To see the other types of publications on this topic, follow the link: 4-oxadiazole.

Journal articles on the topic '4-oxadiazole'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '4-oxadiazole.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Stepanova, Elena V., and Andrei I. Stepanov. "UNUSUAL WAY OF REACTION OF 3-AMINO-4-(5-CHLOROMETHYL-1,2,4-OXADIAZOLE-3-YL)-FURAZAN WITH HYDRAZINE." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 60, no. 4 (May 12, 2017): 26. http://dx.doi.org/10.6060/tcct.2017604.5522.

Full text
Abstract:
The results of our study of the pathways of selective reactivity of 3-amino-4-(5-chloromethyl-1,2,4-oxadiazole-3-yl)furazan versus 5-unsubstituted or 5-methyl and 5-trifluoromethyl substituted 4-(5R-1,2,4-oxadiazole-3-yl)furazans (R = H, Me, CF3) towards the action of hydrazine are discussed. If the reductive opening of 1,2,4-oxadiazole ring in unsubstituted at the С-5 atom (1,2,4-oxadiazol-3-yl)furazan derivatives under the treatment with hydrazine can be used as a method for the preparation of a range of amidrazones of 4-R-furazan-3-carboxylic acid. 3-amino-4-(5-trifluoromethyl-1,2,4-oxadiazol-3-yl)furazan with hydrazine gives amidoxime of 4-aminofurazan-3-carboxylic acid. 3-amino-4-(5-methyl-1,2,4-oxadiazol-3-yl) furazan is inert to the action of hydrazine, on the contrary the reaction of 3-amino-4-(5-chloromethyl-1,2,4-oxadiazole-3-yl)furazan with hydrazine leads to oxidation of chloromethyl group of titled compound to the carbonyl one. In this case the product of reaction of 3-amino-4-(5-chloromethyl-1,2,4-oxadiazole-3-yl)furazan with hydrazine was isolated in a form of corresponding hydrazonomethyl derivative notably as 3-amino-4-(5-hydrazonomethyl-1,2,4-oxadiazole-3-yl)furazan. A possible reaction mechanism for the formation of hydrazonomethyl group by oxidation reaction of chloromethyl group by hydrazine is proposed. 3-Amino-4-(5-hydrazonomethyl-1,2,4-oxadiazol-3-yl)furazan undergoes a transhydrazination reaction with semicarbazide and thiosemicarbazide. But our attempts to its hydrolysis for the purpose to obtain free aldehyde were unsuccessful. Thus, hydrolysis of hydrazonomethyl derivative in acetic acid in the presence of catalytic amount of sulfuric acid results in azine – N,N'-bis(3-(4-aminofurazan-3-yl)-1,2,4-oxadiazol-5-ylmethylyden)hydrazine – precipitation, long-duration boiling in hydrochloric acid leads to Kishner-Wolff reduction of the carbonyl group to 3-amino-4-(5-methyl-1,2,4-oxadiazol-3-yl)furazan, and hydrolysis in alkaline medium leads to 1,2,4-oxadiazole ring opening to amidoxime of 4-aminofurazan-3-carboxylic acid. Synthesis of 3-amino-4-(5-chloromethyl-1,2,4-oxadiazole-3-yl)furazan (R = CH2Cl) was carried out by condensation of amidoxime of 4-aminofurazan-3-carboxylic acid with an excess of chloroacetyl chloride in toluene at elevated temperature. The reaction proceeds through formation of intermediate product – 3-chloromethylamino-4-(5-chloromethyl-1,2,4-oxadiazol-3-yl)furazan. Removing of N-chloroacetyl group in such obtained intermediate was performed by hydrolysis in acidic media. One-pot synthesis without the need for isolation and purification of intermediate is allowed. The structures of obtained compounds were proved by modern methods of physical-chemical analysis (1H, 13C NMR, IR and MS spectroscopy).Forcitation:Stepanova E.V., Stepanov A.I. Unusual way of reaction of 3-amino-4-(5-chloromethyl-1,2,4-oxadiazole-3-yl)furazan with hydrazine. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 4. P. 26-32.
APA, Harvard, Vancouver, ISO, and other styles
2

Saini, Sachin. "Synthesis and Anticonvulsant Studies of Thiazolidinone and Azetidinone Derivatives from Indole Moiety." Drug Research 69, no. 08 (December 20, 2018): 445–50. http://dx.doi.org/10.1055/a-0809-5098.

Full text
Abstract:
Abstract2-Amino-5-(3’-indolomethylene)-1, 3 , 4 - oxadiazole (3) undergoes facile condensation with various aromatic aldehydes to gave 2-substitiuted arylidenylamino-5-(3’- indolomethylene) – 1, 3 , 4 – oxadiazole (4–8). Cyclocondensation of (4–8) with thioglycolic acid and triethylamine yielded 3-[5’-(3”- indolomethylene)- 1’, 3’, 4’- oxadiazol-2’-yl]- 2- (substituted aryl)-4- thiazolidinones (9–13) and 1-[5’-(3”- indolomethylene) -1’, 3’, 4’- oxadiazol - 2’- yl ] -4-(substituted aryl) -2- azetidinones (14–18). The structures of these compounds were established on the basis of analytical and spectral data. The newly synthesised compounds were evaluated for their anticonvulsant activity and acute toxicity.
APA, Harvard, Vancouver, ISO, and other styles
3

Jin, Guoxia, Yuqi Ji, Teng Wang, Yanyan Sun, Yulong Li, Guiying Zhu, and Jianping Ma. "Syntheses and characterization of dinuclear and tetranuclear AgI supramolecular complexes generated from symmetric and asymmetric molecular clips containing oxadiazole rings." Acta Crystallographica Section C Structural Chemistry 75, no. 10 (September 6, 2019): 1327–35. http://dx.doi.org/10.1107/s2053229619011744.

Full text
Abstract:
A new asymmetric ligand, 5-{3-[5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]phenyl}-2-(pyridin-3-yl)-1,3,4-oxadiazole (L5), which contains two oxadiazole rings, was synthesized and characterized. The assembly of symmetric 2,5-bis(pyridin-3-yl)-1,3,4-oxadiazole (L1) and asymmetric L5 with AgCO2CF3 in solution yielded two novel AgI complexes, namely catena-poly[[di-μ-trifluoroacetato-disilver(I)]-bis[μ-2,5-bis(pyridin-3-yl)-1,3,4-oxadiazole]], [Ag2(C2F3O2)2(C12H8N4O)2] n or [Ag2(μ2-O2CCF3)2(L1)2] n (1), and bis(μ3-5-{3-[5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]phenyl}-2-(pyridin-3-yl)-1,3,4-oxadiazole)tetra-μ3-trifluoroacetato-tetrasilver(I) dichloromethane monosolvate, [Ag4(C2F3O2)4(C22H15N5O2)2]·CH2Cl2 or [Ag2(μ3-O2CCF3)2(L5)]2·CH2Cl2 (2). Complex 1 displays a one-dimensional ring–chain motif, where dinuclear Ag2(CF3CO2)2 units alternate with Ag2(L1)2 macrocycles. This structure is different from previously reported Ag–L1 complexes with different anions. Complex 2 features a tetranuclear supramolecular macrocycle, in which each ligand adopts a tridentate coordination mode with the oxadiazole ring next to the p-tolyl ring coordinated and that next to the pyridyl ring free. Two L5 ligands are bound to two Ag1 centres through two oxadiazole N and two pyridyl N atoms to form a macrocycle. The other two oxadiazole N atoms coordinate to the two Ag2 centres of the Ag2(O2CCF3)4 dimer. Each CF3CO2 − anion adopts a μ3-coordination mode, bridging the Ag1 and Ag2 centres to form a tetranuclear silver(I) complex. This study indicates that the donor ability of the bridging oxadiazole rings can be tuned by electron-withdrawing and -donating substituents. The emission properties of ligands L1 and L5 and complexes 1 and 2 were also investigated in the solid state.
APA, Harvard, Vancouver, ISO, and other styles
4

El-Sayed, Wael A., Farag A. El-Essawy, Omar M. Ali, Barsis S. Nasr, Mohamed M. Abdalla, and Adel A. H. Abdel-Rahman. "Anti-HIV Activity of New Substituted 1,3,4-Oxadiazole Derivatives and their Acyclic Nucleoside Analogues." Zeitschrift für Naturforschung C 64, no. 11-12 (December 1, 2009): 773–78. http://dx.doi.org/10.1515/znc-2009-11-1203.

Full text
Abstract:
A number of new 5-[(naphthalen-5-yloxy)methyl]-1,3,4-oxadiazole derivatives, 2 - 5 and 8 - 11, were synthesized. The 2-{5-[(naphthalen-5-yloxy)methyl]-1,3,4-oxadiazol-2-ylthio}acetohydrazones 6a and 6b were synthesized by the reaction of the hydrazide 4 with the corresponding monosaccharides. Cyclization of the sugar hydrazones 6a and 6b with acetic anhydride afforded the substituted oxadiazoline derivatives 7a and 7b. The synthesized compounds were evaluated for their antiviral activity against, the human immunodefi ciency virus (HIV-1) and some of these compounds showed moderate to high antiviral activity.
APA, Harvard, Vancouver, ISO, and other styles
5

Ahsan, Mohamed Jawed, Arun Choupra, Rakesh Kumar Sharma, Surender Singh Jadav, Pannala Padmaja, Mohd Zaheen Hassan, Abdulmalik Bin Saleh Al-Tamimi, Mohammed H. Geesi, and Mohammed Afroz Bakht. "Rationale Design, Synthesis, Cytotoxicity Evaluation, and Molecular Docking Studies of 1,3,4-oxadiazole Analogues." Anti-Cancer Agents in Medicinal Chemistry 18, no. 1 (March 16, 2018): 121–38. http://dx.doi.org/10.2174/1871520617666170419124702.

