Academic literature on the topic 'Abelian varietie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Abelian varietie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Abelian varietie"
Zhao, Heer. "Degenerating abelian varieties via log abelian varieties." Asian Journal of Mathematics 22, no. 5 (2018): 811–40. http://dx.doi.org/10.4310/ajm.2018.v22.n5.a2.
Full textSilverberg, Alice. "abelian varieties." Duke Mathematical Journal 56, no. 1 (February 1988): 41–46. http://dx.doi.org/10.1215/s0012-7094-88-05603-7.
Full textYu, Chia-Fu. "Abelian varieties over finite fields as basic abelian varieties." Forum Mathematicum 29, no. 2 (March 1, 2017): 489–500. http://dx.doi.org/10.1515/forum-2014-0141.
Full textKajiwara, Takeshi, Kazuya Kato, and Chikara Nakayama. "Logarithmic Abelian Varieties." Nagoya Mathematical Journal 189 (2008): 63–138. http://dx.doi.org/10.1017/s002776300000951x.
Full textYamaki, Kazuhiko. "Trace of abelian varieties over function fields and the geometric Bogomolov conjecture." Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, no. 741 (August 1, 2018): 133–59. http://dx.doi.org/10.1515/crelle-2015-0086.
Full textTotaro, Burt. "Pseudo-abelian varieties." Annales scientifiques de l'École normale supérieure 46, no. 5 (2013): 693–721. http://dx.doi.org/10.24033/asens.2199.
Full textJi, Shanyu. "on abelian varieties." Duke Mathematical Journal 58, no. 3 (June 1989): 657–67. http://dx.doi.org/10.1215/s0012-7094-89-05831-6.
Full textBosch, Siegfried, and Werner Lütkebohmert. "Degenerating abelian varieties." Topology 30, no. 4 (1991): 653–98. http://dx.doi.org/10.1016/0040-9383(91)90045-6.
Full textArchinard, Natália. "Hypergeometric Abelian Varieties." Canadian Journal of Mathematics 55, no. 5 (October 1, 2003): 897–932. http://dx.doi.org/10.4153/cjm-2003-037-4.
Full textChai, Ching-Li, and Frans Oort. "Hypersymmetric Abelian Varieties." Pure and Applied Mathematics Quarterly 2, no. 1 (2006): 1–27. http://dx.doi.org/10.4310/pamq.2006.v2.n1.a2.
Full textDissertations / Theses on the topic "Abelian varietie"
TAMBORINI, CAROLINA. "On totally geodesic subvarieties in the Torelli locus and their uniformizing symmetric spaces." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/371476.
Full textThis thesis deals with totally geodesic subvarieties of the moduli space A_g of principally polarized abelian varieties and their relation with the Torelli locus. This is the closure in A_g of the image of the moduli space M_g of smooth, complex algebraic curves of genus g via the Torelli map j: M_g-->A_g. The moduli space A_g is a quotient of the Siegel space, which is a Riemannian symmetric space. An algebraic subvariety of A_g is totally geodesic if it is the image, under the natural projection map, of some totally geodesic submanifold of the Siegel space. Geometric considerations lead to the expectation that j(M_g) should contain very few totally geodesic subvarieties of A_g. This expectation also agrees with the Coleman-Oort conjecture. The differential geometry of symmetric spaces is described through Lie theory. In particular, totally geodesic submanifolds can be characterized via Lie algebras. This motivates the discussion carried out in this thesis, in which we use some Lie-theoretic tools to investigate geometric aspects of the inclusion of j(M_g) in A_g. The main results presented are the following. In Chapter 2, we consider the pull-back of the Lie bracket operation on the tangent space of A_g via the Torelli map, and we characterize it in terms of the geometry of the curve. We use the Bergman kernel form associated with the curve. Also, we link the Bergman kernel form to the second fundamental form of the Torelli map. In Chapter 3, we determine which symmetric space uniformizes each of the known counterexamples to the Coleman-Oort conjecture via the computation of the associated Lie algebra decomposition. These known examples were obtained studying families of Galois coverings of curves. Chapter 4 focuses on these families for their own sake, and we describe a new topological construction of families of G-coverings of the line.
歐偉民 and Wai-man Au. "Families of polarized abelian varieties." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31214897.
Full textLemos, Pedro. "Residual representations of Abelian varieties." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/94788/.
Full textFhlathuin, Brid ni. "Mahler's measure on Abelian varieties." Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296951.
Full textAu, Wai-man. "Families of polarized abelian varieties /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19471117.
Full textYoung, Ian David. "Symmetric squares of modular Abelian varieties." Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500087.
Full textGiangreco, Maidana Alejandro José. "Cyclic abelian varieties over finite fields." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0316.
Full textThe set A(k) of rational points of an abelian variety A defined over a finite field k forms a finite abelian group. This group is suitable for multiple applications, and its structure is very important. Knowing the possible group structures of A(k) and some statistics is then fundamental. In this thesis, we focus our interest in "cyclic varieties", i.e. abelian varieties defined over finite fields with cyclic group of rational points. Isogenies give us a coarser classification than that given by the isomorphism classes of abelian varieties, but they provide a powerful tool in algebraic geometry. Every isogeny class is determined by its Weil polynomial. We give a criterion to characterize "cyclic isogeny classes", i.e. isogeny classes of abelian varieties defined over finite fields containing only cyclic varieties. This criterion is based on the Weil polynomial of the isogeny class.From this, we give bounds on the fractions of cyclic isogeny classes among certain families of isogeny classes parameterized by their Weil polynomials.Also we give the proportion of "local"-cyclic isogeny classes among the isogeny classes defined over the finite field mathbb{F}_q with q elements, when q tends to infinity
Joyce, Adam Jack. "The Manin constants of modular abelian varieties." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440468.
Full textLahoz, Vilalta Marti. "Theta-duality in abelian varieties and the bicanonical map of irregular varieties." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/77898.
Full textEl primer objectiu d'aquesta tesi és contribuir a l'estudi de les varietats abelianes principalment polaritzades (vapp), especialment als problemes de Schottky i Torelli. Les vapp admeten una teoria de dualitat anàloga a la dualitat dels espais projectius, on el paper que juguen els hiperplans de l'espai projectiu és substituït pels divisors que representen la polarització principal. Així doncs, donada una subvarietat Y d'una vapp, podem definir el seu thetadual T(Y) com el conjunt dels divisors que representen la polarització principal i contenen aquesta subvarietat. Aquest conjunt admet una estructura esquemàtica natural (tal i com la defineixen Pareschi i Popa). Les varietats Jacobianes i de Prym són exemples clàssics de vapp construïdes a partir de corbes. A més, són interessants perquè certes propietats de les corbes involucrades es veuen reflectides en elles o en algunes subvarietats especials. Per exemple, en el cas de les Jacobianes tenim els llocs de BrillNoether Wd ( W1 correspon a la corba d'AbelJacobi) i en el cas de les Pryms tenim la corba d'AbelPrym C. Al capítol III de la tesi s'estudia l'estructura esquemàtica del thetadual dels llocs de BrillNoether Wd i de la corba d'AbelPrym. En el primer cas, es reobté amb uns altres mètodes, el resultat de Pareschi i Popa T(Wd)= Wgd1. En el cas de la corba d'AbelPrym C, s'obté que T(C)=V², onV² és el segon lloc de PrymBrillNoether amb l'estructura esquemàtica definida per Welters. Pareschi i Popa han demostrat un resultat anàleg per les vapp al Lemma de Castelnuovo pels espais projectius. És a dir, si (A,Θ) és una vapp de dimensió g, aleshores g+2 punts en posició general respecte Θ, però en posició especial respecte 2Θ, han d'estar continguts en una corba de grau minimal a A, i.e. una corba d'AbelJacobi. En particular, s'obté un resultat de Schottky ja que A ha de ser una Jacobiana i un resultat de Torelli, ja que la corba és la intersecció de tots els divisors de |2Θ| que contenen els g+2 punts. Al capítol IV, tal i com Eisenbud i Harris van fer en el cas projectiu, s'estén aquest resultat a esquemes finits possiblement no reduïts. El segon objectiu d'aquesta tesi és contribuir a l'estudi de les varietats de tipus general. Pràcticament per definició, les aplicacions pluricanòniques són essencials pel seu estudi. Un dels problemes principals de l'àrea és donar condicions geomètriques o numèriques per assegurar que la mèsima aplicació pluricanònica (per m baix) indueix una equivalència biracional amb la imatge. La classificació de les superfícies que tenen l'aplicació bicanònica no biracional ha atret l'atenció de molts geòmetres algebraics. Al capítol V, es dóna un criteri numèric suficient per assegurar la biracionalitat de l'aplicació bicanònica de les varietats irregulars de dimensió arbitrària. També es demostra que si X és una varietat primitiva, aleshores només admet fibracions molt especials a altres varietats irregulars. Per aquestes varietats s'obté que és equivalent que X sigui biracional a un divisor Θ en una vapp indescomponible, a què la irregularitat q(X) > dim X i l'aplicació bicanònica sigui no biracional. Quan X és una varietat primitiva de tipus general i q(X) = dim X es demostra sota certes condicions de la descomposició de Stein del morfisme d'Albanese, que l'única possibilitat per tal que l'aplicació bicanònica sigui no biracional és que X sigui un recobriment doble sobre una vapp ramificat al llarg d'un divisor a |2Θ|. Aquest resultats estenen a dimensió arbitrària, teoremes ben coneguts en el cas de superfícies i corbes.
Borowka, Pawel. "Non-simple abelian varieties and (1,3) Theta divisors." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.564009.
Full textBooks on the topic "Abelian varietie"
Barth, Wolf, Klaus Hulek, and Herbert Lange, eds. Abelian Varieties. Berlin, New York: DE GRUYTER, 1995. http://dx.doi.org/10.1515/9783110889437.
Full textLange, Herbert. Complex Abelian varieties. Berlin: Springer, 1992.
Find full textLange, Herbert, and Christina Birkenhake. Complex Abelian Varieties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02788-2.
Full textBirkenhake, Christina, and Herbert Lange. Complex Abelian Varieties. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06307-1.
Full textH, Lange. Complex Abelian varieties. Berlin: Springer-Verlag, 1992.
Find full text1943-, Lange H., and Lange H. 1943-, eds. Complex Abelian varieties. 2nd ed. Berlin: Springer, 2004.
Find full textFaber, Carel, Gerard van der Geer, and Frans Oort, eds. Moduli of Abelian Varieties. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8303-0.
Full textFaltings, Gerd, and Ching-Li Chai. Degeneration of Abelian Varieties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-02632-8.
Full textAdler, Allan, and Sundararaman Ramanan. Moduli of Abelian Varieties. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0093659.
Full textAlexeev, Valery, Arnaud Beauville, C. Herbert Clemens, and Elham Izadi, eds. Curves and Abelian Varieties. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/conm/465.
Full textBook chapters on the topic "Abelian varietie"
Gamkrelidze, R. V. "Abelian Varieties." In Encyclopaedia of Mathematical Sciences, 68–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-58227-1_3.
Full textFresnel, Jean, and Marius van der Put. "Abelian Varieties." In Rigid Analytic Geometry and Its Applications, 165–89. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0041-3_6.
Full textMilne, J. S. "Abelian Varieties." In Arithmetic Geometry, 103–50. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_5.
Full textHurt, Norman E. "Abelian Varieties." In Many Rational Points, 1–126. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0251-5_1.
Full textBirkenhake, Christina, and Herbert Lange. "Abelian Varieties." In Complex Abelian Varieties, 69–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06307-1_6.
Full textLange, Herbert, and Christina Birkenhake. "Abelian Varieties." In Complex Abelian Varieties, 71–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02788-2_6.
Full textBirkenhake, Christina, and Herbert Lange. "Jacobian Varieties." In Complex Abelian Varieties, 315–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06307-1_13.
Full textBirkenhake, Christina, and Herbert Lange. "Prym Varieties." In Complex Abelian Varieties, 363–409. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06307-1_14.
Full textLange, Herbert, and Christina Birkenhake. "Jacobian Varieties." In Complex Abelian Varieties, 320–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02788-2_13.
Full textLange, Herbert, and Christina Birkenhake. "Prym Varieties." In Complex Abelian Varieties, 365–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02788-2_14.
Full textConference papers on the topic "Abelian varietie"
Blake, Ian F. "Abelian varieties in coding and cryptography." In 2010 IEEE Information Theory Workshop (ITW 2010). IEEE, 2010. http://dx.doi.org/10.1109/cig.2010.5592929.
Full textLawson, Tyler. "An overview of abelian varieties in homotopy theory." In New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.179.
Full textPOLÁK, L. "LITERAL VARIETIES AND PSEUDOVARIETIES OF HOMOMORPHISMS ONTO ABELIAN GROUPS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708700_0018.
Full text