To see the other types of publications on this topic, follow the link: 40~nm.

Journal articles on the topic '40~nm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '40~nm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Durkan, C., and I. V. Shvets. "40 nm resolution in reflection-mode SNOM with λ = 685 nm." Ultramicroscopy 61, no. 1-4 (December 1995): 227–31. http://dx.doi.org/10.1016/0304-3991(95)00114-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pezeshki, B., M. Zelinski, H. Zhao, and V. Agrawal. "40-mW 650-nm distributed feedback lasers." IEEE Photonics Technology Letters 10, no. 1 (January 1998): 36–38. http://dx.doi.org/10.1109/68.651093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ono, M., M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai. "A 40 nm gate length n-MOSFET." IEEE Transactions on Electron Devices 42, no. 10 (1995): 1822–30. http://dx.doi.org/10.1109/16.464413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Park, Chaeeun, and Munkyo Seo. "A 140 GHz Low-Noise Amplifier in 40 nm CMOS." Journal of Korean Institute of Electromagnetic Engineering and Science 33, no. 4 (April 2022): 312–17. http://dx.doi.org/10.5515/kjkiees.2022.33.4.312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wandt, D., M. Laschek, K. Przyklenk, A. Tünnermann, and H. Welling. "External cavity laser diode with 40 nm continuous tuning range around 825 nm." Optics Communications 130, no. 1-3 (September 1996): 81–84. http://dx.doi.org/10.1016/0030-4018(96)00171-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zaghib, Karim, Alain Mauger, Monika Kopec, Francois Gendron, and C. M. Julien. "Intrinsic Properties of 40 nm-sized LiFePO4 Particles." ECS Transactions 16, no. 42 (December 18, 2019): 31–41. http://dx.doi.org/10.1149/1.3112726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Appenzeller, J., R. Martel, Ph Avouris, J. Knoch, J. Scholvin, J. A. del Alamo, P. Rice, and P. Solomon. "Sub-40 nm SOI V-groove n-MOSFETs." IEEE Electron Device Letters 23, no. 2 (February 2002): 100–102. http://dx.doi.org/10.1109/55.981319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Homulle, Harald, Fabio Sebastiano, and Edoardo Charbon. "Deep-Cryogenic Voltage References in 40-nm CMOS." IEEE Solid-State Circuits Letters 1, no. 5 (May 2018): 110–13. http://dx.doi.org/10.1109/lssc.2018.2875821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hofmann, W., M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M. C. Amann. "40 Gbit/s modulation of 1550 nm VCSEL." Electronics Letters 47, no. 4 (2011): 270. http://dx.doi.org/10.1049/el.2010.3631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Takeuchi, Issei, Yosuke Shimamura, Yuki Kakami, Tsunenori Kameda, Keitaro Hattori, Seiji Miura, Hiroyuki Shirai, et al. "Transdermal delivery of 40-nm silk fibroin nanoparticles." Colloids and Surfaces B: Biointerfaces 175 (March 2019): 564–68. http://dx.doi.org/10.1016/j.colsurfb.2018.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Durán, Vicente, Peter A. Andrekson, and Víctor Torres-Company. "Electro-optic dual-comb interferometry over 40 nm bandwidth." Optics Letters 41, no. 18 (September 7, 2016): 4190. http://dx.doi.org/10.1364/ol.41.004190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gutierrez, Eric, Carlos Perez, Luis Hernandez, Fernando Cardes, Violeta Petrescu, Sergio Walter, and Ulrich Gaier. "A Pulse Frequency Modulation VCO-ADC in 40 nm." IEEE Transactions on Circuits and Systems II: Express Briefs 66, no. 1 (January 2019): 51–55. http://dx.doi.org/10.1109/tcsii.2018.2837757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Yibo, Luhong Mao, and Baoyong Chi. "185–220 GHz wideband amplifier in 40 nm CMOS." Electronics Letters 54, no. 13 (June 2018): 802–4. http://dx.doi.org/10.1049/el.2018.1135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zhao, Dixian, Shailesh Kulkarni, and Patrick Reynaert. "A 60-GHz Outphasing Transmitter in 40-nm CMOS." IEEE Journal of Solid-State Circuits 47, no. 12 (December 2012): 3172–83. http://dx.doi.org/10.1109/jssc.2012.2216692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Atef, Mohamed, Andreas Polzer, and Horst Zimmermann. "Avalanche Double Photodiode in 40-nm Standard CMOS Technology." IEEE Journal of Quantum Electronics 49, no. 3 (March 2013): 350–56. http://dx.doi.org/10.1109/jqe.2013.2246546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Cong, Jia, Dong Yan, Jiling Tang, Weilian Guo, and Xurui Mao. "Integrated Color Photodetectors in 40-nm Standard CMOS Technology." IEEE Photonics Technology Letters 31, no. 24 (December 15, 2019): 1979–82. http://dx.doi.org/10.1109/lpt.2019.2952204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Suteewong, Teeraporn, Kai Ma, Jennifer E. Drews, Ulrike Werner-Zwanziger, Josef Zwanziger, Ulrich Wiesner, and Michelle S. Bradbury. "Highly fluorescent sub 40-nm aminated mesoporous silica nanoparticles." Journal of Sol-Gel Science and Technology 74, no. 1 (November 21, 2014): 32–38. http://dx.doi.org/10.1007/s10971-014-3567-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kakami, Yuki, Issei Takeuchi, and Kimiko Makino. "Percutaneous immunization with 40-nm antigen-encapsulated elastic liposomes." Colloids and Surfaces A: Physicochemical and Engineering Aspects 566 (April 2019): 128–33. http://dx.doi.org/10.1016/j.colsurfa.2019.01.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mansur, Dan. "A New 40-nm FPGA and ASIC Common Platform." IEEE Micro 29, no. 2 (March 2009): 46–53. http://dx.doi.org/10.1109/mm.2009.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ochiai, Y., S. Manako, S. Samukawa, K. Takeuchi, and T. Yamamoto. "Accurate nano-EB lithography for 40-nm gate MOSFETs." Microelectronic Engineering 30, no. 1-4 (January 1996): 415–18. http://dx.doi.org/10.1016/0167-9317(95)00276-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Martinez-Lopez, A. G., A. Cerdeira, J. C. Tinoco, J. Alvarado, W. Y. Padron, C. Mendoza, and J. P. Raskin. "RF modeling of 40-nm SOI triple-gate FinFET." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 28, no. 4 (October 16, 2014): 465–78. http://dx.doi.org/10.1002/jnm.2028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Coelho, M. F., M. A. Rivas, E. M. Nogueira, and T. P. Iglesias. "Permittivity of (40 nm and 80 nm) alumina nanofluids in ethylene glycol at different temperatures." Journal of Chemical Thermodynamics 158 (July 2021): 106423. http://dx.doi.org/10.1016/j.jct.2021.106423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Usami, Yoshihisa, Tetsuya Watanabe, Yoshinori Kanazawa, Kazuaki Taga, Hiroshi Kawai, and Kimio Ichikawa. "405 nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material." Applied Physics Express 2, no. 12 (November 27, 2009): 126502. http://dx.doi.org/10.1143/apex.2.126502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Goldstein, John C., Brian D. McVey, and C. James Elliott. "Conceptual designs of a 50 nm FEL oscillator and a 20–40 nm SASE amplifier." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 272, no. 1-2 (October 1988): 177–82. http://dx.doi.org/10.1016/0168-9002(88)90219-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tang, Ming, Xiaolong Tian, Xiaona Lu, Songnian Fu, Perry Ping Shum, Zhenrong Zhang, Ming Liu, Yuan Cheng, and Jian Liu. "Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range." Optics Letters 34, no. 14 (July 13, 2009): 2204. http://dx.doi.org/10.1364/ol.34.002204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kim, Jaegwan, Changjung Lee, and Munkyo Seo. "A 130-GHz Low-Area Power Amplifier in 40-nm CMOS." Journal of Korean Institute of Electromagnetic Engineering and Science 34, no. 4 (April 2023): 310–16. http://dx.doi.org/10.5515/kjkiees.2022.34.4.310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kim, Jaegwan, Changjung Lee, and Munkyo Seo. "A 130-GHz Low-Area Power Amplifier in 40-nm CMOS." Journal of Korean Institute of Electromagnetic Engineering and Science 34, no. 4 (April 2023): 310–16. http://dx.doi.org/10.5515/kjkiees.2023.34.4.310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shuangyi Yan, 延双毅, 张建国 Jianguo Zhang, and 赵卫 Wei Zhao. "40-GHz wavelength tunable mode-locked SOA-based fiber laser with 40-nm tuning range." Chinese Optics Letters 6, no. 9 (2008): 676–78. http://dx.doi.org/10.3788/col20080609.0676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tanaka, Hiroaki, Yasuyuki Miyamoto, Toshihiko Otake, Jiroo Yoshinaga, and Kazuhito Furuya. "Electrical Properties of 100 nm Pitch Cr/Au Fine Electrodes with 40 nm Width on GaInAs." Japanese Journal of Applied Physics 35, Part 2, No. 8A (August 1, 1996): L964—L967. http://dx.doi.org/10.1143/jjap.35.l964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhao Junfa, 赵军发, 杨秀峰 Yang Xiufeng, 刘卓琳 Liu Zhuolin, 童峥嵘 Tong Zhengrong, 刘艳格 Liu Yange, and 赵启大 Zhao Qida. "Multiwavelength Brillouin/Erbium Fiber Source with 40 nm Tuning Range." Chinese Journal of Lasers 37, no. 10 (2010): 2482–86. http://dx.doi.org/10.3788/cjl20103710.2482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Melul, Franck, Vincenzo Della Marca, Marc Bocquet, Madjid Akbal, Pierre Laine, Frederique Trenteseaux, Marc Mantelli, et al. "Morphology and reliability aspects of 40 nm eSTM™ architecture." Microelectronics Reliability 126 (November 2021): 114266. http://dx.doi.org/10.1016/j.microrel.2021.114266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sialm, G., C. Kromer, T. Morf, F. Ellinger, and H. Jäckel. "40 Gbit∕s limiting output buffer in 80 nm CMOS." Electronics Letters 41, no. 19 (2005): 1051. http://dx.doi.org/10.1049/el:20052172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lee, K. J., R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson. "Silicon-Layer Guided-Mode Resonance Polarizer With 40-nm Bandwidth." IEEE Photonics Technology Letters 20, no. 22 (November 2008): 1857–59. http://dx.doi.org/10.1109/lpt.2008.2004777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shin, Jinuk Luke, Dawei Huang, Bruce Petrick, Changku Hwang, Kenway W. Tam, Alan Smith, Ha Pham, et al. "A 40 nm 16-Core 128-Thread SPARC SoC Processor." IEEE Journal of Solid-State Circuits 46, no. 1 (January 2011): 131–44. http://dx.doi.org/10.1109/jssc.2010.2080491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ko, Chun-Lin, Chun-Hsing Li, Chien-Nan Kuo, Ming-Ching Kuo, and Da-Chiang Chang. "A 210-GHz Amplifier in 40-nm Digital CMOS Technology." IEEE Transactions on Microwave Theory and Techniques 61, no. 6 (June 2013): 2438–46. http://dx.doi.org/10.1109/tmtt.2013.2260767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Aiello, Orazio, Paolo Crovetti, and Massimo Alioto. "Standard Cell-Based Ultra-Compact DACs in 40-nm CMOS." IEEE Access 7 (2019): 126479–88. http://dx.doi.org/10.1109/access.2019.2938737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Martín-González, M., A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy. "High-Density 40 nm Diameter Sb-Rich Bi2xSbxTe3 Nanowire Arrays." Advanced Materials 15, no. 12 (June 17, 2003): 1003–6. http://dx.doi.org/10.1002/adma.200304781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, Sheng, Ke Wei, Xiao-Hua Ma, Bin Hou, Guo-Guo Liu, Yi-chuan Zhang, Xin-Hua Wang, et al. "Reduced reverse gate leakage current for GaN HEMTs with 3 nm Al/40 nm SiN passivation layer." Applied Physics Letters 114, no. 1 (January 7, 2019): 013503. http://dx.doi.org/10.1063/1.5077050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Weihuai, Hao Jin, Shurong Dong, Lei Zhong, and Yan Han. "Study of drain-extended NMOS under electrostatic discharge stress in 28 nm and 40 nm CMOS process." Solid-State Electronics 116 (February 2016): 80–87. http://dx.doi.org/10.1016/j.sse.2015.11.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yoneda, Shinichi, Satoru Ito, Yukio Hayakawa, Zhiqiang Wei, Shunsaku Muraoka, Ryutaro Yasuhara, Koichi Kawashima, Atsushi Himeno, and Takumi Mikawa. "Newly developed process integration technologies for highly reliable 40 nm ReRAM." Japanese Journal of Applied Physics 58, SB (February 22, 2019): SBBB06. http://dx.doi.org/10.7567/1347-4065/aafd8d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhou Hongjun, 周洪军, 王冠军 Wang Guanjun, 郑津津 Zheng Jinjin, 霍同林 Hou Tonglin, and 邱克强 Qiu Keqiang. "Suppression of HigherOrder Harmonics by Different Filter in 5~40 nm." Acta Optica Sinica 30, no. 9 (2010): 2753–56. http://dx.doi.org/10.3788/aos20103009.2753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yoo, Seong Ho, Benjamin Y. H. Liu, James Sun, Natraj Narayanswami, and Gregory P. Thomes. "Particle Removal Efficiency Evaluation at 40 nm Using Haze Particle Standard." Solid State Phenomena 76-77 (January 2001): 259–62. http://dx.doi.org/10.4028/www.scientific.net/ssp.76-77.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kmon, P., R. Szczygieł, R. Kłeczek, D. Górni, G. Węgrzyn, A. Niedzielska, K. Sitko, and P. Drwal. "Spectrum1k — integrated circuit for medical imaging designed in CMOS 40 nm." Journal of Instrumentation 17, no. 03 (March 1, 2022): C03023. http://dx.doi.org/10.1088/1748-0221/17/03/c03023.

Full text
Abstract:
Abstract We present a multichannel integrated circuit of pixel architecture designed in CMOS 40 nm technology. The chip is composed of 40 × 24 pixels of 75 µm pitch working in the single photon counting mode, each built of front-end amplifier, peak and hold detector, 6-bit analog to digital converter, and memory composed of 64 × 12-bit counters. Thanks to the proposed functionality it is possible to store in each pixel separately information of incoming particles energy spectrum. The chip is dedicated to operating with both electrons and holes of 2.2 ke−–35 ke− energy range. The IC occupies an area of 2 × 4.5 mm2, is already back from fabrication, and is under preliminary measurements.
APA, Harvard, Vancouver, ISO, and other styles
44

Xu, Lei-jun, Zhi-jian Xie, Xue Bai, Qin Li, Bai-kang Wang, and Peng-cheng Yin. "Design of THz Monolithic Source and Detector in 40-nm CMOS." Journal of Infrared, Millimeter, and Terahertz Waves 42, no. 9-10 (September 2021): 1040–60. http://dx.doi.org/10.1007/s10762-021-00787-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Moons, Bert, and Marian Verhelst. "An Energy-Efficient Precision-Scalable ConvNet Processor in 40-nm CMOS." IEEE Journal of Solid-State Circuits 52, no. 4 (April 2017): 903–14. http://dx.doi.org/10.1109/jssc.2016.2636225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, X., F. Gao, K. Huang, Z. s. Zhang, Y. Shi, and Y. Xu. "Spectral Sensitivity Analysis of OCD Tool for Sub 40 Nm Process." ECS Transactions 60, no. 1 (February 27, 2014): 887–92. http://dx.doi.org/10.1149/06001.0887ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kalyuzhnyy, N. A., S. A. Mintairov, A. M. Nadtochiy, V. N. Nevedomskiy, D. V. Rybalchenko, and M. Z. Shvarts. "InGaAs metamorphic laser (1064 nm) power converters with over 40% efficiency." Electronics Letters 53, no. 3 (February 2017): 173–75. http://dx.doi.org/10.1049/el.2016.4308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tan, Chee Hing, Shiyu Xie, and Jingjing Xie. "Low Noise Avalanche Photodiodes Incorporating a 40 nm AlAsSb Avalanche Region." IEEE Journal of Quantum Electronics 48, no. 1 (January 2012): 36–41. http://dx.doi.org/10.1109/jqe.2011.2176105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Liu, H. D., Y. P. Zhao, G. Ramanath, S. P. Murarka, and G. C. Wang. "Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films." Thin Solid Films 384, no. 1 (March 2001): 151–56. http://dx.doi.org/10.1016/s0040-6090(00)01818-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mauricio, Joan, Francesc Moll, and Sergio Gomez. "Measurements of Process Variability in 40-nm Regular and Nonregular Layouts." IEEE Transactions on Electron Devices 61, no. 2 (February 2014): 365–71. http://dx.doi.org/10.1109/ted.2013.2294742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography