydante quand cette concentration est élevée.En mesurant la fluorescence de la chlorophylle a, nous avons démontré quePTOX est active lorsqu'elle est ajoutée aux membranes enrichies en PSII.L'attachement aux membranes dépend du pH et de cations de la solution: lorsque le pHdiminue ou lorsque la solution est riche en cations monovalents, la quantité de PTOXattachée à la membrane diminue.L'activité de PTOX in planta et son effet sur le transport des électronsphotosynthétiques ont été analysés en utilisant Arabidopsis thaliana surexprimant laphytoène désaturase bactérienne (CRTI) et Nicotiana tabacum surexprimant PTOX1 deChlamydomonas reinhardtii. Arabidopsis thaliana surexprimant CRTI a un niveau plusimportant de PTOX et de production d'ERO et le transport cyclique des électrons estsupprimé chez les transformants. Cela implique que PTOX est en compétition avec letransfert cyclique pour les électrons du pool PQ et que PTOX joue un rôle importantdans le contrôle de l'état rédox de ce pool. En utilisant Nicotiana tabacum surexprimant PTOX1, nous avons démontré que PTOX fait concurrence au transfert linéaire d'électrons photosynthétique, mais que PTOX est inactivée quand le pH du stroma est neutre. Grâce aux résultats obtenus, nous proposons un modèle où l'association de PTOX avec la membrane est contrôlée par le pH du stroma. Quand le pH est neutre, PTOX est soluble et n'est pas active, ce qui évite l'interférence avec le transfert linéaire d'électrons. Quand le pH du stroma est alcalin et la chaîne des transporteurs photosynthétiques est surréduite (lors des conditions du stress), PTOX s'attache à la membrane, devient active et joue le rôle de soupape de sécurité
The plastid terminal oxidase PTOX is encoded by higher plants, algae and some cyanobacteria. PTOX is a plastid-localized plastoquinol (PQH2) oxygen oxidoreductase. PTOX was shown to be implicated in plant carotenoid biosynthesis, photosynthetic electron transport and chlororespiration and may act as a safety valve protecting plants against photo-oxidative stress. PTOX protein levels increase during abiotic stress indicating a function in stress acclimation. But overexpression of PTOX in Arabidopsis did not attenuate the severity of photoinhibition or, when overexpressed in tobacco, even increased the production of reactive oxygen species (ROS) and exacerbated photoinhibition.Biochemical analysis of recombinant purified PTOX (PTOX from rice fused to the maltose-binding protein) showed that the enzyme exists mainly as a tetramer, which dissociated to a certain extent during electrophoresis, mainly into a dimeric form. The PTOX activity was 320 electrons s−1 PTOX−1. It was also shown that PTOX generates ROS in a side reaction in a substrate (decylPQH2) and pH-dependent manner when liposomes were used: at the basic stromal pH of photosynthetically active chloroplasts, PTOX was antioxidant at low decylPQH2 gaining prooxidant properties with increasing quinol concentrations. It is concluded that PTOX can act as a safety valve when the steady state [PQH2] is low while a certain amount of ROS is formed at high light intensities.It was shown by chlorophyll a fluorescence that recombinant purified PTOX is active when added to photosystem II (PSII)-enriched membrane fragments. PTOX attached tightly to the PSII-enriched membrane fragments. The amount of PTOX attaching to the membrane depended on pH and salts: an alkaline pH and monovalent compared to divalent cations increased PTOX attachment.PTOX activity in planta and its effect on photosynthetic electron transport were investigated using Arabidopsis expressing bacterial phytoene desaturase and tobacco expressing PTOX1 from Chlamydomonas. Arabidopsis expressing bacterial phytoene desaturase (CRTI lines) showed a higher PTOX content and increased PTOX related ROS generation. Furthermore, cyclic electron flow was suppressed in these lines. This implicates that PTOX competes efficiently with cyclic electron flow for PQH2 in the CRTI-expressing lines and that it plays a crucial role in the control of the reduction state of the plastoquinone pool. Using tobacco expressing PTOX1 from Chlamydomonas, it was shown that PTOX competes efficiently with photosynthetic electron flow, but gets inactive when the stromal pH is neutral. Based on the in vitro and in vivo results, a model is proposed, where the association of PTOX to the membrane is controlled by the stromal pH: When the stromal pH is neutral, PTOX exists as a soluble form and is enzymatically inactive avoiding the interference of PTOX with linear electron flow. When the stromal pH is alkaline and the photosynthetic electron chain is highly reduced under stress conditions as high light, PTOX binds to the membrane, gets enzymatically active and can serve as safety valve
APA, Harvard, Vancouver, ISO, and other styles
2

CAVALLARO, VIVIANA. "SULFUR NUTRITION AND PARTITIONING IN RICE UNDER DIFFERENT STRESS CONDITIONS." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/881847.

Full text
Abstract:
Sulfur (S) is an essential macronutrient required by plants for their correct development. This element is fundamental for the biosynthesis of different compounds, such as the two amino acids, cysteine (Cys) and methionine (Met), vitamins (biotin and thiamine), peptides involved in the response to abiotic stresses (glutathione - GSH, and phytochelatines - PCs), lipids and co-factors. Sulfate (SO42-) is the main S form taken up from soil by root system and then assimilated inside the cells during the sulfur reductive pathway. The uptake and the systemic movements of this anion are accomplished by the SULfate TRansporter (SULTR) gene family, which encode for H+/SO42- membrane co-transporters with different localization, amino acidic sequences, and affinity to sulfate. Since has been demonstrated that S has a key role in the response to different abiotic stresses (such as sulfur deficiency, heavy metal exposure or salt stress), the expression of these genes must be finely regulated, according to the different environmental conditions and requests for S reduced compounds. The general aim of the present thesis is the description of S systemic fluxes in rice in different stress conditions, to obtain more information about the contribution of S in determining plant tolerance to abiotic stresses. To achieve the goal, we also took advantage of analysis performed with an elemental analyzer coupled with an isotope ratio mass spectrometer (EA-IRMS), a powerful instrument which utilizes stable isotopes of elements as tracers. The entire research has been divided in three different parts. In the first work, potential 32S/34S isotope effects occurring during SO42- uptake were investigated in a closed hydroponic system in which a limited amount of substrate (SO42- in the nutrient solution) was continuously removed from the solution by the activity of the sulfate transporters of the root and converted in a final product (total S of the plant). An isotope discrimination against 34S occurred during SO42- uptake: plants had a lighter S isotope composition, and the residual SO42- in the hydroponic solution was enriched in heavy stable isotope. Fractionation during uptake showed two phases characterized by different fractionation factors, reflecting changes in the expression of the OsSULTR deputed to the root uptake which may explain the different isotope phenotypes observed during plant sulfate acquisition. Moreover, the possible 32S/34S isotope effects associated to both S partitioning and metabolism were investigated by comparing plants pre-grown in complete nutrient solutions and then continuously maintained on media containing SO42- (steady-state) or deprived of SO42- for 72h. The SO42- pool of the steady-state shoot was significantly 32S depleted with respect to the SO42- pools of root, while the organic S (Sorg) pools were significantly depleted in 34S compared to both the SO42- pool of both the organs and the S source. These results suggested a higher S assimilation in the aerial part of plants which favor the lighter isotope. Under S starvation, S assimilation progressively enriched the Sorg pools in the lighter 32S isotope and the residual SO42- in both the organs in the heavier 34S isotope. Most pronounced isotope separations were again observed in the shoot, confirming the prominent role of this organ in SO42- assimilation and S allocation. No fractionation due to translocation activity was observed. In the second part of the work, to validate the results previously obtained, we performed a mass balance study in rice plants exposed for 72h to different Cd concentrations, to investigate possible changes in S stable isotope fractionation due to this stress: in fact, adaptation of S metabolism has a pivotal role in responses to heavy metal exposure. As expected, Cd treatment strongly enhanced SO42- uptake and assimilation, as indicated by the analyses of the S pools (Stot, SO42-, and Sorg). S isotope analyses performed on the whole plants revealed changes in the S metabolism associated to variations in the discrimination against 34S, which was less evident as Cd concentration in the external medium increased. Transcriptional analysis suggested again that change of the ratio between relative transcripts of OsSULTR1;1 and OsSULTR1;2, as observed for S starvation, may be responsible for the progressive decreased in 34S isotope discrimination. The important role of shoot in S assimilation was confirmed: isotope fractionation associated to sulfate assimilation was higher in shoot than in root, and progressively increased as Cd concentration did. The last part of work was focused on fully characterize, under hydroponics-controlled conditions in the absence or in the presence of salt stress (80 mM NaCl), the phenotypic behavior in the already available salt tolerant introgression line (IL) Onice 11 (O11), obtained by Marker-Assisted Back-Cross (MABC) selection starting from the cross between the Italian japonica elite cultivars Onice (sensitive recurrent parent) and the indica variety IR64-SalTol (tolerant), donor of the major QTL SalTol. Moreover, S acquisition and metabolism of O11 and both the parental lines were evaluated to investigate their possible implication in determining the different tolerance to salt stress. Results showed the beneficial effect of the introgression of the SalTol QTL from the indica variety into selected japonica rice line, based on different characteristics of selected phenotypic-biochemical-physiological parameters. However, salt stress strongly affected S uptake and assimilation, and we can reasonably suppose that these features do not justify the different salt tolerance in the considered IL O11. In conclusions, rice plants can discriminate against 34S during SO42- uptake and assimilation. Between plants organs, shoot represents the predominant one involved in S assimilation. Abiotic stresses, such as S starvation or Cd exposure, lead to changes in the ratio of relative transcripts between the OsSULTRs involved in the uptake of sulfate, and this may be the cause of the different isotope phenotypes observed. Finally, salt tolerance in the IL O11 appears to not be dependent on different S metabolism.
APA, Harvard, Vancouver, ISO, and other styles
3

Berenguer, Helder Duarte Paixão. "Eucalyptus predisposition to Neofusicoccum kwambonambiense under water stress." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22330.

Full text
Abstract:
Mestrado em Biologia Molecular e Celular
In Portugal, Eucalyptus, particularly Eucalyptus globulus, occupies more than 800 000 ha and, due to being a major source of biomass for fiberboard, industrial charcoal, fuel wood and paper pulp, has become a key genus, with a considerable economic importance. However, E. globulus productivity faces new pressures, with climate change-driven drought as one of the most hostile ones. Drought can lead to growth impairment and yield reduction: directly; or indirectly, through the increase of plant susceptibility to pathogens by a predisposition mechanism. Neofusicoccum kwambonambiense is an endophytic opportunist phytopathogen known to severely affect E. globulus, whose incidence has already been reported in Portugal. Taking all in consideration, it is of major importance to assess the predisposition effect that drought may have on the N. kwambonambiense - E. globulus interaction. For such purpose, four treatment groups were established: E. globulus were firstly subjected to a 66-days acclimation period in which plants were periodically watered (80% of field capacity). After that, two groups were exposed to a progressive water supply restriction. The other two remained well-watered. Once water-stressed plants achieved 18% of field capacity (23 days), a well-watered and a water-stress group were inoculated with N. kwambonambiense. All treatments were kept in these conditions throughout a 65 days’ period, at which moment a set of morphological, physiological and biochemical parameters was obtained. Well-watered plants, despite being infected with N. kwambonambiense, presented an overall photosynthetic increase, which enabled plant defense through the production of sugars, proline and salicylic acid. Oxidative damages (partially observed through malondialdehyde content), were avoided in part due to proline and soluble sugars. Water stress lead to a direct growth impairment confirmed through an indole-acetic-acid content decrease. A water-potential reduction occurred, which, together with abscisic acid, lead to stomatal closure and overall photosynthetic efficiency decline. Oxidative damages weren’t properly managed and further affected E. globulus. Furthermore, N. kwambonambiense was found to promote a jasmonic acid content increase, typical of necrotrophic pathogens, which may suggest a lifestyle change from hemibiotrophic to necrotrophic as plant cells progressively degenerate. Ultimately, water-stressed E. globulus presented larger external lesion extensions and steam cankers and a superior internal fungi progression. Our results conclusively demonstrate that water stress created a better substrate for fungi development and decreased the plant’s ability to respond. Such resulted in higher susceptibility and disease severity confirming predisposition.
Em Portugal, o eucalipto, particularmente o Eucalyptus globulus, ocupa mais de 800 000 ha. Devido a ser uma importante fonte de biomassa para painéis de fibras, carvão industrial, lenha e pasta de papel, tornou-se um género chave de considerável importância económica. Contudo, a produtividade de E. globulus tem encontrado novas pressões, sendo a seca resultante das alterações climáticas, uma das mais hostis. A seca pode levar a uma diminuição do crescimento e produtividade: diretamente; ou indiretamente através do aumento da suscetibilidade a agentes patogénicos através da predisposição. O fungo ascomiceto Neofusicoccum kwambonambiense é um agente fitopatogénico endofítico oportunista que se sabe afetar severamente E. globulus, e cuja presença já fora confirmada em Portugal. Tomando tal em consideração, torna-se importante avaliar o efeito de predisposição que a seca poderá ter na interação N. kwambonambiense - E. globulus. Para tal foram criados quatro grupos de tratamento: E. globulus foram primeiramente sujeitos a um período de aclimatização de 66 dias no qual foram periodicamente irrigados (80% de capacidade de campo). Seguidamente, dois grupos foram sujeitos a uma diminuição progressiva da irrigação. Os outros dois grupos permaneceram bem regados. Uma vez que os tratamentos stressados atingiram 18% de capacidade de campo (23 dias), um grupo bem regado e um grupo stressado foram inoculados com N. kwambonambiense. Todas os tratamentos foram mantidos nestas condições durante um período de 66 dias, findo o qual foi obtido um conjunto de parâmetros morfológicos, fisiológicos e bioquímicos. As plantas bem regadas, apesar de terem sido inoculadas com N. kwambonambiense apresentaram um aumento dos parâmetros fotossintéticos o que terá permitido a defesa da planta através de uma produção amplificada de açúcares, prolina e ácido salicílico. Danos oxidativos (parcialmente observados através do conteúdo em malondialdeído) foram evitados, em parte, devido à ação da prolina e açúcares solúveis. O stress hídrico levou a uma diminuição do crescimento confirmado pela redução do conteúdo em ácido-indole-acético. Ocorreu uma diminuição do potencial hídrico, a qual, em conjunto com o aumento do ácido abscísico, levou ao fecho dos estomas e diminuição da fotossíntese. Os danos oxidativos não foram controlados, afetando o estado do E. globulus. Ademais, o N. kwambonambiense provocou um aumento do conteúdo em ácido jasmónico, típico de agentes patogénicos necrotróficos, o que poderá sugerir que o fungo passou de um estilo de vida hemibiotrófico para necrotrófico, à medida que as células degeneravam. Os E. globulus stressados apresentavam maiores lesões externas e cancros, conjuntamente com uma maior progressão interna do fungo. Os nossos resultados comprovam que a seca criou um melhor substrato para o desenvolvimento do fungo e diminuiu a capacidade de resposta da planta. Tal resultou num aumento da suscetibilidade e severidade da doença confirmando a predisposição.
APA, Harvard, Vancouver, ISO, and other styles
4

RICCI, SARA. "Study of biotic and abiotic stresses in Solanaceae by metabolic and proteomic approaches." Doctoral thesis, Università di Foggia, 2017. http://hdl.handle.net/11369/363315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Malinoshevska, M. "Biofilm formation in abiotic stress environment." Thesis, Київський національний університет технологій та дизайну, 2019. https://er.knutd.edu.ua/handle/123456789/13386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Silva, Ana Luísa Patrício. "Impact of natural and/or chemical stressors on the freeze-tolerant and euryhaline enchytraeid, Enchytraeus albidus." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/16009.

Full text
Abstract:
Doutoramento em Biologia
Rapid climatic changes are taking place in Arctic, subarctic and cold temperate regions, where predictions point to an increase in freeze-thaw events, changes in precipitation, evaporation and salinity patterns. Climate change may therefore result in large impacts in ecosystem functioning and dynamics, especially in the presence of contaminants due to intense anthropogenic activities. Even though multiple stress approaches have received increasing interest in the last decades, the number of such studies is limited. In particular, knowledge on the effect of freezethaw events and salinity fluctuations on ecotoxicology of soil invertebrates is lacking, especially important when considering supralittoral species. Therefore, the aim of this thesis was to investigate the effects of low temperature and salinity fluctuations, singly and in combination with contaminants, in the freeze-tolerant and euryhaline enchytraeid Enchytraeus albidus. The assessment of population level endpoints (survival and reproduction), along with physiological and biochemical parameters such as levels of cryoprotectants, ice/water content, oxidative stress biomarkers, cellular energy allocation, and tissue concentration of chemicals (when applied), provided new and valuable knowledge on the effects of selected physical and chemical stressors in E. albidus, and allowed the understanding of adjustments in the primary response mechanisms that enable worms to maintain homeostasis and survival in harsh environments such as polar and temperate-cold regions. The presence of moderate levels of salinity significantly increased freeze-tolerance (mainly evaluated as survival, cryoprotection and ice fraction) and reproduction of E. albidus. Moreover, it contributed to the readjustments of cryoprotectant levels, restoration of antioxidant levels and changed singnificantly the effect and uptake of chemicals (copper cadmium, carbendazim and 4-nonylphenol). Temperature fluctuations (simulated as daily freeze-thaw cycles, between -2ºC and -4ºC) caused substancial negative effect on survival of worms previsouly exposed to non-lethal concentrations of 4-nonylphenol, as compared with constant freezing (-4ºC) and control temperature (2ºC). The decrease in cryoprotectants, increase in energy consumption and the highest concentration of 4-nonylphenol in the tissues have highlighted the high energy requirements and level of toxicity experienced by worms exposed to the combined effect of contaminants and freezing-thawing events. The findings reported on this thesis demonstrate that natural (physical) and chemical stressors, singly or in combination, may alter the dynamics of E. albidus, affecting not only their survival and reproduction (and consequent presence/distribution) but also their physiological and biochemical adaptations. These alterations may lead to severe consequences for the functioning of the ecosystems along the Arctic, subarctic and cold temperate regions, where they play an important role for decomposition of dead organic matter. This thesis provides a scientific basis for improving the setting of safety factors for natural soil ecosystems, and to underline the integration of similar investigations in ecotoxicology, and eventually in risk assessment of contaminants.
As alterações climáticas estão a atingir rapidamente as regiões do Ártico, SubÁrtico e as regiões temperadas, apontando as previsões para um aumento de eventos de congelamento-descongelamento, bem como mudanças nos padrões de precipitação, evaporação e de salinidade. Estas alterações climáticas poderão resultar em impactos francamente negativos no funcionamento e dinâmica de ecossistemas, especialmente quando associados à presença de contaminantes resultantes da intensa atividade antropogénica. Embora a incorporação de stressores múltiplos em estudos de ecotoxicidade tenha recebido um crescente interesse pela comunidade científica, o seu número é ainda reduzido. Particularizando, o conhecimento dos efeitos de eventos de congelamento-descongelamento e de flutuações de salinidade permanecem desconhecidos, especialmente quando se consideram espécies supra-litorais. Neste contexto, o objetivo geral da presente tese consistiu em investigar os efeitos das flutuações de temperaturas e salinidade, individualmente ou em combinação com contaminantes, no enquitraídeo tolerante ao frio e eurialino - o Enchytraeus albidus. A avaliação de parâmetros populacionais (sobrevivência, reprodução e bioacumulação), fisiológicos (níveis de crioprotetores, conteúdo em gelo / água, temperatura de fusão e sobrecongelamento) e bioquímicos (biomarcadores de stress oxidativo, alocação de energia celular) permitiu compilar novas e valiosas informações sobre os efeitos dos stressores físicos e químicos selecionados no enquitraídeo e compreender quais os reajustes nos mecanismos de resposta primários que lhes permitem manter a homeostasia e sobrevivência em ambientes inóspitos como as regiões Polares e temperadas-frias. A presença de níveis moderados de salinidade aumentou significativamente a tolerância a temperaturas congelantes (essencialmente avaliada como sobrevivência, crioprotecção e fracção de gelo extracelular) e a reprodução do E. albidus. Além disso, contribuiu para a regulação de crioprotectores, restauração dos níveis de antioxidantes nestes organismos e alterou significativamente o efeito e a incorporação/absorção de substâncias químicas (cádmio, cobre carbendazim e 4-nonilfenol). As flutuações de temperatura (simuladas como ciclos diários de congelamento-descongelamento, com temperaturas entre 2ºC e -4ºC) causaram um efeito substancialmente negativo na sobrevivência de organismos previamente expostos a concentrações não letais de 4-nonilfenol, quando comparados com organismos expostos a uma temperatura congelante constante (-4ºC) ou à temperatura controlo (2ºC). A diminuição na crioproteção, o aumento no consumo de energia e a maior concentração de 4-nonilfenol nos tecidos vieram sublinhar o elevado gasto energético e o nível de toxicidade sofrido pelos organismos expostos à combinação de contaminantes e eventos de congelamento e descongelamento. Os resultados apresentados nesta tese demonstram, assim, que a presença de stressores naturais (físicos) e químicos, isoladamente ou em combinação, podem alterar a dinâmica do E. albidus, afetando não só a sua sobrevivência e reprodução (e consequente presença / distribuição), mas também as suas adaptações fisiológicas e bioquímicas. Essas alterações podem levar a consequências graves para o funcionamento dos ecossistemas do Ártico, subÁrtico e regiões temperadas-frias, uma vez que estes organismos desempenham um papel importante para a decomposição de matéria orgânica morta. Esta tese fornece ainda uma base científica para melhorar a atribuição de coeficientes de segurança para os ecossistemas naturais do solo, alertando para a integração de investigações semelhantes em ecotoxicologia, e, eventualmente, para a avaliação de risco ecológico de contaminantes.
APA, Harvard, Vancouver, ISO, and other styles
7

Escalante, Pérez María. "Poplar responses to biotic and abiotic stress." kostenfrei, 2009. http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:20-opus-46893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Armeanu, Katrin. "Acclimation of cotton (gossypium) to abiotic stress." Thesis, Bangor University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Coelho, Susana. "Abiotic stress signalling in the fucus embryo." Thesis, University of Plymouth, 2002. http://hdl.handle.net/10026.1/2762.

Full text
Abstract:
Fucoid algae live in the intertidal region where they experience daily fluctuations in light and external osmotic environment. High light, especially in combination with ultraviolet (UV) radiation and hyper-osmotic stress affected the cellular physiology of Fucus embryos. Two photoinhibition responses were recognised. Firstly, a rapid decline of the photosystem II (PSII) efficiency, linked with the operation of the xanthophyl cycle, followed by a slower decline correlated with reactive oxygen species (ROS) production. As a result of enhanced ROS production, a slower repair of the PSII efficiency was observed, particularly with increased UV-B doses. Development of the embryos was transiently affected by UV-B. The cellular signal transduction pathway during hyper-osmotic stress was investigated. ROS production in response to hyperosmotic stress comprised two distinct components. The first ROS component coincided closely with the origin of a Ca2+ wave in the peripheral cytosol at the growing cell apex, had an extracellular origin, and was necessary for the Ca2+ wave. Patch clamp experiments showed that a non-selective cation channel was stimulated by H2O2, and may underlie the initial cytosolic Ca2+ elevation. The spatio-temporal pattern of the Ca2+ wave was thus determined by peripheral ROS production. The second, later ROS component localised to the mitochondria and was a direct consequence of the Ca2+ wave. The first, but not the second component was required for short-term adaptation to osmotic stress, probably through the activity of cell wall bromoperoxidases. Mitogen-activated protein kinases may be involved in the hyper-osmotic stress response downstream or independently of the mitochondrial ROS production.
APA, Harvard, Vancouver, ISO, and other styles
10

Karim, Sazzad. "Exploring plant tolerance to biotic and abiotic stresses /." Uppsala : Dept. of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 2007. http://epsilon.slu.se/200758.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Abiotic stresse"

1

Jenks, Matthew A., and Paul M. Hasegawa, eds. Plant Abiotic Stress. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118764374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jenks, Matthew A., and Paul M. Hasegawa, eds. Plant Abiotic Stress. Oxford, UK: Blackwell Publishing Ltd, 2005. http://dx.doi.org/10.1002/9780470988503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

di Toppi, Luigi Sanità, and Barbara Pawlik-Skowrońska, eds. Abiotic Stresses in Plants. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0255-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sanità, Di Toppi Luigi, and Pawlik-Skowrońska Barbara, eds. Abiotic stresses in plants. Dordrecht: Kluwer Academic Publishers, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aftab, Tariq, and Khalid Rehman Hakeem. Plant Abiotic Stress Physiology. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aftab, Tariq, and Rehman Hakeem. Plant Abiotic Stress Physiology. Boca Raton: Apple Academic Press, 2021. http://dx.doi.org/10.1201/9781003180579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hasanuzzaman, Mirza, Khalid Rehman Hakeem, Kamrun Nahar, and Hesham F. Alharby, eds. Plant Abiotic Stress Tolerance. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06118-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haryana, Nikhil. Abiotic stress: New research. Hauppauge, N.Y: Nova Science Publisher's, Inc., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chakraborty, U., and B. Chakraborty, eds. Abiotic stresses in crop plants. Wallingford: CABI, 2015. http://dx.doi.org/10.1079/9781780643731.0000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ram, P. C. Abiotic stresses and plant productivity. Jaipur: Aavishkar Publishers, Distributors, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Abiotic stresse"

1

Lakshmanan, Prakash, and Nicole Robinson. "Stress Physiology: Abiotic Stresses." In Sugarcane: Physiology, Biochemistry, and Functional Biology, 411–34. Chichester, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118771280.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wehner, Todd C., Rachel P. Naegele, James R. Myers, Narinder P. S. Dhillon, and Kevin Crosby. "Abiotic stresses." In Cucurbits, 220–26. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781786392916.0220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trethowan, Richard M. "Abiotic Stresses." In Wheat Improvement, 159–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_10.

Full text
Abstract:
AbstractAbiotic stresses, such as drought and high temperature, significantly limit wheat yield globally and the intensity and frequency of these stresses are projected to increase in most wheat growing areas. Wheat breeders have incrementally improved the tolerance of cultivars to these stresses through empirical selection in the environment, however new phenotyping and genetic technologies and strategies can significantly improve rates of genetic gain. The integration of new tools and knowledge in the plant breeding process, including better breeding targets, improved choice of genetic diversity, more efficient phenotyping methods and strategy and optimized integration of genetic technologies in the context of several commonly used wheat breeding strategies is discussed. New knowledge and tools that improve the efficiency and speed of wheat improvement can be integrated within the scaffold of most wheat breeding strategies without significant increase in cost.
APA, Harvard, Vancouver, ISO, and other styles
4

Basuchaudhuri, P. "Abiotic Stresses." In Physiology of the Peanut Plant, 351–82. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003262220-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhatla, Satish C. "Abiotic Stress." In Plant Physiology, Development and Metabolism, 969–1028. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2023-1_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ohnishi, Takayuki, Mikio Nakazono, and Nobuhiro Tsutsumi. "Abiotic Stress." In Rice Biology in the Genomics Era, 337–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74250-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bastiaanse, Héloïse, Guillaume Théroux-Rancourt, and Aude Tixier. "Abiotic Stress." In Comparative and Evolutionary Genomics of Angiosperm Trees, 275–302. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/7397_2016_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basuchaudhuri, P. "Abiotic Stress." In Physiology of Soybean Plant, 333–64. Boca Raton : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9781003089124-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kenong, Xu, Ismail Abdelbagi M., and Ronald Pamela. "Flood tolerance mediated by the rice SUB1A transcription factor." In Plant Abiotic Stress, 1–13. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118764374.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fleury, Delphine, and Peter Langridge. "QTL and association mapping for plant abiotic stress tolerance." In Plant Abiotic Stress, 257–87. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118764374.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Abiotic stresse"

1

Shpakovski, D. G., E. K. Shematorova, O. G. Babak, I. Yu Slovokhotov, S. G. Spivak, M. R. Khaliluev, Yu V. Doludin, et al. "Specific cytochromes P450 and adrenodoxin-like mitochondrial ferredoxins as components of the progesterone hormone system of higher plants involved in comprehensive protection from biotic and abiotic stresse." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.225.

Full text
Abstract:
In plants, along with the brassinosteroid, the older progesterone hormone system also functions. We have characterized some components of this system and shown its importance for enhancing plant immunity.
APA, Harvard, Vancouver, ISO, and other styles
2

Gurina, V. V., N. V. Ozolina, I. S. Nesterkina, and E. V. Spiridonova. "GLYCOGLICHEROLIPIDS OF TONOPLAST UNDER INFLUENCE OF ABIOTIC STRESSES." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-249-251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mackill, D. J., B. C. Y. Collard, C. N. Neeraja, R. M. Rodriguez, S. Heuer, and A. M. Ismail. "QTLs in rice breeding: examples for abiotic stresses." In Proceedings of the Fifth International Rice Genetics Symposium. World Scientific Publishing Company, 2007. http://dx.doi.org/10.1142/9789812708816_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Izquierdo Zandalinas, Sara. "Systemic signaling during abiotic stress combination in plants." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1048268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koroleva, E. S., P. V. Kuzmitskaya, and O. Yu Urbanovich. "IMPACT OF DROUGHT STRESS ON STRESS-ASSOCIATED PROTEINS APPLE GENES EXPRESSION LEVEL." In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-268-271.

Full text
Abstract:
Stress-associated proteins (SAP) in many plants are involved in the response to adverse factors of biotic and abiotic nature. In order to study changes in the expression level of SAP genes in apple trees, MM-106 rootstocks were exposed to drought for 24 h. Expression profiles of 14 studied genes encoding SAP were established during the quantitative PCR reaction (qPCR), among which wererevealed of actively expressed under specified conditions. The majority of SAP genes have maximum transcript accumulation by 4 hours of exposure to drought.
APA, Harvard, Vancouver, ISO, and other styles
6

Koroleva, E. S., P. V. Kuzmitskaya, and O. Yu Urbanovich. "IMPACT OF DROUGHT STRESS ON STRESS-ASSOCIATED PROTEINS APPLE GENES EXPRESSION LEVEL." In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute, 2021. http://dx.doi.org/10.46646/sakh-2021-1-268-271.

Full text
Abstract:
Stress-associated proteins (SAP) in many plants are involved in the response to adverse factors of biotic and abiotic nature. In order to study changes in the expression level of SAP genes in apple trees, MM-106 rootstocks were exposed to drought for 24 h. Expression profiles of 14 studied genes encoding SAP were established during the quantitative PCR reaction (qPCR), among which wererevealed of actively expressed under specified conditions. The majority of SAP genes have maximum transcript accumulation by 4 hours of exposure to drought.
APA, Harvard, Vancouver, ISO, and other styles
7

Osmolovskaya, N. G., T. E. Bilova, V. Z. Wu, L. N. Kuchaeva, and A. A. Frolov. "Metabolic response of plants to abiotic stress and prematureleaf aging." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mishra, Dwijesh Chandra, Shikha Mittal, Indra Singh, Sanjeev Kumar, and Anil Rai. "Identification of co-regulated genes of chick pea under abiotic stress." In 2016 International Conference on Bioinformatics and Systems Biology (BSB). IEEE, 2016. http://dx.doi.org/10.1109/bsb.2016.7552156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KACHEL_JAKUBOWSKA, Magdalena, Piotr BULAK, and Andrzej BIEGANOWSKI. "INFLUENCE OF METAL NANOCOLLOIDS ON SELECTED ABIOTIC STRESS FACTORS IN PUMPKIN." In IX International ScientificSymposium "Farm Machinery and Processes Management in Sustainable Agriculture". Departament of Machinery Exploittation and Management of Production Processes, University of Life Sciences in Lublin, 2017. http://dx.doi.org/10.24326/fmpmsa.2017.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shinozaki, K., and K. Yamaguchi-Shinozaki. "Functional genomics for gene discovery in abiotic stress response and tolerance." In Proceedings of the Fifth International Rice Genetics Symposium. World Scientific Publishing Company, 2007. http://dx.doi.org/10.1142/9789812708816_0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Abiotic stresse"

1

Mosquna, Assaf, and Sean Cutler. Systematic analyses of the roles of Solanum Lycopersicum ABA receptors in environmental stress and development. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604266.bard.

Full text
Abstract:
Drought and other abiotic stresses have major negative effects on agricultural productivity. The plant hormone abscisic acid (ABA) regulates many responses to environmental stresses and can be used to improve crop performance under stress. ABA levels rise in response to diverse abiotic stresses to coordinate physiological and metabolic responses that help plants survive stressful environments. In all land plants, ABA receptors are responsible for initiating a signaling cascade that leads to stomata closure, growth arrest and large-scale changes in transcript levels required for stress tolerance. We wanted to test the meaning of root derived ABA signaling in drying soil on water balance. To this end we generated transgenic tomato lines in which ABA signaling is initiated by a synthetic agonist- mandipropamid. Initial study using a Series of grafting experiments indicate that that root ABA signaling has no effect on the immediate regulation of stomata aperture. Once concluded, these experiments will enable us to systematically dissect the physiological role of root-shoot interaction in maintaining the water balance in plants and provide new tools for targeted improvement of abiotic stress tolerance in crop plants.
APA, Harvard, Vancouver, ISO, and other styles
2

Freeman, Stanley, Russell Rodriguez, Adel Al-Abed, Roni Cohen, David Ezra, and Regina Redman. Use of fungal endophytes to increase cucurbit plant performance by conferring abiotic and biotic stress tolerance. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7613893.bard.

Full text
Abstract:
Major threats to agricultural sustainability in the 21st century are drought, increasing temperatures, soil salinity and soilborne pathogens, all of which are being exacerbated by climate change and pesticide abolition and are burning issues related to agriculture in the Middle East. We have found that Class 2 fungal endophytes adapt native plants to environmental stresses (drought, heat and salt) in a habitat-specific manner, and that these endophytes can confer stress tolerance to genetically distant monocot and eudicot hosts. In the past, we generated a uv non-pathogenic endophytic mutant of Colletotrichum magna (path-1) that colonized cucurbits, induced drought tolerance and enhanced growth, and protected 85% - 100% against disease caused by certain pathogenic fungi. We propose: 1) utilizing path-1 and additional endophtyic microorganisms to be isolated from stress-tolerant local, wild cucurbit watermelon, Citrulluscolocynthis, growing in the Dead Sea and Arava desert areas, 2) generate abiotic and biotic tolerant melon crop plants, colonized by the isolated endophytes, to increase crop yields under extreme environmental conditions such as salinity, heat and drought stress, 3) manage soilborne fungal pathogens affecting curubit crop species growing in the desert areas. This is a unique and novel "systems" approach that has the potential to utilize natural plant adaptation for agricultural development. We envisage that endophyte-colonized melons will eventually be used to overcome damages caused by soilborne diseases and also for cultivation of this crop, under stress conditions, utilizing treated waste water, thus dealing with the limited resource of fresh water.
APA, Harvard, Vancouver, ISO, and other styles
3

Sadot, Einat, Christopher Staiger, and Mohamad Abu-Abied. Studies of Novel Cytoskeletal Regulatory Proteins that are Involved in Abiotic Stress Signaling. United States Department of Agriculture, September 2011. http://dx.doi.org/10.32747/2011.7592652.bard.

Full text
Abstract:
In the original proposal we planned to focus on two proteins related to the actin cytoskeleton: TCH2, a touch-induced calmodulin-like protein which was found by us to interact with the IQ domain of myosin VIII, ATM1; and ERD10, a dehydrin which was found to associate with actin filaments. As reported previously, no other dehydrins were found to interact with actin filaments. In addition so far we were unsuccessful in confirming the interaction of TCH2 with myosin VIII using other methods. In addition, no other myosin light chain candidates were found in a yeast two hybrid survey. Nevertheless we have made a significant progress in our studies of the role of myosins in plant cells. Plant myosins have been implicated in various cellular activities, such as cytoplasmic streaming (1, 2), plasmodesmata function (3-5), organelle movement (6-10), cytokinesis (4, 11, 12), endocytosis (4, 5, 13-15) and targeted RNA transport (16). Plant myosins belong to two main groups of unconventional myosins: myosin XI and myosin VIII, both closely related to myosin V (17-19). The Arabidopsis myosin family contains 17 members: 13 myosin XI and four myosin VIII (19, 20). The data obtained from our research of myosins was published in two papers acknowledging BARD funding. To address whether specific myosins are involved with the motility of specific organelles, we cloned the cDNAs from neck to tail of all 17 Arabidopsis myosins. These were fused to GFP and used as dominant negative mutants that interact with their cargo but are unable to walk along actin filaments. Therefore arrested organelle movement in the presence of such a construct shows that a particular myosin is involved with the movement of that particular organelle. While no mutually exclusive connections between specific myosins and organelles were found, based on overexpression of dominant negative tail constructs, a group of six myosins (XIC, XIE, XIK, XI-I, MYA1 and MYA2) were found to be more important for the motility of Golgi bodies and mitochondria in Nicotiana benthamiana and Nicotiana tabacum (8). Further deep and thorough analysis of myosin XIK revealed a potential regulation by head and tail interaction (Avisar et al., 2011). A similar regulatory mechanism has been reported for animal myosin V and VIIa (21, 22). In was shown that myosin V in the inhibited state is in a folded conformation such that the tail domain interacts with the head domain, inhibiting its ATPase and actinbinding activities. Cargo binding, high Ca2+, and/or phosphorylation may reduce the interaction between the head and tail domains, thus restoring its activity (23). Our collaborative work focuses on the characterization of the head tail interaction of myosin XIK. For this purpose the Israeli group built yeast expression vectors encoding the myosin XIK head. In addition, GST fusions of the wild-type tail as well as a tail mutated in the amino acids that mediate head to tail interaction. These were sent to the US group who is working on the isolation of recombinant proteins and performing the in vitro assays. While stress signals involve changes in Ca2+ levels in plants cells, the cytoplasmic streaming is sensitive to Ca2+. Therefore plant myosin activity is possibly regulated by stress. This finding is directly related to the goal of the original proposal.
APA, Harvard, Vancouver, ISO, and other styles
4

Brunner, Amy, and Jason Holliday. Abiotic stress networks converging on FT2 to control growth in Populus. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1484373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Childs, Kevin, Robin Buell, Bingyu Zhao, and Xunzhong Zhang. Identifying Differences in Abiotic Stress Gene Networks between Lowland and Upland Ecotypes of Switchgrass (DE-SC0008338). Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1331599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bechar, Avital, Shimon Nof, and Yang Tao. Development of a robotic inspection system for early identification and locating of biotic and abiotic stresses in greenhouse crops. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7600042.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ginzberg, Idit, and Walter De Jong. Molecular genetic and anatomical characterization of potato tuber skin appearance. United States Department of Agriculture, September 2008. http://dx.doi.org/10.32747/2008.7587733.bard.

Full text
Abstract:
Potato (Solanum tuberosum L.) skin is composed of suberized phellem cells, the outer component of the tuber periderm. The focus of the proposed research was to apply genomic approaches to identify genes that control tuber skin appearance - smooth and shiny skin is highly preferred by the customers while russeted/netted skin potatoes are rejected. The breeding program (at Cornell University) seeks to develop smooth-skin varieties but has encountered frequent difficulties as inheritance of russeting involves complementary action by independently segregating genes, where a dominant allele at each locus is required for any degree of skin russeting. On the other hand, smooth-skin varieties frequently develop unsightly russeting in response to stress conditions, mainly high soil temperatures. Breeding programs in Israel aimed towards the improvement of heat tolerant varieties include skin quality as one of the desired characteristics. At the initiation of the present project it was unclear whether heat induced russeting and genetically inherited russeting share the same genes and biosynthesis pathways. Nevertheless, it has been suggested that russeting might result from increased periderm thickness, from strong cohesion between peridermal cells that prevents the outer layers from sloughing off, or from altered suberization processes in the skin. Hence, the original objectives were to conduct anatomical study of russet skin development, to isolate skin and russeting specific genes, to map the loci that determine the russet trait, and to compare with map locations the candidate russet specific genes, as well as to identify marker alleles that associated with russet loci. Anatomical studies suggested that russet may evolve from cracking at the outer layers of the skin, probably when skin development doesn’t meet the tuber expansion rate. Twodimensional gel electrophoresis and transcript profiling (cDNA chip, potato functional genomic project) indicated that in comparison to the parenchyma tissue, the skin is enriched with proteins/genes that are involved in the plant's responses to biotic and abiotic stresses and further expand the concept of the skin as a protective tissue containing an array of plantdefense components. The proteomes of skin from heat stressed tubers and native skin didn’t differ significantly, while transcript profiling indicated heat-related increase in three major functional groups: transcription factors, stress response and protein degradation. Exceptional was ACC synthase isogene with 4.6 fold increased level in the heat stressed skin. Russeting was mapped to two loci: rusB on chromosome 4 and rusC on chromosome 11; both required for russeting. No evidence was found for a third locus rusA that was previously proposed to be required for russeting. In an effort to find a link between the russeting character and the heat-induced russeting an attempt was made to map five genes that were found in the microarray experiment to be highly induced in the skin under heat stress in the segregating russet population. Only one gene was polymorphic; however it was localized to chromosome 2, so cannot correspond to rusB or rusC. Evaluation of AFLP markers tightly linked to rusB and rusC showed that these specific alleles are not associated with russeting in unrelated germplasm, and thus are not useful for MAS per se. To develop markers useful in applied breeding, it will be necessary to screen alleles of additional tightly linked loci, as well as to identify additional russet (heat-induced and/or native) related genes.
APA, Harvard, Vancouver, ISO, and other styles
8

Handa, Avtar K., Yuval Eshdat, Avichai Perl, Bruce A. Watkins, Doron Holland, and David Levy. Enhancing Quality Attributes of Potato and Tomato by Modifying and Controlling their Oxidative Stress Outcome. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586532.bard.

Full text
Abstract:
General The final goal and overall objective of the current research has been to modify lipid hydroperoxidation in order to create desirable phenotypes in two important crops, potato and tomato, which normally are exposed to abiotic stress associated with such oxidation. The specific original objectives were: (i) the roles of lipoxygenase (LOX) and phospholipids hydroperoxide glutathione peroxidase (PHGPx) in regulating endogenous levels of lipid peroxidation in plant tissues; (ii) the effect of modified lipid peroxidation on fruit ripening, tuber quality, crop productivity and abiotic stress tolerance; (iii) the effect of simultaneous reduction of LOX and increase of PHGPx activities on fruit ripening and tuber quality; and (iv) the role of lipid peroxidation on expression of specific genes. We proposed to accomplish the research goal by genetic engineering of the metabolic activities of LOX and PHGPx using regulatable and tissue specific promoters, and study of the relationships between these two consecutive enzymes in the metabolism and catabolism of phospholipids hydroperoxides. USA Significant progress was made in accomplishing all objectives of proposed research. Due to inability to regenerate tomato plants after transforming with 35S-PHGPx chimeric gene construct, the role of low catalase induced oxidative stress instead of PHGPx was evaluated on agronomical performance of tomato plant and fruit quality attributes. Effects of polyamine, that protects DNA from oxidative stress, were also evaluated. The transgenic plants under expressing lipoxygenase (LOX-sup) were crossed with catalase antisense (CAT-anti) plants or polyamine over producing plants (SAM-over) and the lines homozygous for the two transgenes were selected. Agronomical performance of these line showed that low catalase induced oxidative stress negatively affected growth and development of tomato plants and resulted in a massive change in fruit gene expression. These effects of low catalase activity induced oxidative stress, including the massive shift in gene expression, were greatly overcome by the low lipoxygenase activity. Collectively results show that oxidative stress plays significant role in plant growth including the fruit growth. These results also for the first time indicated that a crosstalk between oxidative stress and lipoxygenase regulated processes determine the outcome during plant growth and development. Israel Regarding PHGPx, most of the study has concentrated on the first and the last specific objectives, since it became evident that plant transformation with this gene is not obvious. Following inability to achieve efficient transformation of potato and tomato using a variety of promoters, model plant systems (tobacco and potato cell cultures, tobacco calli and plantlets, and Arabidopsis) were used to establish the factors and to study the obstacles which prohibited the regeneration of plants carrying the genetic machinery for overproduction of PHGPx. Our results clearly demonstrate that while genetic transformation and over-expression of PHGPx occurs in pre-developmental tissue stage (cell culture, calli clusters) or in completed plant (Arabidopsis), it is likely that over-expression of this enzyme before tissue differentiation is leading to a halt of the regeneration process. To support this assumption, experiments, in which genetic engineering of a point-mutated PHGPx gene enable transformation and over-expression in plants of PhSPY modified in its catalytic site and thus inactive enzymatically, were successfully carried out. These combined results strongly suggest, that if in fact, like in animals and as we established in vitro, the plant PHGPx exhibits PH peroxidase activity, these peroxides are vital for the organisms developmental process.
APA, Harvard, Vancouver, ISO, and other styles
9

Whitecloud, Simone, Holly VerMeulen, Franz Lichtner, Nadia Podpora, Timothy Cooke, Christopher Williams, Michael Musty, Irene MacAllister, and Jason Dorvee. Understanding plant volatiles for environmental awareness : chemical composition in response to natural light cycles and wounding. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/45961.

Full text
Abstract:
Plants emit a bouquet of volatile organic compounds (VOCs) in response to both biotic and abiotic stresses and, simultaneously, eavesdrop on emit-ted signals to activate direct and indirect defenses. By gaining even a slight insight into the semantics of interplant communications, a unique aware-ness of the operational environment may be obtainable (e.g., knowledge of a disturbance within). In this effort, we used five species of plants, Arabidopsis thaliana, Panicum virgatum, Festuca rubra, Tradescantia zebrina, and Achillea millefolium, to produce and query VOCs emitted in response to mechanical wounding and light cycles. These plants provide a basis for further investigation in this communication system as they span model organisms, common house plants, and Arctic plants. The VOC com-position was complex; our parameter filtering often enabled us to reduce the noise to fewer than 50 compounds emitted over minutes to hours in a day. We were able to detect and measure the plant response through two analytical methods. This report documents the methods used, the data collected, and the analyses performed on the VOCs to determine if they can be used to increase environmental awareness of the battlespace.
APA, Harvard, Vancouver, ISO, and other styles
10

Cohen, Roni, Kevin Crosby, Menahem Edelstein, John Jifon, Beny Aloni, Nurit Katzir, Haim Nerson, and Daniel Leskovar. Grafting as a strategy for disease and stress management in muskmelon production. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7613874.bard.

Full text
Abstract:
The overall objective of this research was to elucidate the horticultural, pathological, physiological and molecular factors impacting melon varieties (scion) grafted onto M. cannonballus resistant melon and squash rootstocks. Specific objectives were- to compare the performance of resistant melon germplasm (grafted and non-grafted) when exposed to M. cannoballus in the Lower Rio Grande valley and the Wintergarden, Texas, and in the Arava valley, Israel; to address inter-species relationships between a Monosporascus resistant melon rootstock and susceptible melon scions in terms of fruit-set, fruit quality and yield; to study the factors which determine the compatibility between the rootstock and the scion in melon; to compare the responses of graft unions of differing compatibilities under disease stress, high temperatures, deficit irrigation, and salinity stress; and to investigate the effect of rootstock on stress related gene expression in the scion. Some revisions were- to include watermelon in the Texas investigations since it is much more economically important to the state, and also to evaluate additional vine decline pathogens Didymella bryoniae and Macrophomina phaseolina. Current strategies for managing vine decline rely heavily on soil fumigation with methyl bromide, but restrictions on its use have increased the need for alternative management strategies. Grafting of commercial melon varieties onto resistant rootstocks with vigorous root systems is an alternative to methyl bromide for Monosporascus root rot/vine decline (MRR/VD) management in melon production. Extensive selection and breeding has already produced potential melon rootstock lines with vigorous root systems and disease resistance. Melons can also be grafted onto Cucurbita spp., providing nonspecific but efficient protection from a wide range of soil-borne diseases and against some abiotic stresses, but compatibility between the scion and the rootstock can be problematic. During the first year experiments to evaluate resistance to the vine decline pathogens Monosporascus cannonballus, Didymella bryoniae, and Macrophomina phaseolina in melon and squash rootstocks proved the efficacy of these grafted plants in improving yield and quality. Sugars and fruit size were better in grafted versus non-grafted plants in both Texas and Israel. Two melons (1207 and 124104) and one pumpkin, Tetsukabuto, were identified as the best candidate rootstocks in Texas field trials, while in Israel, the pumpkin rootstock RS59 performed best. Additionally, three hybrid melon rootstocks demonstrated excellent resistance to both M. cannonballus and D. bryoniae in inoculated tests, suggesting that further screening for fruit quality and yield should be conducted. Experiments with ABA in Uvalde demonstrated a significant increase in drought stress tolerance and concurrent reduction in transplant shock due to reduced transpiration for ‘Caravelle’ plants. In Israel, auxin was implicated in reducing root development and contributing to increased hydrogen peroxide, which may explain incompatibility reactions with some squash rootstocks. However, trellised plants responded favorably to auxin (NAA) application at the time of fruit development. Gene expression analyses in Israel identified several cDNAs which may code for phloem related proteins, cyclins or other factors which impact the graft compatibility. Manipulation of these genes by transformation or traditional breeding may lead to improved rootstock cultivars. Commercial applications of the new melon rootstocks as well as the ABA and TIBA growth regulators have potential to improve the success of grafted melons in both Israel and Texas. The disease resistance, fruit quality and yield data generated by the field trials will help producers in both locations to decide what rootstock/scion combinations will be best.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography