Academic literature on the topic '4H-SiC'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '4H-SiC.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "4H-SiC"
Shilpa, A., S. Singh, and N. V. L. Narasimha Murty. "Spectroscopic performance of Ni/4H-SiC and Ti/4H-SiC Schottky barrier diode alpha particle detectors." Journal of Instrumentation 17, no. 11 (November 1, 2022): P11014. http://dx.doi.org/10.1088/1748-0221/17/11/p11014.
Full textYoneda, S., Tomoaki Furusho, H. Takagi, S. Ohta, and Shigehiro Nishino. "Homoepitaxial Growth on 4H-SiC (03-38) Face by Sublimation Close Space Technique." Materials Science Forum 483-485 (May 2005): 129–32. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.129.
Full textYang, Guang, Hao Luo, Jiajun Li, Qinqin Shao, Yazhe Wang, Ruzhong Zhu, Xi Zhang, et al. "Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits." Journal of Semiconductors 43, no. 12 (December 1, 2022): 122801. http://dx.doi.org/10.1088/1674-4926/43/12/122801.
Full textFurusho, Tomoaki, Ryota Kobayashi, Taro Nishiguchi, M. Sasaki, K. Hirai, Toshihiko Hayashi, Hiroyuki Kinoshita, and Hiromu Shiomi. "Growth of Micropipe Free Crystals on 4H-SiC {03-38} Seeds." Materials Science Forum 527-529 (October 2006): 35–38. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.35.
Full textAlexander, Kazuaki Seki, Shigeta Kozawa, Yuji Yamamoto, Toru Ujihara, and Yoshikazu Takeda. "Polytype Stability of 4H-SiC Seed Crystal on Solution Growth." Materials Science Forum 679-680 (March 2011): 24–27. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.24.
Full textNaik, Harsh, and T. Paul Chow. "Comparison of Inversion Electron Transport Properties of (0001) 4H and 6H-SiC MOSFETs." Materials Science Forum 679-680 (March 2011): 678–81. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.678.
Full textMoon, Jeong Hyun, Da Il Eom, Sang Yong No, Ho Keun Song, Jeong Hyuk Yim, Hoon Joo Na, Jae Bin Lee, and Hyeong Joon Kim. "Electrical Properties of the La2O3/4H-SiC Interface Prepared by Atomic Layer Deposition Using La(iPrCp)3 and H2O." Materials Science Forum 527-529 (October 2006): 1083–86. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.1083.
Full textKinoshita, Akimasa, Takasumi Ohyanagi, Tsutomu Yatsuo, Kenji Fukuda, Hajime Okumura, and Kazuo Arai. "Fabrication of 1.2kV, 100A, 4H-SiC(0001) and (000-1) Junction Barrier Schottky Diodes with Almost Same Schottky Barrier Height." Materials Science Forum 645-648 (April 2010): 893–96. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.893.
Full textShao, Shi Qian, Wei Cheng Lien, Ayden Maralani, Jim C. Cheng, Kristen L. Dorsey, and Albert P. Pisano. "4H-Silicon Carbide p-n Diode for High Temperature (600 °C) Environment Applications." Materials Science Forum 821-823 (June 2015): 636–39. http://dx.doi.org/10.4028/www.scientific.net/msf.821-823.636.
Full textXu, Bei, Changjun Zhu, Xiaomin He, Yuan Zang, Shenghuang Lin, Lianbi Li, Song Feng, and Qianqian Lei. "First-Principles Calculations on Atomic and Electronic Properties of Ge/4H-SiC Heterojunction." Advances in Condensed Matter Physics 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/8010351.
Full textDissertations / Theses on the topic "4H-SiC"
Florentín, Matthieu. "Irradiation impact on optimized 4H-SiC MOSFETs." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/395187.
