Academic literature on the topic 'A-ARM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'A-ARM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "A-ARM"
Sreedhar, M., S. Sai Mani Shekar, and K. Aditya Vardhan S. Vaibhav Krishna. "A Review on Bionic Arm." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 1032–38. http://dx.doi.org/10.31142/ijtsrd23221.
Full textTetteh, Joshua, Nancy Darkoa Darko, Chrissie Stansie Abaidoo, and Thomas Diby. "Height Estimation using Arm Span as a Proxy among Ghanaians." International Journal of Anatomy and Research 9, no. 2.2 (May 11, 2021): 7984–90. http://dx.doi.org/10.16965/ijar.2021.120.
Full textYasar, Yasar, S. A, Korkut Korkut, and I. I. "DESIGN AND KINEMATIC ANALYSIS OF A RRPR ROBOT ARM." International Journal of Innovative Research in Engineering & Management 3, no. 6 (November 17, 2016): 490–93. http://dx.doi.org/10.21276/ijirem.2016.3.6.7.
Full textDharmana,, Meher Madhu, Sai Shashidhar,, Sachin Kumar,, and Chaithanya . "Embedded ANFIS as a Supervisory Controller for a 6-DOF Robotic Arm." International Journal of Engineering Research 3, no. 5 (May 1, 2014): 318–20. http://dx.doi.org/10.17950/ijer/v3s5/505.
Full textHamed, Basil. "A Mimicking Human Arm with 5 DOF Controlled by LabVIEW." International Journal of Engineering and Technology 3, no. 1 (2011): 9–15. http://dx.doi.org/10.7763/ijet.2011.v3.192.
Full textBousquet, A., S. Larréché, C. Elhadji Toumane, M. Dupin, J. Avignant, A. Mérens, and F. Maccari. "A “fat arm”." Médecine et Santé Tropicales 24, no. 3 (July 2014): 247–48. http://dx.doi.org/10.1684/mst.2014.0337.
Full textRaza, K., and P. King. "A flaccid arm." Postgraduate Medical Journal 73, no. 864 (October 1, 1997): 673–75. http://dx.doi.org/10.1136/pgmj.73.864.673.
Full textAbdelkader, BOUHAMZA. "Optimization of the Geometric Model Neuronal (BPNN) of a Polyarticulated Arm." Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (March 31, 2020): 1137–46. http://dx.doi.org/10.5373/jardcs/v12sp4/20201587.
Full textWaingankar, Anuja Jayaram, and Dr P. C. Bhaskar. "A Review on Real Time Ethernet Communication For Robotic Arm Application." International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (December 31, 2017): 741–44. http://dx.doi.org/10.31142/ijtsrd7063.
Full textSakaeda, Gen, Shintaro Kawasaki, Hiroyuki Ishii, Ryota Shibusawa, Noriyuki Matsuoka, Yusuke Nakae, Tamotsu Katayama, and Atsuo Takanishi. "Development of a 5-DoF Arm Robot for Neurological Examination Training." Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2015.6 (2015): 219–20. http://dx.doi.org/10.1299/jsmeicam.2015.6.219.
Full textDissertations / Theses on the topic "A-ARM"
On, Calvin. "ANA : a method for ARM-on-ARM execution." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/45973.
Full textIncludes bibliographical references (p. 61-62).
This thesis proposes and implements ANA, a new method for the simulation of ARM programs on the ARM platform. ANA is a lightweight ARM instruction interpreter that uses the hardware to do a lot of the work for the read-decode-execute piece of simulation. We compare this method to the two existing methods of full simulation and direct execution that have been traditionally used to achieve this. We demonstrate that despite some setbacks caused by the prefetching and caching behaviors of the ARM, ANA continues to be a very useful tool for prototyping and for increasing simulator performance. Finally, we identify the important role that ANA can play in our current efforts to virtualize the ARM.
by Calvin On.
M.Eng.
BATOR, CHRISTOFFER, and RICKARD SVENSSON. "Exoskeleton arm : How to construct a smart support structure for an arm." Thesis, KTH, Mekatronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190843.
Full textTanken med detta arbete var att hitta ett optimalt sätt att konstruera en produkt som skulle hjälpa de som lider av muskel -svaghet och -sjukdom. Produkten skulle bestå av två större delar (överarmen och underarmen) som var sammanlänkade med en motoriserad led. Fokusen låg på att hitta en tillfredställande konstruktion som kunde hantera krafterna och med hjälp av sensorer kunna mäta avståndet och rörelsen på användarens arm och förflytta konstruktionen utifrån det. Produkten behövde vara snabb, pålitlig och reagera på små rörelser för att vara så bekväm för användaren som möjligt. Resultatet blev en konstruktion som styrs genom att mäta tryckkraften, när användaren flyttar armen, med hjälp av trycksensorer som placeras vid handleden. Konstruktionen lyckades följa användarens arm, snabbt och på ett tillfredställande sätt.
Hägg, Magnus. "Controlling a robotic arm using linux." Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-7546.
Full textEDSTRÖM, JACOB, and JONATHAN GUNNARSSON. "Balancing arm for a Robotic Waiter." Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191211.
Full textDetta projekt fokuserar på balanseringen av ett dryckesglas, för att kunna transportera detta utan att innehållet spills ut. Designen är främst tänkt för att ersätta en servitör i restaurangverksamhet, men teknologin kan väl appliceras till mobila dryckeshållare i exempelvis bilar och båtar. Kärnan i projektet är att studera hur och om det är möjligt att skapa en plattform som klarar av att balansera ett dryckesglas när den utsätts för olika accelerationskrafter. Denna rapport beskriver ett sätt att gå tillväga för att konstruera denna dryckeshållare, med förklaringar om hur hårdvaran har designats och satts ihop samt hur mjukvaran fått komponenterna att fungera tillsammans. Målet var att vrida plattformen så att accelerationsresultanten alltid var riktad längs sensorns z-axel. Balanseringen delades upp i två separata system som reglerar varsin rotation kring två vinkelräta axlar. Rotationen drivs av två DC-motorer, som motverkar de krafter som uppstår när testplattformen vinklas och accelererar i olika riktningar. För att mäta dessa röresler användes en IMU-sensor som innehöll både accelerometer och gyroskop. Sensorn var placerad i rotationscentrum för att öka precisionen i mätningarna. För att relatera insignalen från sensorn till utsignalen till motorerna användes en PID-kontroller. Det undersöktes om matematisk modellering eller experimentell testning gav den bästa metoden att bestämma parametrarvärdena till denna PID-kontroller. För att testa prestationsförmågan samlades accelerationsdata samt data om den relativa vinkeln till accelerationsresultanten. Detta visade hur höga accelerationer som systemet klarade att hantera, för att utvärdera om systemet kunde användas i en restaruang- eller barmiljö. Det visade även hur mycket plattformen lutade relativt accelerationsresultanten, vilket avgör om vätskan stannar i glaset. Till detta gjordes också en undersökning för att samla in åsikter om robotar i restaurang- eller barmiljö. Implementationen av denna robot bedöms möjlig och det finns ett intresse för en sådan produkt. En klar majoritet av de tillfrågade svarade att de skulle vara lockade till en restaurang eller bar med robotservitörer. Vid undersökningen av tre olika sätt att applicera den deriverande delen i PID-kontrollern drogs slutsatsen att användadet av gyroskopet var det som fungerade bäst i tillämpningen, trots att den inte kan ta hänsyn till acceleration från rätlinjig rörelse. Experimentell testning visade sig vara mest tidseffektivt för ta fram parametervärdena till PID-kontrollern, men den presenterade icke-lineariserade matematiska modellen av systemet kan väl utgöra en grund för att förbättra denna kontroller.
Issa, Alan, and Christos Andreanidis. "Wireless Control of a Robotic Arm." Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295847.
Full textDenna uppsats behandlar olika aspekter i utvecklingen av en robotarm vars gripdon är en hand med fem fingrar, med syfte att kunna imitera mänskliga rörelser. Imitationsförmågan, noggrannheten samt vilka faktorer som påverkar dessa studeras. För att uppnå ett önskvärt resultat har det krävts styrning och samverkan mellan olika elektroniska komponenter. I prototypen som presenteras mättes fingrarnas rörelsemed hjälp av flexsensorer samt rörelsen i armbåge och handleden med hjälp av vridpotentiometrar. Flexsensorerna och potentiometrarna var anslutna till en Arduino Mega vars värden skickades med hjälp av en sändare. Elektronikkomponenterna som användes i robotarmen var en ArduinoUno, sju servomotorer och en mottagare, vars funktion var att läsa av meddelanden som skickades från sändaren. Alla värden omvandlades till grader och motoraxlarna roterade i enlighet med dessa. Prototypen uppnådde ett önskvärt betteende då roboten hade förmågan att imitera alla rörelser som utfördes av styrenheten. Noggrannheten och imitationsförmågan undersöktes med olika tester. De mest betydelsefulla faktorer som påverkade imitationen och noggrannheten av prototypen var kopplade till vikten av roboten och designen av handen, enligt slutsatserna som har dragits.
Leeb, Adam Paul. "Anthro Arm : the design of a seven degree of freedom arm with human attributes." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40458.
Full textIncludes bibliographical references (leaf 24).
Studying biological systems has given robotics researchers valuable insight into designing complex systems. This thesis explores one such application of a biomimetic robotic system designed around a human arm. The design of an anthropomorphic arm, an arm that is similar to that of a human's, requires deep insight into the kinematics and physiology of the biological system. Investigated here is the design and completion of an arm with 7 degrees of freedom and human-like range of motion in each joint. The comparison of actuation schemes and the determination of proper kinematics enable the arm to be built at a low cost while maintaining high performance and similarity to the biological analog. Complex parts are built by dividing structures into interlocking 2d shapes that can easily be cut out using a waterjet and then welded together with high reliability. The resulting arm will become part of a bionic system when combined with an existing bionic hand platform that is being developed in the Intelligent Machines Laboratory at MIT. With a well thought out modular design, the system will be used as a test bed for future research involving data simplification and neurological control. The completion of the anthropomorphic arm reveals that is indeed feasible to use simple DC motors and quick fabrication techniques. The final result is a reliable, modularized, and anthropomorphic arm.
by Adam Paul Leeb.
S.B.
Bersvendsen, Jørn. "Control of a multifunction Arm Prosthesis Model." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14176.
Full textJassemi-Zargani, Rahim. "Impedance control of a dual-arm robot." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq28348.pdf.
Full textShiek, David. "From coast guards to a strategic arm." Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416120.
Full textAnders, Ariel (Ariel Sharone). "Learning a strategy for whole-arm grasping." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91034.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
23
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 69-71).
Traditionally, robot grasping has been approached in two separate phases: first, finding contact positions that yield optimal grasps and, then, moving the robot hand to these positions. This approach works well when the object's location is known exactly and the robot's control is perfect. However, in the presence of uncertainty, this approach often leads to failure, usually because the robot's gripper contacts the object and causes the object to move away from the grasp. To obtain reliable grasping in the presence of uncertainty, the robot needs to anticipate the possible motions of the object during grasping. Our approach is to compute a policy that specifies the robot's motions over a range of joint states of the object and gripper, taking into account the expected motion of the object when pushed by the gripper. We use methods from continuous-state reinforcement-learning to solve for these policies. We test our approach on the problem of whole-arm grasping for a PR2, where one or both arms, as well as the torso can all serve to create contacts.
by Ariel Anders.
S.M.
Books on the topic "A-ARM"
Arm and a leg. London: Heinemann, 1998.
Find full textChristopher, Matt. Catcher with a glass arm. Boston: Little, Brown, 1985.
Find full textill, Caddell Foster, ed. Catcher with a glass arm. Boston: Little, Brown, 1985.
Find full textHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Find full textHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Find full textHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Find full textHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Find full textHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Find full textHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Find full textHouse, Tom. Arm action, arm path, and the perfect pitch: Building a million-dollar arm. Monterey, CA: Coaches Choice, 2008.
Find full textBook chapters on the topic "A-ARM"
Rollins, Mark. "Designing a Robot Arm." In LEGO Technic Robotics, 97–136. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-4981-8_4.
Full textShamil, Eamon, Praful Ravi, and Ashish Chandra. "A Painful Arm and a Large Spleen." In 100 Cases in Clinical Pathology and Laboratory Medicine, 175–77. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003242697-67.
Full textPoulton, A. S., P. J. Kyberd, and D. Gow. "Progress of a Modular Prosthetic Arm." In Universal Access and Assistive Technology, 193–200. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-3719-1_19.
Full textRamon, Manoel Carlos. "Assembling and Controlling a Robotic Arm." In Intel® Galileo and Intel® Galileo Gen 2, 509–77. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6838-3_11.
Full textPatel, Mukesh J., and Marco Dorigo. "Adaptive learning of a robot arm." In Evolutionary Computing, 180–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58483-8_14.
Full textProaño-Guevara, Daniel, Javier Procel-Feijóo, Johnny Zhingre-Balcazar, and Luis Serpa-Andrade. "Biomimetical Arm Prosthesis: A New Proposal." In Advances in Intelligent Systems and Computing, 549–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60483-1_57.
Full textKeating, Steven, Nathan A. Spielberg, John Klein, and Neri Oxman. "A Compound Arm Approach to Digital Construction." In Robotic Fabrication in Architecture, Art and Design 2014, 99–110. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04663-1_7.
Full textLyngby, Rasmus Ahrenkiel, Jannik Boll Matthiassen, Jeppe Revall Frisvad, Anders Bjorholm Dahl, and Henrik Aanæs. "Using a Robotic Arm for Measuring BRDFs." In Image Analysis, 184–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20205-7_16.
Full textCrowder, R. M. "A whole arm manipulator for hazardous environments." In New Frontiers in Manufacturing, 143–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-12593-9_15.
Full textKavitha, A., P. Sangeetha, Aijaz Ali Khan, and K. N. Chandana. "A Novel Implementation of Haptic Robotic Arm." In Evolutionary Computing and Mobile Sustainable Networks, 51–59. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5258-8_6.
Full textConference papers on the topic "A-ARM"
Mehta, Yash Dhanpal, Rohit Ashok Khot, Rakesh Patibanda, and Florian 'Floyd' Mueller. "Arm-A-Dine." In CHI PLAY '18: The annual symposium on Computer-Human Interaction in Play. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3242671.3242710.
Full textHiguchi, Mineo, and Tsukasa Ogasawara. "Development of a human symbiotic assist arm PAS-Arm." In the Community (ICORR). IEEE, 2009. http://dx.doi.org/10.1109/icorr.2009.5209600.
Full textFranchi, Giulia, Ulrich Viereck, Robert Platt, Sheng-Che Yen, and Christopher J. Hasson. "An arm for a leg: Adapting a robotic arm for gait rehabilitation." In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015. http://dx.doi.org/10.1109/embc.2015.7319253.
Full textLi, Juncheng, Xieping Gu, Qian Liu, Haoyu Sun, Wanjun Cen, Ziheng Huang, Yun Zhang, and Zhifeng Huang. "Force Feedback Algorithm for Robot Arm to Bandage A Swaying Arm." In 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 2020. http://dx.doi.org/10.1109/icarm49381.2020.9195393.
Full textYang, Hua, Yuqi Yan, Shilin Su, Zhuqing Dong, and Syed Haseeb Ul Hassan. "LWH-Arm: A Prototype of 8-DoF Lightweight Humanoid Robot Arm." In 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS). IEEE, 2019. http://dx.doi.org/10.1109/icras.2019.8809073.
Full textAllred, Timothy, Larry L. Howell, Spencer P. Magleby, and Robert H. Todd. "The Compliant A-Arm Suspension." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43259.
Full textBelingardi, Giovanni, Andrea Bernasconi, Marcello Chessari, Silvia Maccarinelli, Giampiero Mastinu, Giorgio Previati, Alessandro Scattina, and Erico Spini. "A McPherson Lightweight Suspension Arm." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-01-0772.
Full textNandan, N., and K. Thippeswamy. "A Tensorflow Based Robotic Arm." In 2018 Third International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT). IEEE, 2018. http://dx.doi.org/10.1109/iceeccot43722.2018.9001524.
Full textNakano, H., K. Nakayama, H. Mimaki, I. Yamauchi, and K. Hirose. "A single-arm spiral antenna." In 1992 Symposium on Antenna Technology and Applied Electromagnetics. IEEE, 1992. http://dx.doi.org/10.1109/antem.1992.7854278.
Full textMao, Ying, and Sunil K. Agrawal. "Transition from mechanical arm to human arm with CAREX: A cable driven ARm EXoskeleton (CAREX) for neural rehabilitation." In 2012 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2012. http://dx.doi.org/10.1109/icra.2012.6224906.
Full textReports on the topic "A-ARM"
Connell, Jonathan H. A Behavior-Based Arm Controller. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada200666.
Full textHong, Gihoon, and John McLaren. Are Immigrants a Shot in the Arm for the Local Economy? Cambridge, MA: National Bureau of Economic Research, April 2015. http://dx.doi.org/10.3386/w21123.
Full textHnilo, J. A Comparison of Model Short-Range Forecasts and the ARM Microbase Data Fourth Quarter ARM Science Metric. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/948099.
Full textMelchiorri, Claudio, and J. K. Salisbury. Exploiting the Redundancy of a Hand-Arm Robotic System. Fort Belvoir, VA: Defense Technical Information Center, October 1990. http://dx.doi.org/10.21236/ada241161.
Full textBoucher, T. D. Riser configuration, Tank 241-A-105, light duty utility arm. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10185202.
Full textBrown, R. A preliminary ARM (Atmospheric Radiation Measurements) guide for climatic evaluations. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/6711381.
Full textBrown, R. M. A preliminary ocean ARM (Atmospheric Radiation Measurements) guide for climatic evaluations. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6447712.
Full textQiang FU. Development and Testing of A Radiation Model for Interpreting ARM Data. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/839572.
Full textNonnecke, Gail, Sharon Tusiime, Leah Riesselman Worth, and Bernie Havlovic. Thornless Blackberry Cultivars Grown with a Rotatable Cross-Arm Trellis System. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/farmprogressreports-180814-1592.
Full textNonnecke, Gail, Sharon Tusiime, Leah Riesselman Worth, and Bernie Havlovic. Thornless Blackberry Cultivars Grown with a Rotatable Cross-Arm Trellis System. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/farmprogressreports-180814-1616.
Full text