Full text
Abstract:
Background: 1,3,4-Oxadiazole heterocycles possess a broad spectrum of biological activities. They were reported as potent cytotoxic agents and tubulin inhibitors; hence it is of great interest to explore new oxadiazoles as cytotoxic agents targeting tubulin polymerization. Objective: Two new series of oxadiazoles (5a-h and 12a-h) were synthesized, structurally related to the heterocyclic linked aryl core of IMC-038525, NSC 776715, and NSC 776716, with further modification by incorporating methylene linker. Method: The 2,5-disubstituted-1,3,4-oxadiazoles (5a-h and 12a-h) were synthesized by refluxing an equimolar mixture of the intermediates [(4) and (8a-d)] and aromatic aldehydes in water-ethanol system using sodium bisulphite catalyst. The cytotoxicity evaluation was carried out according to the National Cancer Institute (NCI US) Protocol, while the tubulin polymerization assay kits from Cytoskeleton ™(bk011p) was used to perform an in vitro tubulin polymerization assay. Results: 2-(5-{[(4-Chlorophenyl)amino]methyl}-1,3,4-oxadiazol-2-yl)phenol (5f) and 2-[(2,4-dichlorophenoxy) methyl]-5-(3,4-dimethoxyphenyl)-1,3,4-oxadiazole (12c) showed maximum cytotoxicity with the mean percent growth inhibitions (GIs) of 71.56 and 72.68 respectively at 10 µM drug concentrations. Both the compounds (5f and 12c) showed superior cytotoxicity than clinically prevalent anticancer drugs, Imatinib and Gefitinib in one dose assay. The compound 12c showed promising results in five dose assay, with GI50 values varies between 1.61 and >100 µM. Furthermore, the compounds, 5f and 12c also inhibited the polymerization of tubulin with, an IC50 of 2.8 and 2.2 µM, respectively. Conclusion: The oxadiazoles reported herein are tubulin inhibitors and cytotoxic agents. These findings will be helpful in future drug design of more potent tubulin inhibitor cytotoxic agents.
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Yongxing, Chunlin He, Lauren A. Mitchell, Damon A. Parrish, and Jean'ne M. Shreeve. "Energetic compounds consisting of 1,2,5- and 1,3,4-oxadiazole rings." Journal of Materials Chemistry A 3, no. 46 (2015): 23143–48. http://dx.doi.org/10.1039/c5ta06898c.

Full text
Abstract:
3-Nitroamino-4-(5-amino-1,3,4-oxadiazol-2-yl)furazan monohydrate (2·H2O), which is a combination of the nitroaminofurazan and 1,3,4-oxadiazole rings, was obtained by the nitration of 3-amino-4-(5-amino-1,3,4-oxadiazol-2-yl)furazan (1) with 100% nitric acid.
APA, Harvard, Vancouver, ISO, and other styles
7

Mercer, F. W. "Aromatic Poly(ether imide oxadiazole)s." High Performance Polymers 4, no. 2 (April 1992): 73–80. http://dx.doi.org/10.1088/0954-0083/4/2/002.

Full text
Abstract:
Two oxadiazole containing aromatic diamines were synthesized. The diamines were prepared by reaction of aminophenols with 2,5-bis(4-fluorophenyl)-4l3,4-oxadiazole in a polar aprotic solvent in the presence of potassium carbonate. Reaction of the resulting 2,5-bis(4-(aminophenoxy)phenyl)-1,3,4-oxadiazoles with dianhydrides gave a series of polymeric amic acids. Thermal treatment yielded poly(imide ether oxadazole) films which displayed good thermal stability, flexibility, and glass transition temperatures ranging from 241 to 344C. The dielectric constants of the films were characterized as a function of relative humidity.
APA, Harvard, Vancouver, ISO, and other styles
8

Wołek, Barbara, Mateusz Werłos, Magdalena Komander, and Agnieszka Kudelko. "Efficient Synthesis of Novel 1,3,4-Oxadiazoles Bearing a 4-N,N-Dimethylaminoquinazoline Scaffold via Palladium-Catalyzed Suzuki Cross-Coupling Reactions." Molecules 25, no. 21 (November 5, 2020): 5150. http://dx.doi.org/10.3390/molecules25215150.

Full text
Abstract:
Two series of novel (symmetrical and unsymmetrical) quinazolinylphenyl-1,3,4-oxadiazole derivatives were synthesized using palladium-catalyzed Suzuki cross-coupling reactions. The presented synthetic methodology is based on the use of bromine-substituted 2-phenyl-4-N,N-dimethylaminoquinazolines and either a boronic acid pinacol ester or a diboronic acid bis(pinacol) ester of 2,5-diphenyl-1,3,4-oxadiazole. The reactions are conducted in a two-phase solvent system in the presence of catalytic amounts of [1,1′-bis(diphenylphosphino)ferrocene]-dichloropalladium(II), sodium carbonate, and tetrabutylammonium bromide, which plays the role of a phase-transfer catalyst. The luminescence properties of the obtained compounds are discussed in the context of applying these compounds in optoelectronics. Specifically, two highly-conjugated final products: N,N-dimethyl-2-phenyl-6-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl)quinazolin-4-amine (8f) and 6,6′-(4,4′-(1,3,4-oxadiazole-2,5-diyl)bis(4,1-phenylene))bis(N,N-dimethylquinazolin-4-amine (9f), which contain a 1,3,4-oxadiazole moiety connected to a quinazoline ring by a 1,4-phenylene linker at the 6 position, exhibit strong fluorescence emission and high quantum yields.
APA, Harvard, Vancouver, ISO, and other styles
9

Epishina, Margarita A., Alexander S. Kulikov, and Leonid L. Fershtat. "4-Amino-3-(1-{[amino(3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)methylene]hydrazinylidene}ethyl)-1,2,5-oxadiazole 2-Oxide." Molbank 2022, no. 3 (August 12, 2022): M1425. http://dx.doi.org/10.3390/m1425.

Full text
Abstract:
Functionally substituted 1,2,5-oxadiazole 2-oxides (furoxans) are important pharmaceutical scaffolds used for the preparation of various pharmacologically active substances. Furoxans bearing hydrazone functionality are considered as promising drug candidates for the treatment of neglected diseases. However, pharmacologically oriented hydrazones derived from (furoxanyl)amidrazones and acetylfuroxans have remained unknown so far. In this communication, a simple method for the synthesis of 4-amino-3-(1-{[amino(3-methyl-2-oxido-1,2,5-oxadiazol-4-yl)methylene]hydrazinylidene}ethyl)-1,2,5-oxadiazole 2-oxide is described. The structure of the synthesized compound was established by elemental analysis, high-resolution mass spectrometry, 1H, 13C NMR and IR spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
10

Godovikova, T. I., S. K. Vorontsova, L. D. Konyushkin, S. I. Firgang, and O. A. Rakitin. "4-Methyl-1,2,5-oxadiazole-3-carbonitrile in the synthesis of 1,2,5-oxadiazolyl-1,2,4-oxadiazoles." Russian Chemical Bulletin 57, no. 11 (November 2008): 2440–42. http://dx.doi.org/10.1007/s11172-008-0349-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mohammadi-Khanaposhtani, Maryam, Kiana Fahimi, Elahe Karimpour-Razkenari, Maliheh Safavi, Mohammad Mahdavi, Mina Saeedi, and Tahmineh Akbarzadeh. "Design, Synthesis and Cytotoxicity of Novel Coumarin-1,2,3-triazole-1,2,4- Oxadiazole Hybrids as Potent Anti-breast Cancer Agents." Letters in Drug Design & Discovery 16, no. 7 (June 27, 2019): 818–24. http://dx.doi.org/10.2174/1570180815666180627121006.

Full text
Abstract:
Background: This work reports design, synthesis, and in vitro cytotoxicity of novel coumarin-1,2,3-triazole-1,2,4-oxadiazole hybrids against three breast cancer cell lines MCF-7, MDA-MB-231, and T-47D. Methods: Synthetic procedure for the preparation of desired compounds was started from the reaction of coumarins or with propargyl bromide to give O-propargylated coumarins or 5. Then, click reaction between the later compounds and 3-aryl-5-(chloromethyl)-1,2,4-oxadiazoles afforded the desired products in good yields. Results: Among the synthesized compounds, 4-((1-((3-(4-chlorophenyl)-1,2,4-oxadiazol-5- yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (9a) showed the best cytotoxicity against breast cancer cell lines. Conclusion: Compound 9a depicted the most activity toward MDA-MB-231 and T-47D cells while compounds 8a and 8c were the most potent compounds against MCF-7.
APA, Harvard, Vancouver, ISO, and other styles
12

Hamciuc, Corneliu, Elena Hamciuc, and Maria Bruma. "Poly(1, 3, 4-Oxadiazole-Amide)s Containing Pendent Phenoxy Groups." High Performance Polymers 8, no. 4 (December 1996): 507–14. http://dx.doi.org/10.1088/0954-0083/8/4/003.

Full text
Abstract:
A series of new poly(1, 3, 4-oxadiazole-amide)s have been synthesized by solution polycondensation of aromatic diamines containing preformed 1, 3, 4-oxadiazole rings with phenoxyterephthalic diacid chloride or by the reaction of the same diacid chloride with p-aminobenzhydrazide resulting in a polyhydrazide-amide which was cyclodehydrated to the corresponding oxadiazolic structure. The new polymers were soluble or partially soluble in polar amidic solvents, were stable up to 375–400 °C in air and had a glass transition temperature in the range of 225–272 °C.
APA, Harvard, Vancouver, ISO, and other styles
13

Tauchman, Jiří, Jakub Trnka, Ivana Císařová, and Petr Štěpnička. "Synthesis, crystal structures and electrochemistry of ferrocenyl-substituted 1,3,4-oxadiazoles." Collection of Czechoslovak Chemical Communications 75, no. 10 (2010): 1023–40. http://dx.doi.org/10.1135/cccc2010064.