Full textLas tecnologías de dispositivos de potencia en silicio (Si) han alcanzado una gran madurez. Sin embargo, las limitaciones del Si debidas a sus restricciones mecánicas, térmicas y eléctricas hacen necesario otros materiales semiconductores que puedan competir con el Si y superar sus limitaciones. Este es el caso del Carburo de Silicio (SiC) y del Nitruro de Galio (GaN) que ya comienzan a ser serios competidores del Si debido a sus mejores propiedades físicas. En lo que respecta al SiC, el politipo 4H es el candidato más adecuado para la integración de MOSFETs de potencia debido, entre otros, a los valores del bandgap, campo eléctrico crítico, movilidad volumíca de los electrones y tensión umbral alcanzable. A pesar de estas ventajas teóricas del material, es necesario optimizar cada uno de los procesos tecnológicos involucrados en la fabricación de un MOSFET en SiC para que realmente pueda competir con su contrapartida en Si. Este es el caso del proceso de oxidación para la formación del dieléctrico de puerta. Concretamente, una buena estabilidad de la tensión umbral del componente requiere disminuir la densidad de cargas en la interfase óxido/semiconductor, y mejoras adicionales en la calidad de esta interfase son también necesarias para obtener altos valores de la movilidad de los portadores en el canal de inversión. La solución de los problemas tecnológicos anteriormente enunciados abrirá nuevas perspectivas a las aplicaciones de alta potencia. Este trabajo es una continuación directa del de Aurore Constant. Se centra en dispositivos basados en 4H-SiC, y más específicamente en los procesos de oxidación de puerta, y de sus comportamientos eléctricos en diferente ambientes de trabajo hostiles. Hasta la fecha, la mayor parte de la investigación se ha centrado en la mejora de la calidad de la interfase dióxido de silicio/carburo de silicio (SiO2/SiC). La solución de estos problemas debería permitir el diseño de MOSFETs muy rápidos y con pérdidas de conmutación muy bajas. El objetivo del trabajo previo de Aurore Constant fue encontrar un nuevo procedimiento de limpieza de la superficie antes de realizar la oxidación, y en definir un nuevo proceso de oxidación para la formación del dieléctrico de puerta. Los resultados obtenidos mostraron claras mejoras del comportamiento eléctrico de los componentes. Sin embargo, estamos convencidos que la mejora podría ser aún mayor optimizando la etapa del recocido post-oxidación, utilizando un proceso adicional de dopaje superficial, o realizando un adecuado proceso de irradiación. Todos los esfuerzos de este trabajo se han dirigido al desarrollo de MOSFETs en SiC fiables, con mejores características eléctricas, y capaces de trabajar en ambientes de alta temperatura y de irradiación protónica o electrónica. En resumen, las principales líneas de esta Tesis son las siguientes: 1. Estado del arte de los diferentes dominios de trabajo del SiC. 2. Procesos y técnicas de caracterización eléctrica. 3. Impacto de la irradiación de protones en MOSFETs fabricados en 4H-SiC, y descripción teórica de los mecanismos de creación de carga en la interfase SiO2/SiC. 4. Impacto de la irradiación electrónica en MOSFETs fabricados en 4H-SiC. 5. Optimización de los procesos de oxidación y de implantación. 6. Límite de robustez de los procesos tecnológicos optimizados en ámbitos irradiados.
Robert, Teddy. "Spectroscopie des fautes d'empilement dans 4H-SiC." Montpellier 2, 2009. http://www.theses.fr/2009MON20166.
Full textLi, Mingyu Williams John R. "Ohmic contacts to implanted (0001) 4H-SiC." Auburn, Ala., 2009. http://hdl.handle.net/10415/1960.
Full textHaasmann, Daniel Erwin. "Active Defects in 4H–SiC MOS Devices." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/367037.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Horita, Masahiro. "Isopolytypic Growth of Nonpolar 4H-AlN on 4H-SiC and Its Device Applications." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/81830.
Full textSejil, Selsabil. "Optimisation de l'épitaxie VLS du semiconducteur 4H-SiC : Réalisation de dopages localisés dans 4H-SiC par épitaxie VLS et application aux composants de puissance SiC." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1170/document.
Full textThe objective of the VELSIC project has been to demonstrate the feasibility of 1 µm deep p+/n- junctions with high electrical quality in 4H-SiC semiconductor, in which the p++ zone is implemented by an original low-temperature localized epitaxy process ( 1100 - 1200 °C ), performed in the VLS (Vapor - Liquid - Solid) configuration. This innovative epitaxy doping technique uses the monocrystalline SiC substrate as a crystal growth seed. On the substrate (0001-Si) surface, buried patterns of Al - Si stack are fused to form liquid islands which are fed with carbon by C3H8 in the gas phase. This method is investigated as a possible higher performance alternative to the ion implantation process, currently used by all manufacturers of SiC devices, but which still experiences problematic limitations that are yet unresolved to date. Although the main focus of the study has been set on the optimization of localized VLS epitaxy, our works have explored and optimized all the facets of the complete process of test diodes, from the etching of patterns in the SiC substrate up to the electrical I - V characterization of true pn diodes with ohmic contacts on both sides.Our results have confirmed the need to limit the growth rate down to 1 µm/h to maintain good crystallinity of the epitaxial material. It has also highlighted the direct action of the radiofrequency electromagnetic field on the liquid phase, leading to a very strong influence of the diameter of the etched patterns on the thickness of the deposited SiC. A nearly complete filling of the 1 µm deep trenches with very high p++ doping has been demonstrated. Using optimized VLS growth parameters, p+/n- diode demonstrators have been processed and tested. On the best samples, without passivation or peripheral protection, high direct-current threshold voltages, between 2.5 and 3 V, were measured for the first time without any high-temperature annealing after epitaxy. These threshold voltage values correspond to the expected values for a true p-n junction on 4H-SiC. Current densities of several kA/cm2 have also been injected at voltages around 5 - 6 V. Under reverse bias conditions, no breakdown is observed up to 400 V and low leakage current densities at low electric field, in the range 10 - 100 nA/cm2, have been measured. All these advances align with or exceed state-of-the-art results for such simple SiC devices, obtained using any doping technique
Usman, Muhammad. "Impact of Ionizing Radiation on 4H-SiC Devices." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-60763.
Full textQC 20120117
Zeng, Yutong. "Tailored Al2O3/4H-SiC interface using ion implantation." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-90233.
Full textKaralas, Charilaos-Kimonas. "Process optimization for the 4H-SiC/SiO2 interface." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174842.
Full textSuvanam, Sethu Saveda. "Radiation Hardness of 4H-SiC Devices and Circuits." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199907.
Full textQC 20170119
Books on the topic "4H-SiC"
Chemical Mechanical Polishing Optimization for 4H-SiC. Storming Media, 2000.
Find full textElectrical and Optical Characterization of Intrinsic and Ion- Implantation Induced Defects in 6H- and 4H-SiC. Storming Media, 1999.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Study of Bulk and Elementary Screw Dislocation Assisted Reverse Breakdown in Low-Voltage (Less Than 250 V) 4h-Sic P(+)N Junction Diodes. Part 1; DC Properties. Independently Published, 2018.
Find full textBook chapters on the topic "4H-SiC"
Gudjónsson, G., Fredrik Allerstam, Per Åke Nilsson, Hans Hjelmgren, Einar O. Sveinbjörnsson, Herbert Zirath, T. Rödle, and R. Jos. "High Frequency 4H-SiC MOSFETs." In Materials Science Forum, 795–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.795.
Full textKalinina, Evgenia, Nikita B. Strokan, Alexandr M. Ivanov, A. Sadohin, A. Azarov, V. Kossov, R. Yafaev, and S. Lashaev. "4H-SiC High Temperature Spectrometers." In Materials Science Forum, 941–44. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.941.
Full textStarke, Ulrich, W. Y. Lee, C. Coletti, S. E. Saddow, Robert P. Devaty, and W. J. Choyke. "SiC Pore Surfaces: Surface Studies of 4H-SiC(1-102) and 4H-SiC(-110-2)." In Silicon Carbide and Related Materials 2005, 677–80. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.677.
Full textSveinbjörnsson, Einar O., G. Gudjónsson, Fredrik Allerstam, H. Ö. Ólafsson, Per Åke Nilsson, Herbert Zirath, T. Rödle, and R. Jos. "High Channel Mobility 4H-SiC MOSFETs." In Silicon Carbide and Related Materials 2005, 961–66. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.961.
Full textHolmestad, R., JP Morniroli, JM Zuo, JCH Spence, and A. Avilov. "Quantitative CBED studies of SiC 4H." In Electron Microscopy and Analysis 1997, 137–40. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003063056-35.
Full textShishkin, Y., Yue Ke, Fei Yan, Robert P. Devaty, W. J. Choyke, and S. E. Saddow. "CVD Epitaxial Growth of 4H-SiC on Porous SiC Substrates." In Silicon Carbide and Related Materials 2005, 255–58. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.255.
Full textClouter, M. J., Yue Ke, Robert P. Devaty, W. J. Choyke, Y. Shishkin, and S. E. Saddow. "Raman Spectra of a 4H-SiC Epitaxial Layer on Porous and Non-Porous 4H-SiC Substrates." In Materials Science Forum, 415–18. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.415.
Full textNoborio, Masato, Jun Suda, Svetlana Beljakowa, Michael Krieger, and Tsunenobu Kimoto. "4H-SiC MISFETs with Nitrogen-Containing Insulators." In Silicon Carbide, 235–65. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527629077.ch10.
Full textGudjónsson, G., Fredrik Allerstam, H. Ö. Ólafsson, Per Åke Nilsson, Hans Hjelmgren, Kristoffer Andersson, Einar O. Sveinbjörnsson, Herbert Zirath, T. Rödle, and R. Jos. "High Power-Density 4H-SiC RF MOSFETs." In Silicon Carbide and Related Materials 2005, 1277–80. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.1277.
Full textChandrashekhar, M. V. S., Christopher I. Thomas, Hui Li, Michael G. Spencer, and Amit Lal. "Demonstration of a 4H SiC Betavoltaic Cell." In Silicon Carbide and Related Materials 2005, 1351–54. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.1351.
Full textConference papers on the topic "4H-SiC"
Wright, N. G. "4H-SiC power TCAD." In IEE Colloquium on New Developments in Power Semiconductor Devices. IEE, 1996. http://dx.doi.org/10.1049/ic:19960863.
Full textO'Neill, A., F. Arith, J. Urresti, K. Vasilevskiy, N. Wright, and S. Olsen. "High Mobility 4H-SiC MOSFET." In 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2018. http://dx.doi.org/10.1109/icsict.2018.8564911.
Full textChen, G., Z. Y. Li, S. Bai, and P. Han. "Properties of homoepitaxial 4H-SiC and characteristics of Ti/4H-SiC Schottky barrier diodes." In Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792156.
Full textLiu, Xingfang, Jinmin Li, Guosheng Sun, Jin Ning, Yongmei Zhao, Jiaye Li, Muchang Luo, and Yiping Zeng. "Visible blind p+/p/n-/n+ UV 4H-SiC photodiodes based on 4H-SiC homoepilayers." In 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/icsict.2006.306554.
Full textKosa, A., J. Benkovska, L. Stuchlikova, D. Buc, F. Dubecky, and L. Harmatha. "Radiation hardness of 4H-SiC structuresues." In 2014 10th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM). IEEE, 2014. http://dx.doi.org/10.1109/asdam.2014.6998641.
Full textUmana-Membreno, G. A., J. R. Sharp, A. Choudhary, J. Antoszewski, S. Dhar, S. H. Ryu, A. K. Agarwal, and L. Faraone. "Magnetoresistance characterisation of 4H-SiC MOSFETs." In 2012 Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD). IEEE, 2012. http://dx.doi.org/10.1109/commad.2012.6472423.
Full textChandrashekhar, MVS, Rajesh Duggirala, Amit Lal, and Michael G. Spencer. "4H SiC beta-powered temperature transducer." In 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388558.
Full textChen, H., J. H. Mo, L. Li, H. S. Pan, Z. Feng, F. Yang, and S. J. Cai. "250W S-band 4H-SiC MESFET." In 2008 Asia Pacific Microwave Conference. IEEE, 2008. http://dx.doi.org/10.1109/apmc.2008.4958052.
Full textJae Sang Lee, Ji-Hong Kim, Byung-Moo Moon, Wook Bahng, Sang-Cheol Kim, Nam-Kyun Kim, and Sang-Mo Koo. "Epitaxial ZnO/4H-SiC heterojunction diodes." In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424596.
Full textYu, Pen-Li, Noah Opondo, Sen Dai, Boyang Jiang, Dallas T. Morisette, and Sunil A. Bhave. "Single Crystalline 4H-SiC Membrane Resonators." In 2018 IEEE International Frequency Control Symposium (IFCS). IEEE, 2018. http://dx.doi.org/10.1109/fcs.2018.8597489.
Full textReports on the topic "4H-SiC"
Wu, Jian, J. Hu, J. H. Zhao, X. Wang, X. Li, and T. Burke. High Mobility 4H-SiC Trenched Gate MOSFETs. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada507271.
Full textBaliga, Jayant, and Pronita Mehrotra. 4H SiC Lateral Single Zone RESURF Diodes. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada358231.
Full textZhang, Jiahui, Petre Alexandrov, Jian H. Zhao, and Terry Burke. 1677V, 5.7 mohm.cm2 4H-SiC Bipolar Junction Transistors. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada477420.
Full textNeudeck, Philip G., and Christian Fazi. Positive Temperature Coefficient of Breakdown Voltage in 4H-SiC PN Junction Rectifiers. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada359099.
Full textKatulka, Gary L. Evaluation of Electrical Resistivity Characteristics of Metalized 4H-SiC for Application to Electric Guns. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada362521.
Full textMitra, Souvick, Mulpuri V. Rao, N. Papanicolaou, K. A. Jones, and M. Derenge. Deep-Level Transient Spectroscopy Study on Double Implanted N(+)-p and p(+)-n 4H-SiC Diodes. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada424908.
Full textSwab, Jeffrey J., James W. McCauley, Brady Butler, Daniel Snoha, Donovan Harris, Andrew A. Wereszczak, and Mattison K. Ferber. Knoop Hardness on the (0001) Plane of 4H and 6H SiC Single Crystals Fabricated by Physical Vapor Transport. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada600386.
Full text