Academic literature on the topic 'A posteriori error bound'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'A posteriori error bound.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "A posteriori error bound"
Liu, Jie, Tian Xia, and Wei Jiang. "A Posteriori Error Estimates with Computable Upper Bound for the Nonconforming RotatedQ1Finite Element Approximation of the Eigenvalue Problems." Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/891278.
Full textAntonopoulou, Dimitra, and Michael Plexousakis. "A posteriori analysis for space-time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain." ESAIM: Mathematical Modelling and Numerical Analysis 53, no. 2 (March 2019): 523–49. http://dx.doi.org/10.1051/m2an/2018059.
Full textCochez-Dhondt, Sarah, and Serge Nicaise. "A Posteriori Error Estimators Based on Equilibrated Fluxes." Computational Methods in Applied Mathematics 10, no. 1 (2010): 49–68. http://dx.doi.org/10.2478/cmam-2010-0002.
Full textMandic, Danilo P., and Jonathon A. Chambers. "Relationships Between the A Priori and A Posteriori Errors in Nonlinear Adaptive Neural Filters." Neural Computation 12, no. 6 (June 1, 2000): 1285–92. http://dx.doi.org/10.1162/089976600300015358.
Full textCREUSÉ, E., S. NICAISE, and G. KUNERT. "A POSTERIORI ERROR ESTIMATION FOR THE STOKES PROBLEM: ANISOTROPIC AND ISOTROPIC DISCRETIZATIONS." Mathematical Models and Methods in Applied Sciences 14, no. 09 (September 2004): 1297–341. http://dx.doi.org/10.1142/s0218202504003635.
Full textKNEZEVIC, DAVID J., NGOC-CUONG NGUYEN, and ANTHONY T. PATERA. "REDUCED BASIS APPROXIMATION ANDA POSTERIORIERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS." Mathematical Models and Methods in Applied Sciences 21, no. 07 (July 2011): 1415–42. http://dx.doi.org/10.1142/s0218202511005441.
Full textKorneev, V. G. "A Posteriori Error Control at Numerical Solution of Plate Bending Problem." Applied Mechanics and Materials 725-726 (January 2015): 674–80. http://dx.doi.org/10.4028/www.scientific.net/amm.725-726.674.
Full textBuffa, Annalisa, and Eduardo M. Garau. "A posteriori error estimators for hierarchical B-spline discretizations." Mathematical Models and Methods in Applied Sciences 28, no. 08 (July 2018): 1453–80. http://dx.doi.org/10.1142/s0218202518500392.
Full textSabawi, Younis A. "Posteriori Error bound For Fullydiscrete Semilinear Parabolic Integro-Differential equations." Journal of Physics: Conference Series 1999, no. 1 (September 1, 2021): 012085. http://dx.doi.org/10.1088/1742-6596/1999/1/012085.
Full textGREPL, MARTIN A. "CERTIFIED REDUCED BASIS METHODS FOR NONAFFINE LINEAR TIME-VARYING AND NONLINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS." Mathematical Models and Methods in Applied Sciences 22, no. 03 (March 2012): 1150015. http://dx.doi.org/10.1142/s0218202511500151.
Full textDissertations / Theses on the topic "A posteriori error bound"
Kunert, Gerd, Zoubida Mghazli, and Serge Nicaise. "A posteriori error estimation for a finite volume discretization on anisotropic meshes." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601352.
Full textRankin, Richard Andrew Robert. "Fully computable a posteriori error bounds for noncomforming and discontinuous galekin finite elemant approximation." Thesis, University of Strathclyde, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501776.
Full textMerdon, Christian. "Aspects of guaranteed error control in computations for partial differential equations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16818.
Full textThis thesis studies guaranteed error control for elliptic partial differential equations on the basis of the Poisson model problem, the Stokes equations and the obstacle problem. The error control derives guaranteed upper bounds for the energy error between the exact solution and different finite element discretisations, namely conforming and nonconforming first-order approximations. The unified approach expresses the energy error by dual norms of one or more residuals plus computable extra terms, such as oscillations of the given data, with explicit constants. There exist various techniques for the estimation of the dual norms of such residuals. This thesis focuses on equilibration error estimators based on Raviart-Thomas finite elements, which permit efficient guaranteed upper bounds. The proposed postprocessing in this thesis considerably increases their efficiency at almost no additional computational costs. Nonconforming finite element methods also give rise to a nonconsistency residual that permits alternative treatment by conforming interpolations. A side aspect concerns the explicit residual-based error estimator that usually yields cheap and optimal refinement indicators for adaptive mesh refinement but not very sharp guaranteed upper bounds. A novel variant of the residual-based error estimator, based on the Luce-Wohlmuth equilibration design, leads to highly improved reliability constants. A large number of numerical experiments compares all implemented error estimators and provides evidence that efficient and guaranteed error control in the energy norm is indeed possible in all model problems under consideration. Particularly, one model problem demonstrates how to extend the error estimators for guaranteed error control on domains with curved boundary.
Camacho, Fernando F. "A Posteriori Error Estimates for Surface Finite Element Methods." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/21.
Full textAinsworth, Mark. "A posteriori error estimation in the finite element method." Thesis, Durham University, 1989. http://etheses.dur.ac.uk/6326/.
Full textKöhler, Karoline Sophie. "On efficient a posteriori error analysis for variational inequalities." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17635.
Full textEfficient and reliable a posteriori error estimates are a key ingredient for the efficient numerical computation of solutions for variational inequalities by the finite element method. This thesis studies such reliable and efficient error estimates for arbitrary finite element methods and three representative variational inequalities, namely the obstacle problem, the Signorini problem, and the Bingham problem in two space dimensions. The error estimates rely on a problem connected Lagrange multiplier, which presents a connection between the variational inequality and the corresponding linear problem. Reliability and efficiency are shown with respect to some total error. Reliability and efficiency are shown under minimal regularity assumptions. The approximation to the exact solution satisfies the Dirichlet boundary conditions, and an approximation of the Lagrange multiplier is non-positive in the case of the obstacle and Signorini problem and has an absolute value smaller than 1 for the Bingham flow problem. These general assumptions allow for reliable and efficient a posteriori error analysis even in the presence of inexact solve, which naturally occurs in the context of variational inequalities. From the point of view of the applications, reliability and efficiency with respect to the error of the primal variable in the energy norm is of great interest. Such estimates depend on the efficient design of a discrete Lagrange multiplier. Affirmative examples of discrete Lagrange multipliers are presented for the obstacle and Signorini problem and three different first-order finite element methods, namely the conforming Courant, the non-conforming Crouzeix-Raviart, and the mixed Raviart-Thomas FEM. Partial results exist for the Bingham flow problem. Numerical experiments highlight the theoretical results, and show efficiency and reliability. The numerical tests suggest that the resulting adaptive algorithms converge with optimal convergence rates.
Chow, Chak-On 1968. "On a posteriori finite element bound procedures for nonsymmetric Eigenvalue problems." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85266.
Full textPled, Florent. "Vers une stratégie robuste et efficace pour le contrôle des calculs par éléments finis en ingénierie mécanique." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00776633.
Full textApel, Thomas, and Cornelia Pester. "Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimation." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601335.
Full textKunert, Gerd. "A posteriori error estimation for convection dominated problems on anisotropic meshes." Universitätsbibliothek Chemnitz, 2002. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200200255.
Full textBooks on the topic "A posteriori error bound"
Ainsworth, Mark, and J. Tinsley Oden. A Posteriori Error Estimation in Finite Element Analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000. http://dx.doi.org/10.1002/9781118032824.
Full textA posteriori estimates for partial differential equations. Berlin: Walter de Gruyter, 2008.
Find full textPhillips, M. R. Some a posteriori error estimates for elliptic partial differential equations. Manchester: UMIST, 1997.
Find full textKunert, Gerd. Advances in a posteriori error estimation on anisotropic finite element discretizations. Berlin: Logos, 2003.
Find full textI, Repin Sergey, ed. Reliable methods for computer simulation: Error control and a posteriori estimates. Amsterdam: Elsevier, 2004.
Find full textVerfürth, Rüdiger. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Chichester: Wiley-Teubner, 1996.
Find full textHan, Weimin. Posteriori error analysis via duality theory: With applications in modeling and numerical ... [S.l.]: Springer, 2004.
Find full textPester, Cornelia. A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities. Berlin: Logos-Verl., 2006.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. Model reduction by trimming for a class of semi-Markov reliability models and the corresponding error bound. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
Find full textA Posteriori Error Analysis via Duality Theory. Boston: Kluwer Academic Publishers, 2005. http://dx.doi.org/10.1007/b101775.
Full textBook chapters on the topic "A posteriori error bound"
Xuan, Z. C., K. H. Lee, and J. Peraire. "A Posteriori Output Bound for Partial Differential Equations Based on Elemental Error Bound Computing." In Computational Science and Its Applications — ICCSA 2003, 1035–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44839-x_109.
Full textPatera, Anthony T., and Jaume Peraire. "A General Lagrangian Formulation for the Computation of A Posteriori Finite Element Bounds." In Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, 159–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05189-4_4.
Full textGeorgoulis, Emmanuil H., and Omar Lakkis. "A Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problems." In Numerical Mathematics and Advanced Applications 2009, 351–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11795-4_37.
Full textKorneev, Vadim G. "On a Renewed Approach to A Posteriori Error Bounds for Approximate Solutions of Reaction-Diffusion Equations." In Lecture Notes in Computational Science and Engineering, 221–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14244-5_12.
Full textSauter, Stefan A., and Christoph Schwab. "A Posteriori Error Estimation." In Boundary Element Methods, 517–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68093-2_9.
Full textLi, Jichun, and Yunqing Huang. "A Posteriori Error Estimation." In Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, 173–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33789-5_6.
Full textErn, Alexandre, and Jean-Luc Guermond. "A posteriori error analysis." In Texts in Applied Mathematics, 141–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56923-5_34.
Full textRüter, Marcus Olavi. "Energy Norm A Posteriori Error Estimates." In Error Estimates for Advanced Galerkin Methods, 171–278. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06173-9_6.
Full textOneto, Luca. "Compression Bound." In Model Selection and Error Estimation in a Nutshell, 59–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24359-3_6.
Full textVerfürth, R. "The Equivalence of A Posteriori Error Estimators." In Notes on Numerical Fluid Mechanics (NNFM), 273–83. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-663-14125-9_23.
Full textConference papers on the topic "A posteriori error bound"
Choi, Hae-Won, and Marius Paraschivoiu. "A-Posteriori Finite Element Bound and Adaptive Discretization Methods for the Electro-Osmotic Flows in Heterogeneous Microchannels." In ASME 3rd International Conference on Microchannels and Minichannels. ASMEDC, 2005. http://dx.doi.org/10.1115/icmm2005-75113.
Full textII Hong, Bum, Intae Ryoo, and Gon Khang. "On a Posteriori Error Bounds of Trapezoidal Rule." In 2019 International Conference on Information Networking (ICOIN). IEEE, 2019. http://dx.doi.org/10.1109/icoin.2019.8718134.
Full textBarth, Tim. "An Overview of Combined Uncertainty and A-Posteriori Error Bound Estimates for CFD Calculations." In 54th AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1062.
Full textRozza, G., C. N. Nguyen, A. T. Patera, and S. Deparis. "Reduced Basis Methods and a Posteriori Error Estimators for Heat Transfer Problems." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88211.
Full textSabawi, Younis A. "A Posteriori $L_{\infty}(H^{1})$ Error Bound in Finite Element Approximation of Semdiscrete Semilinear Parabolic Problems." In 2019 First International Conference of Computer and Applied Sciences (CAS). IEEE, 2019. http://dx.doi.org/10.1109/cas47993.2019.9075699.
Full textGerner, Anna-Lena, Karen Veroy, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Reduced Basis A Posteriori Error Bounds for the Stokes Equations in Parametrized Domains: A Penalty Approach." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498348.
Full textVeroy, Karen, Christophe Prud'homme, Dimitrios Rovas, and Anthony Patera. "A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations." In 16th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-3847.
Full textZhang, Jun Jason, Wenfan Zhou, Narayan Kovvali, Antonia Papandreou-Suppappola, and Aditi Chattopadhyay. "On the Use of the Posterior Crame´r-Rao Lower Bound for Damage Estimation in Structural Health Management." In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1454.
Full textVeeser, A., and C. Kreuzer. "Oscillation in a Posteriori Error Estimation." In 10th International Conference on Adaptative Modeling and Simulation. CIMNE, 2021. http://dx.doi.org/10.23967/admos.2021.067.
Full textZhang, X., J. Y. Trepanier, R. Camarero, X. Zhang, J. Y. Trepanier, and R. Camarero. "An a posteriori error estimation method based on error equations." In 13th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1889.
Full textReports on the topic "A posteriori error bound"
Rabier, Patrick J. A Posteriori Error Estimation New" Approach". Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada284960.
Full textBabuska, I., l. Plank, and R. Rodriguez. Basic Problems of A-Posteriori Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada248986.
Full textBabuska, I., T. Strouboulis, C. S. Upadhyay, S. K. Gangaraj, and K. Copps. Validation of A-Posteriori Error Estimators by Numerical Approach. Fort Belvoir, VA: Defense Technical Information Center, June 1993. http://dx.doi.org/10.21236/ada269493.
Full textWildey, Timothy Michael, Eric C. Cyr, Roger Patrick Pawlowski, John Nicolas Shadid, and Thomas Michael Smith. Adjoint based a posteriori error estimation in Drekar::CFD. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1055892.
Full textPaulino, G. H., L. J. Gray, and V. Zarikian. A posteriori pointwise error estimates for the boundary element method. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/42836.
Full textRomkes, A., S. Prudhomme, and J. T. Oden. A Posteriori Error Estimation for a New Stabilized Discontinuous Galerkin Method. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada438102.
Full textBabuska, Ivo, Lothar Plank, and Rodolfo Rodriguez. Quality Assessment of the A-posteriori Error Estimation in Finite Elements. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada254767.
Full textManzini, Gianmarco, and Lourenco Beirao da Veiga. Residual a posteriori error estimation of a mimetic/virtual element method. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1054671.
Full textEl sakori, Ahmed. A Posteriori Error Estimates for Maxwell's Equations Using Auxiliary Subspace Techniques. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7471.
Full textBai, Z. D. Exponential Bound for Error Probability in NN-Discrimination. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada160305.
Full text