Full text
Abstract:
Two ferrocenyl-substituted 1,3,4-oxadiazoles, 2-ferrocenyl-1,3,4-oxadiazole (1) and 2,5-diferrocenyl-1,3,4-oxadiazole (2), have been prepared from the corresponding hydrazides, (ferrocenecarbonyl)hydrazine (3) and 1,2-bis(ferrocenecarbonyl)hydrazine (4), and characterized by conventional spectroscopic methods (IR, NMR, MS) and elemental analyses. The solid-state structures of 1, 2 and 4 have been determined by single-crystal X-ray diffraction analysis. The redox behavior of 1 and 2 was studied by electrochemical methods. Compound 1 underwent a reversible one-electron oxidation attributed to the ferrocene/ ferrocenium couple (Eo′ = +0.28 V vs ferrocene/ferrocenium). On the other hand, compound 2 showed two closely separated anodic waves corresponding to two consecutive redox changes, indicating some degree of electronic communication between the ferrocenyl moieties in positions 2 and 5 at the 1,3,4-oxadiazole ring.
APA, Harvard, Vancouver, ISO, and other styles
14

Pagoria, Philip, Maoxi Zhang, Ana Racoveanu, Alan DeHope, Roman Tsyshevsky, and Maija Kuklja. "3-(4-Amino-1,2,5-oxadiazol-3-yl)-4-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole." Molbank 2014, no. 2 (May 22, 2014): M824. http://dx.doi.org/10.3390/m824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nguyen Tien, Cong, Duc Tran Thi Cam, Ha Bui Manh, and Dat Nguyen Dang. "Synthesis and Antibacterial Activity of Some Derivatives of 2-Methylbenzimidazole Containing 1,3,4-Oxadiazole or 1,2,4-Triazole Heterocycle." Journal of Chemistry 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/1507049.

Full text
Abstract:
5-[(2-Methyl-1H-benzimidazol-1-yl)methyl]-1,3,4-oxadiazole-2-thiol or 5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4-(4-methylphenyl)-1,2,4-triazol-3-thiol which were prepared starting from 2-methylbenzimidazole in the reaction with appropriateN-aryl-2-chloroacetamides afforded two series ofN-aryl-2-{5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-1,3,4-oxadiazol-2-yl}sulfanylacetamides andN-aryl-2-{5-[(2-methyl-1H-benzimidazol-1-yl)methyl]-4-(4-methylphenyl)-4H-1,2,4-triazol-3-ylthio}acetamides, respectively. The structures of the compounds were elucidated on the basis of IR, MS,1H-NMR, and13C-NMR spectral data. The compounds containing 1,3,4-oxadiazole or 1,2,4-triazole heterocycle also were tested for their antimicrobial activity against bacteria, mold, and yeast.
APA, Harvard, Vancouver, ISO, and other styles
16

Variya, Hiren H., Vikram Panchal, Falguni G. Bhabhor, and G. R. Patel. "Synthesis and Characterization of Biologically Potent Chalcone Bearing 1,3,4-Oxadiazole Linkage." International Letters of Chemistry, Physics and Astronomy 61 (November 2015): 77–83. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.61.77.

Full text
Abstract:
In this article, we have described to design and synthesized a series of substituted chalcone based 1,3,4-oxadiazole derivatives. Titled compounds (E)-S-(-5-phenyl-1,3,4-oxadiazol-2-yl) 2-(4-(3-(5-methyl-3oxo-2(p-tolyl)-2,3-dihydro-1H-pyrazol-4-yl)-3-oxoprop-1-en-1-yl) phenoxy) etanethioate (III1-6) were synthesized using of derivatives of S-(-5-phenyl-1,3,4 oxadiazole-2-yl)2-chloroethaethioate (I1-6) were reacted with (E)-4-(3-(4-hydroxyphenyl) acryloyl)-5-methyl-2(p-tolyl)-1H-pyrazol-3(2H)-one (II) in presence of K2CO3 in DMF as a solvent. The synthesized compounds were evaluated for their antimicrobial activity. The newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, and LC-MS) Methods.
APA, Harvard, Vancouver, ISO, and other styles
17

Variya, Hiren H., Vikram Panchal, Falguni G. Bhabhor, and G. R. Patel. "Synthesis and Characterization of Biologically Potent Chalcone Bearing 1,3,4-Oxadiazole Linkage." International Letters of Chemistry, Physics and Astronomy 61 (November 3, 2015): 77–83. http://dx.doi.org/10.56431/p-x4q61z.

Full text
Abstract:
In this article, we have described to design and synthesized a series of substituted chalcone based 1,3,4-oxadiazole derivatives. Titled compounds (E)-S-(-5-phenyl-1,3,4-oxadiazol-2-yl) 2-(4-(3-(5-methyl-3oxo-2(p-tolyl)-2,3-dihydro-1H-pyrazol-4-yl)-3-oxoprop-1-en-1-yl) phenoxy) etanethioate (III1-6) were synthesized using of derivatives of S-(-5-phenyl-1,3,4 oxadiazole-2-yl)2-chloroethaethioate (I1-6) were reacted with (E)-4-(3-(4-hydroxyphenyl) acryloyl)-5-methyl-2(p-tolyl)-1H-pyrazol-3(2H)-one (II) in presence of K2CO3 in DMF as a solvent. The synthesized compounds were evaluated for their antimicrobial activity. The newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, and LC-MS) Methods.
APA, Harvard, Vancouver, ISO, and other styles
18

Kysil, Andrii, Angelina Biitseva, Oleksandra Bugera, Tetyana Yegorova, and Zoia Voitenko. "Synthesis of 2-(1,2,4-oxadiazol-5-yl)-2,3-dihydro-4H-chromen-4-ones." French-Ukrainian Journal of Chemistry 8, no. 2 (2020): 176–82. http://dx.doi.org/10.17721/fujcv8i2p176-182.

Full text
Abstract:
Simple and efficient synthesis of 2-(1,2,4-oxadiazol-5-yl)-2,3-dihydro-4H-chromen-4-ones is elaborated. The method relies on CDI-mediated cyclocondensation of substituted 4-oxochromane-2-carboxylic acids and amidoximes. The protocol allows the preparation of 2-oxadiazolylchromanones decorated with two pharmacophores (2,3-dihydro-4H-chromen-4-one and 1,2,4-oxadiazole) that are in high demand in drug discovery.
APA, Harvard, Vancouver, ISO, and other styles
19

Meng, Xingang, Niao Wang, Xiaofang Long, Lingzhu Chen, and Deyu Hu. "Qualitative and Quantitative Analysis of the New Sulfone Bactericide 2-(4-Fluorophenyl)-5-(Methylsulfonyl)-1,3,4-Oxadiazole and Identification of Its Degradation Pathways in Paddy Water." Journal of Chromatographic Science 58, no. 9 (August 22, 2020): 859–67. http://dx.doi.org/10.1093/chromsci/bmaa055.

Full text
Abstract:
Abstract Rapid and simple methods for the determination of Jiahuangxianjunzuo (JHXJZ) in paddy water, brown rice, soil and rice straw was developed and validated. This method involved the use of ultrahigh-performance liquid chromatography equipped with photodiode array detector. The most important factor was chromatographic conditions, as identified through an orthogonal experimental design. This method showed good recoveries and precisions, thereby indicating its suitability for monitoring of JHXJZ residues in paddy water, brown rice, soil and rice straw. Furthermore, hydrolysis experiment was conducted in the laboratory under pH = 7 buffer solutions, and its degradation product was identified as 2-(4-fluorophenyl)-5-methoxy-1,3,4-oxadiazole by high-resolution mass spectrometry. JHXJZ has a major degradation pathway in the water which the OH− nucleophilic attack the C5 of 1,3,4-oxadiazole ring. Then it leaves mesyl to form intermediate 5-(4-fluorophenyl)-1,3,4-oxadiazol-2-ol and the intermediate combined with methanol formed the degradation product 2-(4-fluorophenyl)-5-methoxy-1,3,4-oxadiazole by the loss of one H2O.The degradation pathways of JHXJZ under the present indoor simulation conditions were proposed.
APA, Harvard, Vancouver, ISO, and other styles
20

Mohammad, Badrud Duza, Mirza Shahed Baig, Neeraj Bhandari, Falak A. Siddiqui, Sharuk L. Khan, Zubair Ahmad, Farhat S. Khan, Priti Tagde, and Philippe Jeandet. "Heterocyclic Compounds as Dipeptidyl Peptidase-IV Inhibitors with Special Emphasis on Oxadiazoles as Potent Anti-Diabetic Agents." Molecules 27, no. 18 (September 15, 2022): 6001. http://dx.doi.org/10.3390/molecules27186001.

Full text
Abstract:
Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones, and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have been employed in numerous different ways during drug development efforts. It has been shown that including them in the pharmacophore increases the amount of ligand that may be bound. The exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles display a wide range of pharmacological properties. In this study, we made the assumption that molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes, not only for controlling glycemic levels but also for preventing atherosclerosis progression and other complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole, 5-(2,5,2-trifluoroethoxy) phenyl, β-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-aryl-2-(6′-nitrobenzofuran-2′-yl), nitrobenzofuran, and/or oxindole leads to potential anti-diabetic activity.
APA, Harvard, Vancouver, ISO, and other styles
21

Stylianakis, Ioannis, Iraklis Litinas, Antonios Kolocouris, and Carlos Silva López. "Formation and Intramolecular Capture of α-Imino Gold Carbenoids in the Au(I)-Catalyzed [3 + 2] Reaction of Anthranils, 1,2,4-Oxadiazoles, and 4,5-Dihydro-1,2,4-Oxadiazoles with Ynamides." Catalysts 12, no. 8 (August 19, 2022): 915. http://dx.doi.org/10.3390/catal12080915.

Full text
Abstract:
α-Imino gold carbenoid species have been recognized as key intermediates in a plethora of processes involving gold-activated alkynes. Here, we explored the pathways of the Au(I)-catalyzed [3 + 2] reaction between the mild nucleophiles: anthranil, 1,2,4-oxadiazole, or 4,5-dihydro-1,2,4-oxadiazole, and an ynamide, PhC≡C-N(Ts)Me, proceeding via the formation of the aforementioned α-imino gold carbene intermediate which, after intramolecular capture, regioselectively produces 2-amino-3-phenyl-7-acyl indoles, N-acyl-5-aminoimidazoles, or N-alkyl-4-aminoimidazoles, respectively. In all cases, the regioselectivity of the substituents at 2, 3 in the 7-acyl-indole ring and 4, 5 in the substituted imidazole ring is decided at the first transition state, involving the attack of nitrogen on the C1 or C2 carbon of the activated ynamide. A subsequent and steep energy drop furnishes the key α-imino gold carbene. These features are more pronounced for anthranil and 4,5-dihydro-1,2,4-oxadiazole reactions. Strikingly, in the 4,5-dihydro-1,2,4-oxadiazole reaction the significant drop of energy is due to the formation of an unstable α-imino gold carbene, which after a spontaneous benzaldehyde elimination is converted to a stabilized one. Compared to anthranil, the reaction pathways for 1,2,4-oxadiazoles or 4,5-dihydro-1,2,4-oxadiazoles are found to be significantly more complex than anticipated in the original research. For instance, compared to the formation of a five-member ring from the α-imino gold carbene, one competitive route involves the formation of intermediates consisting of a four-member ring condensed with a three-member ring, which after a metathesis and ring expansion led to the imidazole ring.
APA, Harvard, Vancouver, ISO, and other styles
22

Xiao, Qiaobin, Sergei Vakulenko, Mayland Chang, and Shahriar Mobashery. "Mutations inmmpLand in the Cell Wall Stress Stimulon Contribute to Resistance to Oxadiazole Antibiotics in Methicillin-Resistant Staphylococcus aureus." Antimicrobial Agents and Chemotherapy 58, no. 10 (July 21, 2014): 5841–47. http://dx.doi.org/10.1128/aac.03501-14.

Full text
Abstract:
ABSTRACTStaphylococcus aureusis a leading cause of hospital- and community-acquired infections, which exhibit broad resistance to various antibiotics. We recently disclosed the discovery of the oxadiazole class of antibiotics, which hasin vitroandin vivoactivities against methicillin-resistantS. aureus(MRSA). We report herein that MmpL, a putative member of the resistance, nodulation, and cell division (RND) family of proteins, contributes to oxadiazole resistance in theS. aureusstrain COL. Through serial passages, we generated twoS. aureusCOL variants that showed diminished susceptibilities to an oxadiazole antibiotic. The MICs for the oxadiazole against one strain (designatedS. aureusCOLI) increased reproducibly 2-fold (to 4 μg/ml), while against the other strain (S. aureusCOLR), they increased >4-fold (to >8 μg/ml, the limit of solubility). The COLRstrain was derived from the COLIstrain. Whole-genome sequencing revealed 31 mutations inS. aureusCOLR, of which 29 were shared with COLI. Consistent with our previous finding that oxadiazole antibiotics inhibit cell wall biosynthesis, we found 13 mutations that occurred either in structural genes or in promoters of the genes of the cell wall stress stimulon. Two unique mutations inS. aureusCOLRwere substitutions in two genes that encode the putative thioredoxin (SACOL1794) and MmpL (SACOL2566). A role formmpLin resistance to oxadiazoles was discerned from gene deletion and complementation experiments. To our knowledge, this is the first report that a cell wall-acting antibiotic selects for mutations in the cell wall stress stimulon and the first to implicate MmpL in resistance to antibiotics inS. aureus.
APA, Harvard, Vancouver, ISO, and other styles
23

Das, Rina, and Dinesh Kumar Mehta. "Evaluation and Docking Study of Pyrazine Containing 1, 3, 4-Oxadiazoles Clubbed with Substituted Azetidin-2-one: A New Class of Potential Antimicrobial and Antitubercular." Drug Research 71, no. 01 (October 7, 2020): 26–35. http://dx.doi.org/10.1055/a-1252-2378.

Full text
Abstract:
Abstract Background Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the main killers of people all over the world. The major hurdles with existing therapy are the lengthy regimen and appearance of multi drug resistant (MDR) and extensively drug resistant (XDR) strains of M.tuberculosis. Aims The present work was aimed to synthesize and determine antitubercular and antimicrobial potential of some novel 3-chloro-4-aryl-1-[4-(5-pyrazin-2-yl[1,3,4]oxadiazole-2-ylmethoxy)-phenyl]-azetidin-2-one derivatives 7(a-h) from pyrazinoic acid as precursor, which is a well-established antitubercular agent. Here we report the synthesis of a new class of heterocyclic molecules in which pyrazine, 1, 3, 4-oxadiazole and azetidinone moieties were present in one frame work. Methods Pyrazinoic acid (1) was esterified first (2) followed by amination to produce hydrazide (3) which was refluxed with POCl3 to obtain 2-chloromethyl-5pyrazino-1, 3, 4-oxadiazole (4). This was then further reacted with 4-amino phenol to obtain 4-[5-pyrazino-1, 3, 4-oxadiazol-2-yl-methoxy]-phenyl amine (5) which on condensation with various aromatic aldehydes afforded a series Schiff’s bases 6(a-h). Dehydrative annulations of 6(a-h) in the presence of chloroacetyl chloride and triethylamine yielded 3-chloro-4-aryl-1-[4-(5-pyrazin-2-yl-[1, 3, 4]oxadiazole-2-ylmethoxy)-phenyl]-azetidin-2-one derivatives 7(a-h). Antibacterial, antifungal and antitubercular potential of all the synthesized compounds were assessed. Docking study was performed using the software VLife Engine tools of Vlifemds 4.6 on the protein lumazine synthase of M. tuberculosis (PDB entry code 2C92). Results The present studies demonstrated that synthesized oxadiazole derivatives have good antimicrobial activity against the various microorganisms. Among the synthesized derivative, 7b and 7g were found to be prominent compounds which have potential antibacterial, antifungal and antitubercular activity (with MIC 3.12 µg/ml and high dock score ranging from −59.0 to −54.0) against Mycobacterium tuberculosis. Conclusions Derivatives 7b and 7g would be effective lead candidates for tuberculosis therapy.
APA, Harvard, Vancouver, ISO, and other styles
24

Barbuceanu, Stefania-Felicia, Gabriela Laura Almajan, Ioana Saramet, Constantin Draghici, and Cristian Enache. "The Behaviour of Some Acylthiosemicarbazides in the Reaction with a-Halogenated Esters." Revista de Chimie 59, no. 3 (April 9, 2008): 304–8. http://dx.doi.org/10.37358/rc.08.3.1753.

Full text
Abstract:
New six unexpected 1,3,4-oxadiazoles were obtained starting from acylthiosemicarbazides. N1-[4-(4-X-phenylsulfonyl)benzoyl]-N4-(2/3-methoxyphenyl)-thiosemicarbazides 2,3a-c were treated with ethyl chloro- or bromoacetate in presence of anhydrous sodium acetate in order to obtain new thiazolidin-4-ones compounds. However, formation of desired thiazolidin-4-ones from these acylthiosemicarbazides failed and instead 1,3,4-oxadiazoles were obtained. For confirmation presence of these compounds, 5-[4-(phenylsulfonyl)phenyl]-2-(3-methoxyphenylamino)-1,3,4-oxadiazole 5a was synthetized by cyclodesulfurization of acylthiosemicarbazide 3a with mercury (II) acetate. The structures of these compounds were elucidated by FTIR, UV, 1H-NMR and 13C-NMR, MS spectra and elemental analysis.
APA, Harvard, Vancouver, ISO, and other styles
25

Wu, Xiang-Wen, Meng-Meng Xin, Jian-Ping Ma, Zhen-Hua Wu, and Yu-Bin Dong. "The coordination chemistry of two symmetric double-armed oxadiazole-bridged organic ligands with copper salts." Acta Crystallographica Section C Crystal Structure Communications 69, no. 6 (May 15, 2013): 601–5. http://dx.doi.org/10.1107/s0108270113010913.

Full text
Abstract:
Two new symmetric double-armed oxadiazole-bridged ligands, 4-methyl-{5-[5-methyl-2-(pyridin-3-ylcarbonyloxy)phenyl]-1,3,4-oxadiazol-2-yl}phenyl pyridine-3-carboxylate (L1) and 4-methyl-{5-[5-methyl-2-(pyridin-4-ylcarbonyloxy)phenyl]-1,3,4-oxadiazol-2-yl}phenyl pyridine-4-carboxylate (L2), were prepared by the reaction of 2,5-bis(2-hydroxy-5-methylphenyl)-1,3,4-oxadiazole with nicotinoyl chloride and isonicotinoyl chloride, respectively. LigandL1 can be used as an organic clip to bind CuIIcations and generate a molecular complex, bis(4-methyl-{5-[5-methyl-2-(pyridin-3-ylcarbonyloxy)phenyl]-1,3,4-oxadiazol-2-yl}phenyl pyridine-3-carboxylate)bis(perchlorato)copper(II), [Cu(ClO4)2(C28H20N4O5)2], (I). In compound (I), the CuIIcation is located on an inversion centre and is hexacoordinated in a distorted octahedral geometry, with the pyridine N atoms of twoL1 ligands in the equatorial positions and two weakly coordinating perchlorate counter-ions in the axial positions. The two arms of theL1 ligands bend inward and converge at the CuIIcoordination point to give rise to a spirometallocycle. LigandL2 binds CuIcations to generate a supramolecule, diacetonitriledi-μ3-iodido-di-μ2-iodido-bis(4-methyl-{5-[5-methyl-2-(pyridin-4-ylcarbonyloxy)phenyl]-1,3,4-oxadiazol-2-yl}phenyl pyridine-4-carboxylate)tetracopper(I), [Cu4I4(CH3CN)2(C28H20N4O5)2], (II). The asymmetric unit of (II) indicates that it contains two CuIatoms, oneL2 ligand, one acetonitrile ligand and two iodide ligands. Both of the CuIatoms are four-coordinated in an approximately tetrahedral environment. The molecule is centrosymmetric and the four I atoms and four CuIatoms form a rope-ladder-type [Cu4I4] unit. Discrete units are linked into one-dimensional chains through π–π interactions.
APA, Harvard, Vancouver, ISO, and other styles
26

Yadav, Mange, Shrikant Shirude, Devendra Puntambekar, Pinkal Patel, Hetal Prajapati, Arvind Parmar, R. Balaraman, and Rajani Giridhar. "Studies in 3,4-diaryl-1,2,5-oxadiazoles and their N-oxides: Search for better COX-2 inhibitors." Acta Pharmaceutica 57, no. 1 (March 1, 2007): 13–30. http://dx.doi.org/10.2478/v10007-007-0002-z.

Full text
Abstract:
Studies in 3,4-diaryl-1,2,5-oxadiazoles and theirN-oxides: Search for better COX-2 inhibitorsA series of 3,4-diaryl-1,2,5-oxadiazoles and 3,4-diaryl-1,2,5-oxadiazoleN-oxides were prepared and evaluated for COX-2 and COX-1 binding affinityin vitroand for anti-inflammatory activity by the rat paw edema method.p-Methoxy (p-OMe) substituted compounds 9, 21, 34, 41, 42 showed COX-2 enzyme inhibition higher than that showed by compounds with other substituents. 3,4-Di(4-methoxyphenyl)-1,2,5-oxadiazoleN-oxide (42) showed COX-2 enzyme inhibition of 54% at 22 μmol L-1and COX-1 enzyme inhibition of 44% at 88 μmol L-1concentrations, but showed very lowin vivoanti-inflammatory activity. Its deoxygenated derivative (21) showed lower COX-2 enzyme inhibition (26% at 22 μmol L-1) and higher COX-1 enzyme inhibition (53% at 88 μmol L-1) but, markedin vivoanti-inflammatory activity (71% at 25 mg kg-1)vs.celecoxib (48% at 12.5 mg kg-1). Molecular modeling (docking) studies showed that the methoxy group is positioned in the vicinity of COX-2 secondary pocket and it also participates in hydrogen bonding interactions in the COX-2 active site. These preliminary studies suggest thatp-methoxy (p-OMe) group in one of benzene rings may give potentially active leads in this series of oxadiazole/N-oxides.
APA, Harvard, Vancouver, ISO, and other styles
27

Mercer, Frank W. "Synthesis and characterization of aromatic poly(ether ketone oxadiazole)s." High Performance Polymers 5, no. 1 (February 1993): 69–76. http://dx.doi.org/10.1088/0954-0083/5/1/007.

Full text
Abstract:
A general method for the preparation of oxadiazole containing aromatic poly(ether ketone)s has been developed. Polymerization is based on a ketone-activated halo displacement in oxadiazole containing bis(4-fluorobenzoyl) moieties by phenoxides. 2,5-bis[4-(4-fluorobenzoyl-(4-phenoxyphenyl)]-1,3,4-oxadiazole was prepared by reaction of 4-fluorobenzoyl chloride with 2,5-bis(4-phenoxyphenyl)-1,3,4-oxadiazole in dichloromethane in the presence of aluminium chloride. Reaction of 2,5-bis[4-(4-fiuorobenzoyl)-(4-phenoxyphenyl)]-1,3,4-oxadiazole with diphenols in an aprotic solvent in the presence of potassium carbonate gave a series of aromatic poly(ether ketone oxadiazole)s. Films of the aromatic poly(ether ketone oxadiazole)s displayed good thermal stability, flexibility, and Ts s ranging from 172 to 218 C. The dielectric constants of the films were characterized as a function of relative humidity (RH).
APA, Harvard, Vancouver, ISO, and other styles
28

Maftei, Catalin V., Elena Fodor, Peter G. Jones, M. Heiko Franz, Gerhard Kelter, Heiner Fiebig, and Ion Neda. "Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties." Beilstein Journal of Organic Chemistry 9 (October 25, 2013): 2202–15. http://dx.doi.org/10.3762/bjoc.9.259.

Full text
Abstract:
Taking into consideration the biological activity of the only natural products containing a 1,2,4-oxadiazole ring in their structure (quisqualic acid and phidianidines A and B), the natural product analogs 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)pyrrolidine-2,5-dione (4) and 1-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenyl)-1H-pyrrole-2,5-dione (7) were synthesized starting from 4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)aniline (1) in two steps by isolating the intermediates 4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4-oxobutanoic acid (3) and (Z)-4-(4-(3-tert-butyl-1,2,4-oxadiazol-5-yl)phenylamino)-4-oxobut-2-enoic acid (6). The two natural product analogs 4 and 7 were then tested for antitumor activity toward a panel of 11 cell lines in vitro by using a monolayer cell-survival and proliferation assay. Compound 7 was the most potent and exhibited a mean IC50 value of approximately 9.4 µM. Aniline 1 was synthesized by two routes in one-pot reactions starting from tert-butylamidoxime and 4-aminobenzoic acid or 4-nitrobenzonitrile. The structures of compounds 1, 2, 4, 5 and 6 were confirmed by X-ray crystallography.
APA, Harvard, Vancouver, ISO, and other styles
29

Yurttaş, Leyla, Betül K. Çavuşoğlu, Gülşen A. Çiftçi, and Halide E. Temel. "Synthesis and Biological Evaluation of New 1,3,4-Oxadiazoles as Potential Anticancer Agents and Enzyme Inhibitors." Anti-Cancer Agents in Medicinal Chemistry 18, no. 6 (November 12, 2018): 914–21. http://dx.doi.org/10.2174/1871520618666180322123327.

Full text
Abstract:
Background: 1,3,4-Oxadiazoles have been known with a wide variety of pharmacological activities including anticancer activity. Objective: In this study, novel 2,5-disubstituted 1,3,4-oxadiazole derivatives were synthesized and evaluated for determining their anticancer, anticholinesterase and lipoxygenase (LOX) inhibitory activity. Methods: All compounds were tested against C6 rat glioma, A549 human lung carcinoma and NIH/3T3 mouse embryo fibroblast cell lines to define cytotoxic concentrations and apoptosis induction levels which they cause. Results: Many of the compounds exhibited remarkable potency that compounds 2a, 2b, 2e, 2h and 2j against C6 cells and compounds 2a, 2b, 2d, 2g, 2i, 2j against A549 cells were found more active than cisplatin. Compound 2d namely, 2-[(5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)thio]-1-(4-chlorophenyl)ethan-1-one induced apoptosis of A549 cells with 74.9% whereas cisplatin caused 70.9% percentage. Conclusion: Among them, compounds 2d and 2j against A549 cell line, compounds 2b and 2e against both tumor cell lines showed selective cytotoxicity evaluating the inhibition concentration against NIH/3T3 cell line. None of the compounds showed significant acetylcholinesterase (AChE) and lipoxygenase inhibitory activities.
APA, Harvard, Vancouver, ISO, and other styles
30

Hkiri, Shaima, Kübra Açıkalın Coşkun, Elvan Üstün, Ali Samarat, Yusuf Tutar, Neslihan Şahin, and David Sémeril. "Silver(I) Complexes Based on Oxadiazole-Functionalized α-Aminophosphonate: Synthesis, Structural Study, and Biological Activities." Molecules 27, no. 23 (November 22, 2022): 8131. http://dx.doi.org/10.3390/molecules27238131.

Full text
Abstract:
Two silver(I) complexes, bis{diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-κN3:κN4-amino) (4-trifluoromethylphenyl)methyl]phosphonate-(tetrafluoroborato-κF)}-di-silver(I) and tetrakis-{diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-κN3-amino)(4-trifluoromethylphenyl)methyl]phosphonate} silver(I) tetrafluoroborate, were prepared starting from the diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-amino)(4-trifluoromethylphenyl)methyl]phosphonate (1) ligand and AgBF4 salt in Ag/ligand ratios of 1/1 and 1/4, respectively. The structure, stoichiometry, and geometry of the silver complexes were fully characterized by elemental analyses, infrared, single-crystal X-ray diffraction studies, multinuclear NMR, and mass spectroscopies. The binuclear complex ([Ag2(1)2(BF4)2]; 2) crystallizes in the monoclinic asymmetric space group P21/c and contains two silver atoms adopting a {AgN2F} planar trigonal geometry, which are simultaneously bridged by two oxadiazole rings of two ligands, while the mononuclear complex ([Ag(1)4]BF4; 3) crystallizes in the non-usual cubic space group Fd-3c in which the silver atom binds to four distinct electronically enriched nitrogen atoms of the oxadiazole ring, in a slightly distorted {AgN4} tetrahedral geometry. The α-aminophosphonate and the monomeric silver complex were evaluated in vitro against MCF-7 and PANC-1 cell lines. The silver complex is promising as a drug candidate for breast cancer and the pancreatic duct with half-maximal inhibitory concentration (IC50) values of 8.3 ± 1.0 and 14.4 ± 0.6 μM, respectively. Additionally, the interactions of the ligand and the mononuclear complex with Vascular Endothelial Growth Factor Receptor-2 and DNA were evaluated by molecular docking methods.
APA, Harvard, Vancouver, ISO, and other styles
31

Gatphoh, Banylla Felicity Dkhar, Natasha Naval Aggarwal, S. Madan Kumar, M. Vijay Kumar, and B. C. Revanasiddappa. "Synthesis, in silico analysis and antidepressant activity of 1,3,4-oxadiazole derivatives." Bangladesh Journal of Pharmacology 17, no. 1 (March 31, 2022): 14–21. http://dx.doi.org/10.3329/bjp.v17i1.58728.

Full text
Abstract:
The compounds 1,3,4-oxadiazole derivatives (1-8) were synthesized by the cyclization of 4-hydroxy benzhydrazide (1) with various substituted aroma-tic aldehydes (2) using FeCl3 as catalyst and methanol as a solvent medium. The structures of the newly synthesized compounds were assigned based on FT-IR, 1H-NMR, and mass spectral data. In vivo antidepressant activity was performed by tail suspension test and forced swimming test models. Using the Schrodinger Maestro, the in silico analysis was performed and docked to the glycogen synthase kinase 3β binding site (PDB: 3GB2). Compounds 8 [4,4'-(1,3,4-oxadiazole-2,5-diyl)diphenol] and 3 [3-(5-(4-hydroxyphenyl)-1,3,4-oxadiazol-2-yl) phenol] showed both potent inhibitory activity against GSK-3β with a docking score of -7.800 kcal/mol as well as good antidepressant activity in both tail suspension and forced swimming tests models. The synthesized derivatives showed good antidepressive potential.
APA, Harvard, Vancouver, ISO, and other styles
32

S. Ahmed, Wurood, Ammar A. Razzak Mahmood, and Redha I. Al-Bayati. "Synthesis and Evaluation of Antimicrobial Activity of New Imides and Schiff Bases Derived from Ethyl -4-Amino Benzoate." Oriental Journal of Chemistry 34, no. 5 (October 19, 2018): 2477–86. http://dx.doi.org/10.13005/ojc/340533.

Full text
Abstract:
A series of disubstituted 1,3,4-oxadiazole derivatives, including imides and Schiff bases, was achieved from the starting material, ethyl-4-aminobenzoate, which was converted to the corresponding 4-aminobenzohydrazide (1), by its reaction with hydrazine hydrate in absolute ethanol. Two oxadiazole parent nuclei had been synthesized from (1), the first nucleus 5-(4-aminophenyl)-1,3,4-oxadiazol-2-amine(2), and the second is 5-(4-aminophenyl)-1,3,4-oxadiazole-2-thione (3). Compound (2) Obtained from stirring methanolic solution of (1) with cyanogen bromide (CNBr) and sodium bicarbonate (NaHCO3) at RT. While compound (3) was synthesized by refluxing of (1) with CS2 in the presence of (KOH), the produced potassium salt of hydrazide underwent cyclization by acidification with 10% HCl. Meanwhile, the cyclic imides derivatives (4-6) and (10-12) were synthesized by thermal fusion of (2) or (3) with acid anhydrides, While Schiffʼs bases derivatives (7-9) and (13-15) were synthesized by a conventional method involved refluxing of (2) or (3) with different aromatic aldehydes, in acidic medium (using glacial acetic acid). The new derivatives had been tested against three Gram-positive bacteria (Staphylococcus aureus, Micrococcus luteus, and Bacillus pumilus), and two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli),and two fungal species: (Saccharomyces cerevisiae and Candida albicans). Among the synthesized derivatives, compound (15) displayed a moderate to potent antibacterial activity, against different (Gram- positive and Gram- negative) bacteria, and also showed a slight to moderate antifungal activity.
APA, Harvard, Vancouver, ISO, and other styles
33

J Khairnar, Bhikan, Rahul S. Salunke, Premchand B. Patil, Sanjay A. Patil, Rajeshwar J. Kapade, Pravin S. Girase, and Bhata R. Chaudhari. "Synthesis and Antimicrobial Activity of Some New 1, 4-Benzothiazine Containing Thiosemicarbazides and 1, 3, 4-Oxadiazole Derivatives." E-Journal of Chemistry 9, no. 1 (2012): 318–22. http://dx.doi.org/10.1155/2012/902784.

Full text
Abstract:
A series of novel 3- methyl-7-substituted-4H,4-benzothiazine-2-carbohydrazide (3a-e) and corresponding thiosemicarbazides (4-a-q); 2-[3-methyl-7-substituted- 4H-1, 4-benzothiazine-2-yl]-N-(aryl) hydrazine carbothiamide have been synthesized. The thiosemicarbazide when cyclized with iodine via intramolecular cyclisation gave benzothiazonyl oxadiazoles (5-a-q); 5-(3-methyl -7-substitued-4H- 1,4-benzothiazin-2-yl)-N—aryl- 1,3,4- oxadiazol -2-amine and the compounds were tested for antibacterial and antifungal activities against different microorganisms.
APA, Harvard, Vancouver, ISO, and other styles
34

Sattar, Almas, Aziz-ur-Rehman, Muhammad Athar Abbasi, Sabahat Zahra Siddiqui, Shahid Rasool, and Irshad Ahmad. "Synthesis of some novel enzyme inhibitors and antibacterial agents derived from 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol." Brazilian Journal of Pharmaceutical Sciences 52, no. 1 (March 2016): 77–85. http://dx.doi.org/10.1590/s1984-82502016000100009.

Full text
Abstract:
ABSTRACT Keeping in mind the pharmacological importance of the 1,3,4-oxadiazole moiety, a series of new S-substituted derivatives, 5a-h, of 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol (3) were synthesized. The reaction of p-toluenesulfonyl chloride (a) and ethyl isonipecotate (b) produced ethyl 1-(4-tosyl)piperidin-4-carboxylate (1) which was further transformed into 1-(4-tosyl)piperidin-4-carbohydrazide (2) by hydrazine hydrate in methanol. Compound 2 was refluxed with CS2 in the presence of KOH to synthesize 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol (3). The desired compounds, 5a-h, were synthesized by stirring 3 with aralkyl halides, 4a-h, in DMF using NaH as an activator. The structures of synthesized compounds were elucidated by 1H-NMR, IR and EI-MS spectral studies. These compounds were further evaluated for enzyme inhibitory activity against lipoxygenase and alpha-glucosidase, along with antibacterial activity against Gram-negative and Gram-positive bacteria.
APA, Harvard, Vancouver, ISO, and other styles
35

Vachhani, Mukeshkumar, Jaydeep Lalpara, Sanjay Hadiyal, and Gaurang Dubal. "Microwave-assisted synthesis of bioactive tetrahydropyrimidine derivatives as antidiabetic agents." Folia Medica 64, no. 3 (June 30, 2022): 478–87. http://dx.doi.org/10.3897/folmed.64.e62476.

Full text
Abstract:
Abstract Introduction: In drug discovery, pyrimidine analogues show good biological response and many drug moieties have pyrimidine core. Aim: On the basis of prior review, we synthesized a series of N-(substituted phenyl)-1,3,6-trimethyl-4-(4-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)methoxy)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide parade a 1,3,4-oxadiazole core which were evaluated for in vitro antidiabetic screening. Materials and methods: The tetrahydropyrimidine derivatives have been synthesized by microwave irradiation method. It was carried out by Biginelli condensation of 1,3,4-oxadiazole based aldehyde, substituted acetoacetanilide and N,N’-dimethyl urea. All synthesized compounds were evaluated for antidiabetic screening. Results: By the results derived from antidiabetic activity, compounds 4a, 4e, 4g, and 4i show good inhibition compared to others because of electron withdrawing and hydroxyl groups. All results are compared with standard drug acarbose. Conclusions: In conclusion, a series of 1,3,4-oxadizole bearing tetrahydropyrimidine has been synthesized and evaluated for in vitro antidiabetic screening. The derivatives 4a, 4e, 4g, and 4i exhibited promising antidiabetic activity.
APA, Harvard, Vancouver, ISO, and other styles
36

Desai, S., and U. Laddi. "SYNTHESIS AND ANTIMICROBIAL ACTIVITIES OF SOME NEW 1, 3, 4-OXADIAZOLES." INDIAN DRUGS 49, no. 08 (August 28, 2012): 38–44. http://dx.doi.org/10.53879/id.49.08.p0038.

Full text
Abstract:
Various 5-β-[(N-Benzenesulphonyl/tosyl)-4-(un) substituted anilino] ethyl-2-H/CH3/C6H5/-CH2C6H5/p-NO2C6H4-1,3,4-oxadiazoles (5a-d), 5--β-[(N-Benzenesulphonyl/tosyl)-4-(un)-substituted anilino] ethyl-2-(N,N-diethylamino/anilino/morpholino)-1, 3, 4-oxadiazoles (6a-r), 3--β-[(N-Benzenesulphonyl/tosyl)-4-(un) substituted anilino] ethyl-4-amino-5-mercapto-4(H)-1, 2, 4-triazoles (7a-f) and 5--β-[(N-Benzenesulphonyl/tosyl)-4-(un)substituted anilino] ethyl-3-(p-toluidino) methyl-1, 3, 4-oxadiazole-2-thiones (8a-f) with sulphonamide moiety at the side chain were synthesised. The structures of the newly synthesised compounds were established on the basis of their spectral data and elemental analysis. All the compounds were screened for antimicrobial activities against Escherichia coli, Bacillus cirroflagellosus, Aspergillus niger, Colletotrichum capsici. Most of the compounds have exhibited significant antifungal activity against Colletotrichum capsici, moderate activity against Aspergillus niger and minimum antibacterial activity against both the strains.
APA, Harvard, Vancouver, ISO, and other styles
37

Epishina, M. A., A. S. Kulikov, and N. N. Makhova. "Synthesis of macrocyclic systems from 4,4′-diamino-3,3′-bi-1,2,5-oxadiazole and 3(4)-amino-4(3)-(4-amino-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole 2-oxides." Russian Chemical Bulletin 57, no. 3 (March 2008): 644–51. http://dx.doi.org/10.1007/s11172-008-0101-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Deeksha Tiwari, Rakesh Narang, and Sukhbir Lal khokra. "A review on microwave assisted synthesis, mechanism of action and structure activity relationship of 1, 3, 4-oxadiazoleA review on microwave assisted synthesis, mechanism of action and structure activity relationship of 1, 3, 4-oxadiazole derivatives as anticancer agent derivatives as anticancer agent." World Journal of Advanced Research and Reviews 9, no. 1 (January 30, 2021): 086–96. http://dx.doi.org/10.30574/wjarr.2021.9.1.0472.

Full text
Abstract:
1, 3, 4-oxadiazole derivatives received considerable attention of different research groups, as they have wide variety of biological activities. 1, 3, 4-oxadiazole derivatives exhibited noteworthy anticancer activities. In recent years, microwave-induced organic reactions attained significant attention due to several benefits, such as short reaction time, cost-effectiveness, excellent yield, and ease of work. In view of above in present work, SAR and mechanism of action of 1, 3, 4-oxadiazole derivatives as anticancer agents, reported by different research groups in recent years are summarized. Present review also highlighted the various synthetic approaches for efficient microwave-assisted green synthesis of 1, 3, 4-oxadiazole derivatives.
APA, Harvard, Vancouver, ISO, and other styles
39

Kaya, Betül, Weiam Hussin, Leyla Yurttaş, Gülhan Turan-Zitouni, Hülya Gençer, Merve Baysal, Abdullah Karaduman, and Zafer Kaplancıklı. "Design and Synthesis of New 1,3,4-Oxadiazole – Benzothiazole and Hydrazone Derivatives as Promising Chemotherapeutic Agents." Drug Research 67, no. 05 (February 21, 2017): 275–82. http://dx.doi.org/10.1055/s-0042-119070.

Full text
Abstract:
AbstractLooking for new cytotoxic and antimicrobial agents with improved antitumor activity, a series of hydrazide and oxadiazole derivatives were designed and synthesized using 3-methoxyphenol as starting substance. Novel N’-(arylidene)-2-(3-methoxyphenoxy)acetohydrazide derivatives (4a–f)/1-(4-substitutedphenyl)-2-[(5-[(3-methoxyphenoxy)methyl]-1,3,4-oxadiazol-2-yl)thio]ethan-1-one derivatives (6a–f)/N-(6-substitutedbenzothiazol-2-yl)-2-[(5-[(3-methoxyphenoxy)methyl]-1,3,4-oxadiazol-2-yl)thio]acetamide derivatives (7a–e) were obtained and evaluated for their in vitro antimicrobial activity against various gram-positive, gram-negative bacteria and fungi. The antimicrobial activity potential of the compounds against gram-negative bacteria was found to have higher compared to the potential against gram-positive bacteria. Also, compounds were screened for their antiproliferative activity against 2 selected human tumor cell lines, A549 lung, MCF7 breast cancer cell line and mouse embryo fibroblast cell line, NIH/3T3 as healthy cell line. Among the compounds evaluated, compound 7c bearing 1,3,4-oxadiazole ring and 6-methoxy benzothiazole moiety exhibited the highest inhibitory activity against A549 and MCF-7 tumor cell lines in contrary to NIH/3T3 cell line, as desired.
APA, Harvard, Vancouver, ISO, and other styles
40

Jin, Guo-Xia, Tian-Chao You, and Jian-Ping Ma. "Three AgI, CuI and CdII coordination polymers based on the new asymmetrical ligand 2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole: syntheses, characterization and emission properties." Acta Crystallographica Section C Structural Chemistry 75, no. 12 (November 27, 2019): 1690–97. http://dx.doi.org/10.1107/s2053229619015663.

Full text
Abstract:
The new asymmetrical organic ligand 2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole (L, C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena-poly[[silver(I)-μ-2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole] hexafluoridophosphate], {[Ag(L)]PF6} n , catena-poly[[copper(I)-di-μ-iodido-copper(I)-bis(μ-2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole)] 1,4-dioxane monosolvate], {[Cu2I2(L)2]·C4H8O2} n , and catena-poly[[[dinitratocopper(II)]-bis(μ-2-{4-[(1H-imidazol-1-yl)methyl]phenyl}-5-(pyridin-4-yl)-1,3,4-oxadiazole)]–methanol–water (1/1/0.65)], {[Cd(L)2(NO3)2]·2CH4O·0.65H2O} n , were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one-dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.
APA, Harvard, Vancouver, ISO, and other styles
41

SarveAhrabi, Yasin. "Anti-Helicobacter pylori Activity of New Derivatives of 1, 3,4-Oxadiazole: In Silico Study." Avicenna Journal of Clinical Microbiology and Infection 8, no. 4 (December 29, 2021): 135–38. http://dx.doi.org/10.34172/ajcmi.2021.25.

Full text
Abstract:
Background: The growing spread of drug resistance in Helicobacter pylori has caused concern. Urease is one of the most important enzymes associated with H. pylori activity. Oxadiazoles have a wide range of inhibitory activities. The aim of this study was to investigate new oxadiazole compounds as urease inhibitors of H. pylori. Methods: The synthesized compounds were reused as ligands in the previous study, and the initial structure of the compounds was optimized by the Molecular Mechanics Models method. Then, the compounds were evaluated as inhibitors on the active site of the urease enzyme by AutoDock Vina software, and the output results were analyzed and evaluated using soft Discovery Studio software. Results: All compounds, especially (4c) with flour groups, exhibited powerful inhibitory activity against the urease enzyme of H. pylori. Conclusions: The present findings indicated the inhibitory potential of the novel synthetic 1, 3, 4-oxadiazole compounds.
APA, Harvard, Vancouver, ISO, and other styles
42

Yamuna, Thammarse S., Jerry P. Jasinski, Brian J. Anderson, H. S. Yathirajan, and Manpreet Kaur. "Raltegravir monohydrate." Acta Crystallographica Section E Structure Reports Online 69, no. 12 (November 6, 2013): o1743—o1744. http://dx.doi.org/10.1107/s1600536813029747.

Full text
Abstract:
The hydrated title compound [systematic name:N-(4-fluorobenzyl)-5-hydroxy-1-methyl-2-{1-methyl-1-[(5-methyl-1,3,4-oxadiazol-2-ylcarbonyl)amino]ethyl}-6-oxo-1,6-dihydropyrimidine-4-carboxamide monohydrate], C20H21FN6O5·H2O, is recognised as the first HIV integrase inhibitor. In the molecule, the dihedral angles between the mean planes of the pyrimidine ring and the phenyl and oxadiazole rings are 72.0 (1) and 61.8 (3)°, respectively. The mean plane of the oxadiazole ring is twisted by 15.6 (3)° from that of the benzene ring, while the mean plane of amide group bound to the oxadiaole ring is twisted by 18.8 (3)° from its mean plane. Intramolecular O—H...O and C—H...N hydrogen bonds are observed in the molecule. The crystal packing features O—H...O hydrogen bonds, which include bifurcated O—H...(O,O) hydrogen bonds from one H atom of the water molecule. In addition, N—H...O hydrogen bonds are observed involving the two amide groups. These interactions link the molecules into chains along [010].
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Chengbin, Ping Zhao, and Wei Huang. "New oxadiazole derivatives as promising electron transport materials: synthesis and characterization of thermal, optical and electrochemical properties." Open Chemistry 5, no. 1 (March 1, 2007): 303–15. http://dx.doi.org/10.2478/s11532-006-0052-y.

Full text
Abstract:
Abstract2,5-bis-(4-biphenyl)-yl-1,3,4-oxadiazole (1a), 2,5-bis-(4-(6,8-difluoro)-biphenyl)-yl-1,3,4-oxadiazole (1b) and 2,5-bis-(4-(spiro-fluorenyl)-phenyl)-yl-1,3,4-oxadiazole (1c) were designed, synthesized and characterized. 1a–c were easily obtained from Suzuki reactions between 2,5-bis-(4-bromo-phynyl)-[1,3,4]oxadiazole (2) and aromatic boronic acids (3). They were characterized by 1H-NMR, DSC, TGA, UV-Vis, photoluminescence (PL) spectrometry and CV. The melting temperatures (T m) of 1a–c are 237, 208 and 370 °C, respectively, much higher than that of 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD, T m = 136 °C). The oxidation potentials of 1a–c are 1.86, 1.94 and 1.18 V, and their reduction potentials are −2.31, −2.22 and −2.27 V, respectively, indicating that the introduction of electronegative oxadiazole unit lowers the electron density in molecules and enhances their stabilities. The LUMO/HOMO energy levels of 1a–c are as low as −2.39/−6.56, −2.48/−6.69 and −2.43/−5.88 eV, respectively. The good thermal stabilities and low orbital levels of 1a–c make them promising electron-transporting or hole-blocking materials for organic optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Lei, Yu-Ran Wu, Shu-Ting Ren, Long Yin, Xiu-Jian Liu, Feng-Chang Cheng, Wei-Wei Liu, Da-Hua Shi, Zhi-Ling Cao, and Hui-Min Sun. "Synthesis and bioactivity of novel C2-glycosyl oxadiazole derivatives as acetylcholinesterase inhibitors." Heterocyclic Communications 24, no. 6 (December 19, 2018): 333–38. http://dx.doi.org/10.1515/hc-2018-0166.

Full text
Abstract:
Abstract A series of glycosyl-substituted 1,3,4-oxadiazoles were synthesized by cyclization of glycosyl-acylthiosemicarbazides via a base-catalyzed reaction. The starting glycosyl-acylthiosemicarbazide derivatives were obtained by the reaction of glycosyl isothiocyanate with various hydrazides. The acetylcholinesterase (AChE) inhibitory activities of the products were tested by Ellman’s method. The most active compounds were subsequently evaluated for the 50% inhibitory concentration (IC50) values. N-(1,3,4,6-tetra-O-benzyl-2-deoxy-β-D-glucopyranosyl)-5-(4-fluorophenyl)-1,3,4-oxadiazole-2-amine (6i) possesses the best AChE -inhibition activity with an IC50 of 1.61±0.34 μm.
APA, Harvard, Vancouver, ISO, and other styles
45

Farooqui, Maqdoom, and Syed Nazimuddin. "Synthesis of 1, 3, 4-Oxadiazole." Asian Journal of Research in Chemistry 10, no. 2 (2017): 154. http://dx.doi.org/10.5958/0974-4150.2017.00026.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fun, Hoong-Kun, Jia Hao Goh, Nithinchandra, and B. Kalluraya. "2,5-Bis(4-methoxyphenyl)-1,3,4-oxadiazole." Acta Crystallographica Section E Structure Reports Online 66, no. 12 (November 6, 2010): o3072. http://dx.doi.org/10.1107/s1600536810044405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Tawade, Bhausaheb V., Nitin G. Valsange, and Prakash P. Wadgaonkar. "Synthesis and characterization of polyhydrazides and poly(1,3,4-oxadiazole)s containing multiple arylene ether linkages and pendent pentadecyl chains." High Performance Polymers 29, no. 7 (August 4, 2016): 836–48. http://dx.doi.org/10.1177/0954008316660368.

Full text
Abstract:
A new diacylhydrazide monomer, namely, 4-(4-(4-(4-(hydrazinocarbonyl)phenoxy)-2-pentadecylphenoxy)phenoxy) benzohydrazide (HPPDPB), was synthesized starting from 4-(4-hydroxyphenoxy)-3-pentadecylphenol. HPPDPB was polycondensed with terephthalic acid chloride (TPC), isophthalic acid chloride (IPC) and a mixture of TPC and IPC (50:50 mol%) to obtain polyhydrazides containing multiple arylene ether linkages in the backbone and pendent pentadecyl chains. Polyhydrazides were subsequently cyclized in the presence of phosphorus oxychloride to obtain the corresponding poly(1,3,4-oxadiazole)s. Polyhydrazides and poly(1,3,4-oxadiazole)s exhibited inherent viscosities in the range 0.65–0.72 dL g−1 and 0.54–0.62 dL g−1, respectively, which indicated the formation of reasonably high-molecular weight polymers. Polyhydrazides were soluble in polar aprotic solvents such as N,N-dimethylformamide, N,N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidinone and pyridine whereas poly(1,3,4-oxadiazole)s exhibited excellent solubility even in common organic solvents such as chloroform, dichloromethane and tetrahydrofuran. Tough, transparent and flexible films of polyhydrazides and poly(1,3,4-oxadiazole)s could be cast from DMAc and chloroform solutions, respectively. X-Ray diffraction studies revealed amorphous nature of polyhydrazides and poly(1,3,4-oxadiazole)s and the formation of layered structure was observed due to ordered packing of pentadecyl chains. The 10% decomposition temperature ( T10) values for poly(1,3,4-oxadiazole)s were in the range 425–440°C indicating their good thermal stability. Glass transition temperature ( Tg) values of polyhydrazides and poly(1,3,4-oxadiazole)s were in the range 175–192°C and 92–103°C, respectively. The excellent solubility characteristics and the large gap between Tg (92–103°C) and T10 (425–440°C) values give poly(1,3,4-oxadiazole)-containing pendent pentadecyl chains better opportunities for processability.
APA, Harvard, Vancouver, ISO, and other styles
48

Ahsan, Mohamed Jawed, Jyotika Sharma, Monika Singh, Surender Singh Jadav, and Sabina Yasmin. "Synthesis and Anticancer Activity ofN-Aryl-5-substituted-1,3,4-oxadiazol-2-amine Analogues." BioMed Research International 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/814984.

Full text
Abstract:
In continuance of our search for anticancer agents, we report herein the synthesis and anticancer activity of some novel oxadiazole analogues. The compounds were screened for anticancer activity as per National Cancer Institute (NCI US) protocol on leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate, and breast cancers cell lines.N-(2,4-Dimethylphenyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-amine (4s) showed maximum activity with mean growth percent (GP) of 62.61 and was found to be the most sensitive on MDA-MB-435 (melanoma), K-562 (leukemia), T-47D (breast cancer), and HCT-15 (colon cancer) cell lines with GP of 15.43, 18.22, 34.27, and 39.77, respectively. Maximum GP was observed on MDA-MB-435 (melanoma) cell line (GP=6.82) by compoundN-(2,4-dimethylphenyl)-5-(4-hydroxyphenyl)-1,3,4-oxadiazol-2-amine (4u).
APA, Harvard, Vancouver, ISO, and other styles
49

Kottakki, Naveen Kumar, Soujanya Kumari P V D, Gopi G, Amperayani Karteek Rao, and Devi Parimiuma. "SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF PIPERAZINE ANALOGUES CONTAINING [1, 3, 4]-OXADIAZOLE RING." INDIAN DRUGS 57, no. 01 (January 28, 2020): 19–26. http://dx.doi.org/10.53879/id.57.01.12165.

Full text
Abstract:
A new series of piperazine-1, 3, 4-oxadiazole deviatives were synthesized by the condensation of 1, 3, 4-thidaizole with substituted piperazine, in the presence of N, N-diisopropylethylamine. The structures were confirmed by IR, 1H NMR, 13C NMR and Mass spectroscopy. All the precursors were screened for anti-bacterial activity and the results indicate that phenyl substituted chloro (PO2) and hydroxy (PO6) functional derivatives possess better anti-bacterial activity towards to Gram-positive bacteria and gram-negative bacteria, Maximum zone of inhibition was observed in (PO2) against Bacillus subtillus (14.0 mm) and (PO6) against Pseudomonas aeruginosa (14.0 mm). Piperazine-1, 3, 4-oxadiazoles were synthesized by combining two active molecules into a new bioactive conjugate molecule. These new hybrid molecules have more potential biological activity than their parent molecules.
APA, Harvard, Vancouver, ISO, and other styles
50

Panchal, Ishan I., Roshani Rajput, and Ashish D. Patel. "Design, Synthesis and Pharmacological Evalution of 1,3,4-Oxadiazole Derivatives as Collapsin Response Mediator Protein 1 (CRMP 1) Inhibitors." Current Drug Discovery Technologies 17, no. 1 (April 17, 2020): 57–67. http://dx.doi.org/10.2174/1570163815666181106090708.

Full text
Abstract:
Objective: The series of 2-(4-Phenylamino)-N-(5-((4-nitrophenoxy)methyl) -1,3,4-oxadiazol- 2-yl)aceta-mide (5a-5e) and substituted N-(5-(Phenoxymethyl)-1,3,4-oxadiazol-2-yl)-2- (phenylamino)acetamide (5f-5i) was designed, synthesized and investigated for Collapsin Response Mediator Protein 1 (CRMP 1) inhibitors as small lung cancer. Design: Design of compounds was determined by literature review and molecular docking studies in iGEMDOCK 2.0. Materials and Methods: Novel 1, 3, 4 Oxadiazole derivatives were synthesized and characterized by melting point, TLC, IR Spectroscopy, Mass spectroscopy and 1H NMR. In vitro biological evaluation was performed on NCI-H2066 cell line for different concentrations 10-1000μM by telomeric repeat amplification protocol assay. The assay of telomerase in cellular extracts was modified from the PCR-based Telomeric-Repeat Amplification Protocol (TRAP), using the oligonucleotides TS and CX. Results: Novel substituted 2-(4-Phenylamino)-N-(5-((4-nitrophenoxy)methyl)-1,3,4-oxadiazol-2- yl) acetamide (5a-5e) and substituted N-(5-(Phenoxymethyl)-1,3,4-oxadiazol-2-yl)-2-(phenylamino) acetamide (5f-5i) were synthesized, and characterized using spectral and analytical data. All compounds have shown considerable % inhibition of Cell Growth with respect to Bevacizumab, but compound 5a and 5f were equipotent with respect to activity as compared to standard Bevacizumab. Conclusion: Amongst the hybrids, p-nitro substituted derivative (5a) and p-chloro substituted (5f) showed the highest activity against human lung cancer cell line NCI-H2066 by TRAP assay.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography