Dissertations / Theses on the topic 'Abelian varietie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Abelian varietie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
TAMBORINI, CAROLINA. "On totally geodesic subvarieties in the Torelli locus and their uniformizing symmetric spaces." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/371476.
Full textThis thesis deals with totally geodesic subvarieties of the moduli space A_g of principally polarized abelian varieties and their relation with the Torelli locus. This is the closure in A_g of the image of the moduli space M_g of smooth, complex algebraic curves of genus g via the Torelli map j: M_g-->A_g. The moduli space A_g is a quotient of the Siegel space, which is a Riemannian symmetric space. An algebraic subvariety of A_g is totally geodesic if it is the image, under the natural projection map, of some totally geodesic submanifold of the Siegel space. Geometric considerations lead to the expectation that j(M_g) should contain very few totally geodesic subvarieties of A_g. This expectation also agrees with the Coleman-Oort conjecture. The differential geometry of symmetric spaces is described through Lie theory. In particular, totally geodesic submanifolds can be characterized via Lie algebras. This motivates the discussion carried out in this thesis, in which we use some Lie-theoretic tools to investigate geometric aspects of the inclusion of j(M_g) in A_g. The main results presented are the following. In Chapter 2, we consider the pull-back of the Lie bracket operation on the tangent space of A_g via the Torelli map, and we characterize it in terms of the geometry of the curve. We use the Bergman kernel form associated with the curve. Also, we link the Bergman kernel form to the second fundamental form of the Torelli map. In Chapter 3, we determine which symmetric space uniformizes each of the known counterexamples to the Coleman-Oort conjecture via the computation of the associated Lie algebra decomposition. These known examples were obtained studying families of Galois coverings of curves. Chapter 4 focuses on these families for their own sake, and we describe a new topological construction of families of G-coverings of the line.
歐偉民 and Wai-man Au. "Families of polarized abelian varieties." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31214897.
Full textLemos, Pedro. "Residual representations of Abelian varieties." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/94788/.
Full textFhlathuin, Brid ni. "Mahler's measure on Abelian varieties." Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296951.
Full textAu, Wai-man. "Families of polarized abelian varieties /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19471117.
Full textYoung, Ian David. "Symmetric squares of modular Abelian varieties." Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500087.
Full textGiangreco, Maidana Alejandro José. "Cyclic abelian varieties over finite fields." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0316.
Full textThe set A(k) of rational points of an abelian variety A defined over a finite field k forms a finite abelian group. This group is suitable for multiple applications, and its structure is very important. Knowing the possible group structures of A(k) and some statistics is then fundamental. In this thesis, we focus our interest in "cyclic varieties", i.e. abelian varieties defined over finite fields with cyclic group of rational points. Isogenies give us a coarser classification than that given by the isomorphism classes of abelian varieties, but they provide a powerful tool in algebraic geometry. Every isogeny class is determined by its Weil polynomial. We give a criterion to characterize "cyclic isogeny classes", i.e. isogeny classes of abelian varieties defined over finite fields containing only cyclic varieties. This criterion is based on the Weil polynomial of the isogeny class.From this, we give bounds on the fractions of cyclic isogeny classes among certain families of isogeny classes parameterized by their Weil polynomials.Also we give the proportion of "local"-cyclic isogeny classes among the isogeny classes defined over the finite field mathbb{F}_q with q elements, when q tends to infinity
Joyce, Adam Jack. "The Manin constants of modular abelian varieties." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440468.
Full textLahoz, Vilalta Marti. "Theta-duality in abelian varieties and the bicanonical map of irregular varieties." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/77898.
Full textEl primer objectiu d'aquesta tesi és contribuir a l'estudi de les varietats abelianes principalment polaritzades (vapp), especialment als problemes de Schottky i Torelli. Les vapp admeten una teoria de dualitat anàloga a la dualitat dels espais projectius, on el paper que juguen els hiperplans de l'espai projectiu és substituït pels divisors que representen la polarització principal. Així doncs, donada una subvarietat Y d'una vapp, podem definir el seu thetadual T(Y) com el conjunt dels divisors que representen la polarització principal i contenen aquesta subvarietat. Aquest conjunt admet una estructura esquemàtica natural (tal i com la defineixen Pareschi i Popa). Les varietats Jacobianes i de Prym són exemples clàssics de vapp construïdes a partir de corbes. A més, són interessants perquè certes propietats de les corbes involucrades es veuen reflectides en elles o en algunes subvarietats especials. Per exemple, en el cas de les Jacobianes tenim els llocs de BrillNoether Wd ( W1 correspon a la corba d'AbelJacobi) i en el cas de les Pryms tenim la corba d'AbelPrym C. Al capítol III de la tesi s'estudia l'estructura esquemàtica del thetadual dels llocs de BrillNoether Wd i de la corba d'AbelPrym. En el primer cas, es reobté amb uns altres mètodes, el resultat de Pareschi i Popa T(Wd)= Wgd1. En el cas de la corba d'AbelPrym C, s'obté que T(C)=V², onV² és el segon lloc de PrymBrillNoether amb l'estructura esquemàtica definida per Welters. Pareschi i Popa han demostrat un resultat anàleg per les vapp al Lemma de Castelnuovo pels espais projectius. És a dir, si (A,Θ) és una vapp de dimensió g, aleshores g+2 punts en posició general respecte Θ, però en posició especial respecte 2Θ, han d'estar continguts en una corba de grau minimal a A, i.e. una corba d'AbelJacobi. En particular, s'obté un resultat de Schottky ja que A ha de ser una Jacobiana i un resultat de Torelli, ja que la corba és la intersecció de tots els divisors de |2Θ| que contenen els g+2 punts. Al capítol IV, tal i com Eisenbud i Harris van fer en el cas projectiu, s'estén aquest resultat a esquemes finits possiblement no reduïts. El segon objectiu d'aquesta tesi és contribuir a l'estudi de les varietats de tipus general. Pràcticament per definició, les aplicacions pluricanòniques són essencials pel seu estudi. Un dels problemes principals de l'àrea és donar condicions geomètriques o numèriques per assegurar que la mèsima aplicació pluricanònica (per m baix) indueix una equivalència biracional amb la imatge. La classificació de les superfícies que tenen l'aplicació bicanònica no biracional ha atret l'atenció de molts geòmetres algebraics. Al capítol V, es dóna un criteri numèric suficient per assegurar la biracionalitat de l'aplicació bicanònica de les varietats irregulars de dimensió arbitrària. També es demostra que si X és una varietat primitiva, aleshores només admet fibracions molt especials a altres varietats irregulars. Per aquestes varietats s'obté que és equivalent que X sigui biracional a un divisor Θ en una vapp indescomponible, a què la irregularitat q(X) > dim X i l'aplicació bicanònica sigui no biracional. Quan X és una varietat primitiva de tipus general i q(X) = dim X es demostra sota certes condicions de la descomposició de Stein del morfisme d'Albanese, que l'única possibilitat per tal que l'aplicació bicanònica sigui no biracional és que X sigui un recobriment doble sobre una vapp ramificat al llarg d'un divisor a |2Θ|. Aquest resultats estenen a dimensió arbitrària, teoremes ben coneguts en el cas de superfícies i corbes.
Borowka, Pawel. "Non-simple abelian varieties and (1,3) Theta divisors." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.564009.
Full textMarseglia, Stefano. "Isomorphism classes of abelian varieties over finite fields." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-130316.
Full textReid, Fergus. "Varieties for modules of small dimension." Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=203509.
Full textYan, Fengsheng. "Tate property and isogeny estimate for semi-abelian varieties /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10798.
Full textBisatt, Matthew David. "Root numbers of abelian varieties and their Galois representations." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/root-numbers-of-abelian-varieties-and-their-galois-representations(c5072bf1-5719-46aa-9177-bb7e33bf6d40).html.
Full textBanwait, Barinder S. "On some local to global phenomena for abelian varieties." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/58400/.
Full textSeveso, M. A. "Stark-Heegner points and Selmer groups of abelian varieties." Doctoral thesis, Università degli Studi di Milano, 2009. http://hdl.handle.net/2434/151050.
Full textMalabre, François. "Eigenvalue varieties of abelian trees of groups and link-manifolds." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/308323.
Full textLe A-polynôme d’un noeud dans S3 est un polynôme à deux variables obtenu en projetant la variété des SL2C-caractères de l’extérieur du noeud sur la variété de caractères du groupe périphérique. Il distingue le noeud trivial et détecte certaines pentes aux bords de surfaces essentielles des extérieurs de noeud. La notion de A-polynôme a été généralisée aux 3-variétés à bord torique non connexe ; une 3-variétéM bordée par n tores produit un sous-espace algebrique E(M) de C2n appelé variété des valeurs propres deM. Sa dimension est inférieure ou égale à n et E(M) détecte également des systèmes de pentes aux bords de surfaces essentielles dans M. La variété des valeurs propres de M contient toujours un sous-ensemble Ered(M) produit par les caractères réductibles, et de dimension maximale. Si M est hyperbolique, E(M) contient une autre composante de dimension maximale ; pour quelles autres 3- variétes est-ce le cas reste une question ouverte. Dans cette thèse, nous étudions cette question pour deux familles de 3-variétés à bords toriques et, via deux techniques distinctes, apportons une réponse positive dans ces deux cas. Dans un premier temps, nous étudions les entrelacs Brunniens dans S3, entrelacs pour lesquels tout sous-entrelacs strict est trivial. Certaines propriétés de ces entrelacs, et leur stabilité par certains remplissages de Dehn nous permettent de prouver que, siM est l’extérieur d’un entrelacs Brunnien non trivial et différent de l’entrelacs de Hopf, E(M) contient une composante de dimension maximale différente de Ered(M). Ce résultat est obtenu en généralisant la technique préalablement utilisée pour les noeuds dans S3 grâce au théorème de Kronheimer-Mrowka. D’autre part, nous considérons une famille de variétés-entrelacs, variétés obtenues comme extérieurs d’entrelacs dans des sphères d’homologie entière. Les variétés-entrelacs possèdent des systèmes périphériques standard de méridiens et longitudes et sont stables par splicing, le recollement de deux variétés-entrelacs le long de tores périphériques en identifiant le méridien de chaque coté avec la longitude opposée. Ceci induit une notion de décomposition torique de variété-entrelacs et une telle variété est dite graphée si elle admet une décomposition torique où toutes les pièces sont fibrées de Seifert. Nous montrons que, mis-à-part les cas triviaux, toutes les variétés-entrelacs graphées produisent une autre composante de dimension maximale dans leur variétés des valeurs propres. Pour cette seconde preuve, nous présentons une nouvelle généralisation de la variété des valeurs propres, qui prend également en compte les tores intérieurs, que nous introduisons dans le contexte plus général des arbres abéliens de groupes. Un arbre de groupe est appelé abélien si tous les groupes d’arête sont commutatifs ; dans ce cas, nous définissions la variété des valeurs propres d’un arbre abélien de groupe, une variété algébrique compatible avec deux opérations naturelles sur les arbres : la fusion et la contraction. Ceci permet d’étudier la variété des valeurs propres d’une variété-entrelacs à travers les variétés des valeurs propres de ses décompositions toriques. En combinant des résultats généraux sur les variétés des valeurs propres d’arbres abéliens de groupe et les descriptions combinatoires des variétés-entrelacs graphées, nous contruisons des composantes de dimension maximale dans leur variétés des valeur propres.
The A-polynomial of a knot in S3 is a two variable polynomial obtained by projecting the SL2C-character variety of the knot-group to the character variety of its peripheral subgroup. It distinguishes the unknot and detects some boundary slopes of essential surfaces in knot exteriors. The notion of A-polynomial has been generalized to 3-manifolds with non-connected toric boundaries; ifM is a 3-manifold bounded by n tori, this produces an algebraic subset E(M) of C2n called the eigenvalue variety of M. It has dimension at most n and still detects systems of boundary slopes of surfaces in M. The eigenvalue variety of M always contains a part Ered(M) arising from reducible characters and with maximal dimension. If M is hyperbolic, E(M) contains another topdimensional component; for which 3-manifolds is this true remains an open question. In this thesis, this matter is studied for two families of 3-manifolds with toric boundaries and, via two very different technics, we provide a positive answer for both cases. On the one hand, we study Brunnian links in S3, links in the standard 3-sphere for which any strict sublink is trivial. Using special properties of these links and stability under certain Dehn fillings we prove that, if M is the exterior of a Brunnian link different from the trivial link or the Hopf link, then E(M) admits a top-dimensional component different from Ered(M). This is achieved generalizing the technic applied to knots in S3, using Kronheimer-Mrowka theorem. On the other hand, we consider a family of link-manifolds, exteriors of links in integerhomology spheres. Link-manifolds are equipped with standard peripheral systems of meridians and longitudes and are stable under splicing, gluing two link-manifolds along respective boundary components, identifying the meridian of each side to the longitude of the other. This yields a well-defined notion of torus decomposition and a link-manifold is called a graph link-manifold if there exists such a decomposition for which each piece is Seifert-fibred. Discarding trivial cases, we prove that all graph link-manifolds produce another top-dimensional component in their eigenvalue variety. For this second proof, we propose a further generalization of the eigenvalue variety that also takes into account internal tori and this is introduced in the broader context of abelian trees of groups. A tree of group is called abelian if all its edge groups are commutative; in that case, we define the eigenvalue variety of an abelian tree of groups, an algebraic variety compatible with two natural operations on trees: merging and contraction. This enables to study the eigenvalue variety of a link-manifold through the eigenvalue varieties of its torus splittings. Combining general results on eigenvalue varieties of abelian trees of groups with combinatorial descriptions of graph link-manifolds, we construct top-dimensional components in their eigenvalue varieties.
Bradford, Jeremy. "Commutative endomorphism rings of simple abelian varieties over finite fields." Thesis, University of Maryland, College Park, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3557641.
Full textIn this thesis we look at simple abelian varieties defined over a finite field k = [special characters omitted]pn with Endk( A) commutative. We derive a formula that connects the p -rank r(A) with the splitting behavior of p in E = [special characters omitted](π), where π is a root of the characteristic polynomial of the Frobenius endomorphism. We show how this formula can be used to explicitly list all possible splitting behaviors of p in [special characters omitted]E, and we do so for abelian varieties of dimension less than or equal to four defined over [special characters omitted]p. We then look for when p divides [[special characters omitted]E : [special characters omitted][π, π]]. This allows us to prove that the endomorphism ring of an absolutely simple abelian surface is maximal at p when p ≥ 3. We also derive a condition that guarantees that p divides [[special characters omitted]E: [special characters omitted][π, π]]. Last, we explicitly describe the structure of some intermediate subrings of p-power index between [special characters omitted][π, π] and [special characters omitted]E when A is an abelian 3-fold with r(A) = 1.
Laface, Roberto [Verfasser]. "Picard numbers of abelian varieties and related arithmetic / Roberto Laface." Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1131186710/34.
Full textNicole, Marc-Hubert. "Superspecial abelian varieties, theta series and the Jacquet-Langlands correspondence." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85946.
Full textLombardo, Davide. "Galois representations and Mumford-Tate groups attached to abelian varieties." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS196/document.
Full textLet $K$ be a number field and $A$ be a $g$-dimensional abelian variety over $K$. For every prime $ell$, the $ell$-adic Tate module of $A$ gives rise to an $ell$-adic representation of the absolute Galois group of $K$; in this thesis we set out to study the images of the Galois representations arising in this way.For various classes of abelian varieties a description of these images is known up to finite error, and the first aim of this work is to explicitly quantify this error for a number of different cases. We provide a complete solution for the case of elliptic curves without complex multiplication (and more generally for products thereof) and for geometrically simple abelian varieties of CM type. For other classes of abelian varieties we can only describe the Galois image when the prime $ell$ is above a certain bound (which we compute explicitly in terms of $A$, and which is polynomial in $[K:mathbb{Q}]$ and in the Faltings height of $A$): we obtain such results for geometrically simple, semistable abelian surfaces and for "$operatorname{GL}_2$-type" varieties. We also prove similar (but slightly weaker) results for many abelian varieties of odd dimension with trivial endomorphism algebra.We then consider the Galois action on non-simple abelian varieties, and we give sufficient conditions for the associated Galois representations to decompose as a product.Finally, we investigate the structure of the intersection between the cyclotomic extensions of a number field $K$ and the fields generated by the torsion points of an abelian variety over $K$, proving a uniformity property for the degrees of such intersections
Tommasi, Orsola [Verfasser]. "Cohomological aspects of moduli of curves and Abelian varieties / Orsola Tommasi." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2013. http://d-nb.info/1041652380/34.
Full textHao, Yun [Verfasser]. "A Simpson Correspondence for Abelian Varieties in Positive Characteristic / Yun Hao." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/1192755626/34.
Full textGrant, David R. MD FRCSC. "Theta functions and division points on Abelian varieties of dimension two." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/115469.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE.
Bibliography: leaves 123-124.
by David R. Grant.
Ph.D.
Kadets, Borys. "Arboreal representations, sectional monodromy groups, and abelian varieties over finite fields." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126927.
Full textCataloged from the official PDF of thesis.
Includes bibliographical references (pages 93-97).
This thesis consists of three independent parts. The first part studies arboreal representations of Galois groups - an arithmetic dynamics analogue of Tate modules - and proves some large image results, in particular confirming a conjecture of Odoni. Given a field K, a separable polynomial [mathematical expression], and an element [mathematical expression], the full backward orbit [mathematical expression] has a natural action of the Galois group [mathematical expression]. For a fixed [mathematical expression] with [mathematical expression] and for most choices of t, the orbit [mathematical expression] has the structure of complete rooted [mathematical expression]. The Galois action on [mathematical expression] thus defines a homomorphism [mathematical expression]. The map [mathematical expression] is the arboreal representation attached to f and t.
In analogy with Serre's open image theorem, one expects [mathematical expression] to hold for most f, t, but until very recently for most degrees d not a single example of a degree d polynomial [mathematical expression] with surjective [mathematical expression],t was known. Among other results, we construct such examples in all sufficiently large even degrees. The second part concerns monodromy of hyperplane section of curves. Given a geometrically integral proper curve [mathematical expression], consider the generic hyperplane [mathematical expression]. The intersection [mathematical expression] is the spectrum of a finite separable field extension [mathematical expression] of degree [mathematical expression]. The Galois group [mathematical expression] is known as the sectional monodromy group of X. When char K = 0, the group [mathematical expression] equals [mathematical expression] for all curves X.
This result has numerous applications in algebraic geometry, in particular to the degree-genus problem. However, when char K > 0, the sectional monodromy groups can be smaller. We classify all nonstrange nondegenerate curves [mathematical expression], for [mathematical expression] such that [mathematical expression]. Using similar methods we also completely classify Galois group of generic trinomials, a problem studied previously by Abhyankar, Cohen, Smith, and Uchida. In part three of the thesis we derive bounds for the number of [mathematical expression]-points on simple abelian varieties over finite fields; these improve upon the Weil bounds. For example, when q = 3, 4 the Weil bound gives [ .. ] for all abelian varieties A. We prove that [mathematical expression], [mathematical expression] hold for all but finitely many simple abelian varieties A (with an explicit list of exceptions).
by Borys Kadets.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mathematics
Frejlich, Pedro. "Transformada de Nahm de fibrados de Higgs sobre superficies de Riemann de genero ao menos dois." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306023.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-08T04:40:41Z (GMT). No. of bitstreams: 1 Frejlich_Pedro_M.pdf: 852390 bytes, checksum: bcde0cd89c0bcfe3b2515b5cfe48e528 (MD5) Previous issue date: 2007
Resumo: Construímos a transformada de Nahm de um fibrado de Higgs estável de grau nulo sobre uma superfície de Riemann de gênero pelo menos 2. Para tanto, empregamos a Teoria do Índice de Atiyah-Singer e um vanishing theorem que segue da hipótese de estabilidade do fibrado. O principal resultado é que o fibrado transformado é hiperholomorfo e sem fatores planos. Desse modo não só recuperamos os resultados algébricos de [7] e os de [12] para o cos q = 0 como também provamos uma descrição mais detalhada da estrutura geométrica da transformada ¿ o que, aliada às técnicas de [10] sugere que ela possa ser invertida. Palavras-chave: Superfícies de Riemann, Fibrados Estáveis, Teoria do Índice, Transformada de Nahm, Transformada de Fourier-Mukai, Variedades Hiper-Kähler, Variedades Abelianas, Conexões Hiperholomorfas
Abstract: We construct the Nahm transform of a stable, degree-zero Higgs bundle on a Riemann surface of genus at least 2. Atiyah-Singer¿s index theorem is the basic tool employed, along with a vanishing theorem which is due to the stability hypothesis. Our main result is that the transformed bundle is hyperholomorphic and without flat factors. This not only recovers the algebraic results of [7] and that of [12] for the cos q = 0, but also provides a more detailed description of the geometric structure of the transformed bundle. Such results suggest that this Nahm transform can be inverted, cf. [10]. Key-words:Riemann surfaces, Stable bundles, Index Theory, Nahm Transform, Fourier-Mukai Transform, Hyperk¨ahler manifolds, Abelian varieties, Hyperholomorphic connections
Mestrado
Geometria Diferencial/Geometria algebrica
Mestre em Matemática
GROSSELLI, GIAN PAOLO. "Shimura varieties in the Prym loci of Galois covers." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/356638.
Full textIn this thesis we study Shimura subvarieties in the moduli space of complex abelian varieties. These subvarieties arise from families of Galois covers compatible with a fixed group action on the base curve such that the quotient of the base curve by the group is isomorphic to the projective line. We give a criterion for the image of these families under the Prym map to be a special subvariety and, using computer algebra, we build several Shimura subvarieties contained in the Prym loci.
Mendes, da Costa David John. "Topics in the arithmetic of abelian varieties / David John Mendes da Costa." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.617932.
Full textTsui, Ho-yu. "Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodaira surfaces." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37053760.
Full textTsui, Ho-yu, and 徐浩宇. "Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodairasurfaces." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37053760.
Full textWilson, Ley Catherine. "Q-Curves with Complex Multiplication." Thesis, The University of Sydney, 2010. http://hdl.handle.net/2123/6259.
Full textWilson, Ley Catherine. "Q-Curves with Complex Multiplication." University of Sydney, 2010. http://hdl.handle.net/2123/6259.
Full textThe Hecke character of an abelian variety A/F is an isogeny invariant and the Galois action is such that A is isogenous to its Galois conjugate A^σ if and only if the corresponding Hecke character is fixed by σ. The quadratic twist of A by an extension L/F corresponds to multiplication of the associated Hecke characters. This leads us to investigate the Galois groups of families of quadratic extensions L/F with restricted ramification which are normal over a given subfield k of F. Our most detailed results are given for the case where k is the field of rational numbers and F is a field of definition for an elliptic curve with complex multiplication by K. In this case the groups which occur as Gal(L/K) are closely related to the 4-torsion of the class group of K. We analyze the structure of the local unit groups of quadratic fields to find conditions for the existence of curves with good reduction everywhere. After discussing the question of finding models for curves of a given Hecke character, we use twists by 3-torsion points to give an algorithm for constructing models of curves with known Hecke character and good reduction outside 3. The endomorphism algebra of the Weil restriction of an abelian variety A may be determined from the Grössencharacter of A. We describe the computation of these algebras and give examples in which A has dimension 1 or 2 and its Weil restriction has simple abelian subvarieties of dimension ranging between 2 and 24.
Krämer, Thomas [Verfasser], and Rainer [Akademischer Betreuer] Weissauer. "Tannakian Categories of Perverse Sheaves on Abelian Varieties / Thomas Krämer ; Betreuer: Rainer Weissauer." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://d-nb.info/1177249111/34.
Full textCesarano, Luca [Verfasser], and Fabrizio [Akademischer Betreuer] Catanese. "Canonical Surfaces and Hypersurfaces in in Abelian Varieties / Luca Cesarano ; Betreuer: Fabrizio Catanese." Bayreuth : Universität Bayreuth, 2018. http://d-nb.info/1160301913/34.
Full textKriel, Marelize. "Endomorphism rings of hyperelliptic Jacobians." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1077.
Full textCastilho, Tiago Nunes 1983. "Variedades de Prym e semigrupos de Weierstrass." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306009.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-24T02:07:51Z (GMT). No. of bitstreams: 1 Castilho_TiagoNunes_D.pdf: 20018125 bytes, checksum: 181cd44948098969af37059c2215917a (MD5) Previous issue date: 2013
Resumo: Esta tese trata de variedades de Prym e de semigrupos de Weierstrass, ambos no contexto de recobrimentos duplos de curvas ramificados. A partir da descrição da variedade de Prym em termos de um conjunto de fibrações lineares do recobrimento, estuda-se a dualidade entre o lugar onde a aplicação de Gauss sobre o divisor Prym-Theta se degenera e o divisor de ramos do recobrimento duplo, em que provarse uma relação entre as fibras da aplicação de Gauss e os semigrupos de Weierstrass das ramificações do recobrimento
Abstract: ln this thesis we present results about Prym varieties and Weierstrass semigroups, both in the context of ramified double covers of curves. From the description of the Prym variety by a set of linear fibrations, we study the duality between the place where the Gauss map on the Prym-Theta divisor degenerates and the branch divisor of the double covering, in which we prove a relation between the fibers of the Gauss map and the Weierstrass semigroups of branched points of the double covering
Doutorado
Matematica
Doutor em Matemática
Ludsteck, Thomas. "P-adic vector bundles on curves and abelian varieties and representations of the fundamental group." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-35588.
Full textSumi, Ken. "Tropical Theta Functions and Riemann-Roch Inequality for Tropical Abelian Surfaces." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263432.
Full textPal, Aprameyo [Verfasser], and Otmar [Akademischer Betreuer] Venjakob. "Functional Equation of Characteristic Elements of Abelian Varieties over Function Fields / Aprameyo Pal ; Betreuer: Otmar Venjakob." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://d-nb.info/1177248506/34.
Full textKeil, Stefan. "On non-square order Tate-Shafarevich groups of non-simple abelian surfaces over the rationals." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014. http://dx.doi.org/10.18452/16901.
Full textFor elliptic curves E/K over a number field K the Cassels-Tate pairing forces the order of the Tate-Shafarevich group Sha(E/K) to be a perfect square. It is known, that if A/K is a principally polarised abelian variety, then the order of Sha(A/K) is a square or twice a square. William Stein conjectures that for any given square-free positive integer k there is an abelian variety A/Q, such that #Sha(A/Q)=kn². However, it is an open question what to expect if the dimension of A/Q is bounded. Restricting to abelian surfaces B/Q, then results of Poonen, Stoll and Stein imply that there are examples such that #Sha(B/Q)=kn², for k in {1,2,3}. In this thesis we focus in depth on non-simple abelian surfaces B/Q, i.e. there are elliptic curves E_1/Q and E_2/Q and an isogeny phi: E_1 x E_2 -> B. We want to compute the order of Sha(B/Q) with respect to the order of the Tate-Shafarevich group of E_1 x E_2, which has square order. To achieve this goal, we explore the invariance under isogeny of the Birch and Swinnerton-Dyer conjecture. For each k in {1,2,3,5,6,7,10,13,14} we construct a non-simple non-principally polarised abelian surface B/Q, such that #Sha(B/Q)=kn². Furthermore, we compute numerically how often the order of Sha(B/Q) equals five times a square, for cyclic isogenies phi: E_1 x E_2 -> B of degree 5. It turns out that this happens to be the case in approx. 50% of the first 20 million examples we have checked. Finally, we prove that if there is a cyclic isogeny phi: E_1 x E_2 -> B and #Sha(B/Q)=kn², then k is in {1,2,3,5,6,7,10,13}. For general isogenies phi: E_1 x E_2 -> B it remains unclear, whether there are only finitely many possibilities for k. In the appendix, we briefly consider abelian surfaces B/Q being isogenous to Jacobians J of hyperelliptic curves over Q. The techniques developed in this thesis allow to understand certain cyclic isogenies phi: J -> B. For each k in {11,17,23,29}, we provide an example with #Sha(B/Q)=kn².
Delfs, Christina [Verfasser], Andreas [Akademischer Betreuer] Stein, and Florian [Akademischer Betreuer] Hess. "Isogenies and endomorphism rings of abelian varieties of low dimension / Christina Delfs. Betreuer: Andreas Stein ; Florian Hess." Oldenburg : BIS der Universität Oldenburg, 2015. http://d-nb.info/1093683937/34.
Full textDelfs, Christina Verfasser], Andreas [Akademischer Betreuer] [Stein, and Florian [Akademischer Betreuer] Hess. "Isogenies and endomorphism rings of abelian varieties of low dimension / Christina Delfs. Betreuer: Andreas Stein ; Florian Hess." Oldenburg : BIS der Universität Oldenburg, 2015. http://nbn-resolving.de/urn:nbn:de:gbv:715-oops-28173.
Full textStoffel, Martino [Verfasser], and Klaus [Akademischer Betreuer] Künnemann. "Real-valued differential forms on non-archimedean abelian varieties with totally degenerate reduction / Martino Stoffel ; Betreuer: Klaus Künnemann." Regensburg : Universitätsbibliothek Regensburg, 2021. http://d-nb.info/1225121469/34.
Full textMaarouf, Mohamed Anouar. "Problèmes d'hyperbolicité sur l'espace de Douady et ses variantes." Université Joseph Fourier (Grenoble), 1996. http://www.theses.fr/1996GRE10089.
Full textAgostini, Daniele. "On syzygies of algebraic varieties with applications to moduli." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19415.
Full textIn this thesis we study asymptotic syzygies of algebraic varieties and equations of abelian surfaces, with applications to cyclic covers of genus two curves. First, we show that vanishing of asymptotic p-th syzygies implies p-very ampleness for line bundles on arbitrary projective schemes. For smooth surfaces we prove that the converse holds, when p is small, by studying the Bridgeland-King-Reid-Haiman correspondence for the Hilbert scheme of points. This extends previous results of Ein-Lazarsfeld and Ein-Lazarsfeld-Yang. As an application of our results, we show how to use syzygies to bound the irrationality of a variety. Furthermore, we confirm a conjecture of Gross and Popescu about abelian surfaces whose ideal is generated by quadrics and cubics. In addition, we use projective normality of abelian surfaces to study the Prym map associated to cyclic covers of genus two curves. We show that the differential of the map is generically injective as soon as the degree of the cover is at least seven, extending a previous result of Lange and Ortega. Moreover, we show that the differentials fails to be injective precisely at bielliptic covers.
Schuster, Christian [Verfasser], Jörg [Gutachter] Winkelmann, and Peter [Gutachter] Heinzner. "The Kobayashi pseudometric on compact complex surfaces in abelian varieties / Christian Schuster ; Gutachter: Jörg Winkelmann, Peter Heinzner ; Fakultät für Mathematik." Bochum : Ruhr-Universität Bochum, 2020. http://d-nb.info/1217860096/34.
Full textMilio, Enea. "Calcul de polynômes modulaires en dimension 2." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0285/document.
Full textModular polynomials on elliptic curves are a fundamental tool used for the computation of graph of isogenies, class polynomials or for point counting. Thus, they are fundamental for the elliptic curve cryptography. A generalization of these polynomials for principally polarized abelian surfaces has been introduced by Régis Dupont in 2006, who has also described an algorithm to compute them, while theoretical results can been found in an article of Bröker– Lauter of 2009. But these polynomials being really big, they have been computed only in the minimal case p = 2. In this thesis, we continue the work of Dupont and Bröker–Lauter by defining and giving theoretical results on modular polynomials with new invariants, based on theta constants. Using these invariants, we have been able to compute the polynomials until p = 7 but bigger examples look intractable. Thus we define a new kind of modular polynomials where we restrict on the surfaces having real multiplication by the maximal order of a real quadratic field. We present many examples and theoretical results
Bisson, Gaëtan. "Anneaux d'endomorphismes en cryptographie." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL047N/document.
Full textModern communications heavily rely on cryptography to ensure data integrity and privacy. Over the past two decades, very efficient, secure, and featureful cryptographic schemes have been built on top of abelian varieties defined overfinite fields. This thesis contributes to several computational aspects of ordinary abelian varieties related to their endomorphism ring structure. This structure plays a crucial role in the construction of abelian varieties with desirable properties, such as pairings, and we show that more such varieties can be constructed than expected. We also address the inverse problem, that of computing the endomorphism ring of a prescribed abelian variety. Prior state-of-the-art methods could only solve this problem in exponential time, and we design several algorithms of subexponential complexityfor solving it in the ordinary case. For elliptic curves, we rigorously bound the complexity of our algorithms assuming solely the extended Riemann hypothesis, and demonstrate that they are very effective in practice. As a subroutine, we design in particular a memory-less algorithm to solve a generalization of the subset sum problem. We also generalize our method to higher-dimensional abelian varieties. Practically speaking, we develop a library enabling the computation of isogenies between abelian varieties; this building block enables us to apply a generalization of our algorithm to cases that were previously not computable
Terrisse, Robin. "Flux vacua and compactification on smooth compact toric varieties." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1144/document.
Full textThe study of flux vacua is a primordial step in the understanding of string compactifications and their phenomenological properties. In presence of flux the internal manifold ceases to be Calabi-Yau, but still admits an SU(3) structure which becomes thus the preferred framework. After introducing the relevant geometrical notions this thesis explores the role that fluxes play in supersymmetric compactification through several approaches. At first consistent truncations of type IIA supergravity are considered. It is shown that fermionic condensates can help support fluxes and generate a positive contribution to the cosmological constant. These truncations thus admit de Sitter vacua which are otherwise extremely difficult to get, if not impossible. The argument is initially performed with dilatini condensates and then improved by suggesting a mechanism to generate gravitini condensates from gravitational instantons. Then the focus shifts towards branes and their behavior under non abelian T-duality. The duals of several D-brane solutions of type II supergravity are computed and the branes are tracked down by investigating the fluxes and the charges they carry. The supersymmetric D2 brane is further studied by checking explicitly the generalized spinor equations and discussing the possibility of a massive deformation. The last chapter gives a systematic construction of SU(3) structures on a wide class of compact toric varieties. The construction defines a sphere bundle on an arbitrary two-dimensional toric variety but also works when the base is Kähler-Einstein
Scarponi, Danny. "Formes effectives de la conjecture de Manin-Mumford et réalisations du polylogarithme abélien." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30100/document.
Full textIn this thesis we approach two independent problems in the field of arithmetic geometry, one regarding the torsion points of abelian varieties and the other the motivic polylogarithm on abelian schemes. The Manin-Mumford conjecture (proved by Raynaud in 1983) states that if A is an abelian variety and X is a subvariety of A not containing any translate of an abelian subvariety of A, then X can only have a finite number of points that are of finite order in A. In 1996, Buium presented an effective form of the conjecture in the case of curves. In this thesis, we show that Buium's argument can be made applicable in higher dimensions to prove a quantitative version of the conjecture for a class of subvarieties with ample cotangent studied by Debarre. Our proof also generalizes to any dimension a result on the sparsity of p-divisible unramified liftings obtained by Raynaud in the case of curves. In 2014, Kings and Roessler showed that the realisation in analytic Deligne cohomology of the degree zero part of the motivic polylogarithm on abelian schemes can be described in terms of the Bismut-Koehler higher analytic torsion form of the Poincaré bundle. In this thesis, using the arithmetic intersection theory in the sense of Burgos, we give a refinement of Kings and Roessler's result in the case in which the base of the abelian scheme is proper