Dissertations / Theses on the topic '3D security'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 21 dissertations / theses for your research on the topic '3D security.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rolland-Nevière, Xavier. "Tatouage 3D robuste." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4083/document.
Full text3D models are valuable assets widely used in the industry and likely to face piracy issues. This dissertation deals with robust mesh watermarking that is used for traitor-Tracing. Following a review of state-Of-The-Art 3D watermarking systems, the robustness of several content adaptation transforms are benchmarked. An embedding domain robust against pose is investigated, with a thickness estimation based on a robust distance function to a point cloud constructed from some mesh diameters. A benchmark showcases the performance of this domain that provides a basis for robust watermarking in 3D animations. For static meshes, modulating the radial distances is an efficient approach to watermarking. It has been formulated as a quadratic programming problem minimizing the geometric distortion while embedding the payload in the radial distances. This formulation is leveraged to create a robust watermarking framework, with the integration of the spread-Transform, integral reference primitives, arbitrarily selected relocation directions and alternate metrics to minimize the distortion perceived. Benchmarking results showcase the benefits of these add-Ons w.r.t the fidelity vs. robustness watermarking trade-Off. The watermark security is then investigated with two obfuscation mechanisms and a series of attacks that highlight the remaining limitations. A resynchronization approach is finally integrated to deal with cropping attacks. The resynchronization embeds land-Marks in a configuration that conveys synchronization information that will be lost after cropping. During the decoding, this information is blindly retrieved and significant robustness improvements are achieved
Musa, Shahrulniza. "Visualising network security attacks with multiple 3D visualisation and false alert classification." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/14241.
Full textNunnally, Troy J. "Advanced visualizations for network security." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52993.
Full textBishop, Craig, Ian Armstrong, and Rolando Navarette. "A Novel Method for 3D Printing High Conductivity Alloys for UHF Applications." International Foundation for Telemetering, 2014. http://hdl.handle.net/10150/577400.
Full textTraditional approaches to constructing 3D structural electronics with conductive and dielectric materials include ink-jet printed, silver-bearing ink and fine copper wire meshes. One approach combines stereo-lithographic 3D-printed photo-polymers with direct-printed silver-bearing conductive inks. Results have shown 3D conductive structures with conductivities in the range 2x10⁶ to 1x10⁷ S/m using annealing temperatures ranging from 110°C to 150°C for 10 to 15 minutes. However, the stereo-lithographic approach suffers from the high cost of the printer and structural deformation during annealing. This paper presents a new method for 3d printing high conductivity metal alloys using consumer-grade 3D printer. The design and construction of the necessary modification will be presented in addition to the new 3D design process. The method yields metal structures with expected conductivities exceeding 2.6x10⁶ S/m. The process is performed without an annealing step, so the polymeric structural material is not exposed to high temperatures for any prolonged time. A UHF ISM band antenna is constructed for an RFID application using this method, the antenna performance is measured, and the results are compared simulations in Ansys HFSS. This new method can reduce total cost, and several low melting-point alloys could raise the conductivity.
Thomas, Andrew Scott. "Exploring the Efficiency of Software-Defined Radios in 3D Heat Mapping." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7754.
Full textMouton, Andre. "On artefact reduction, segmentation and classification of 3D computed tomography imagery in baggage security screening." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/8501.
Full textNorwood, Charles Ellis. "Demonstration of Vulnerabilities in Globally Distributed Additive Manufacturing." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99104.
Full textMaster of Science
Developed at the end of the 20th century, additive manufacturing, sometimes known as 3D printing, is a relatively new method for the production of physical products. Typically, these have been limited to plastics and a small number of metals. Recently, advances in additive manufacturing technology have allowed an increasing number of industrial and consumer products to be produced on demand. A worldwide industry of additive manufacturing has opened up where product designers and 3D printer operators can work together to deliver products to customers faster and more efficiently. Designers and printers may be on opposite sides of the world, but a customer can go to a local printer and order a part designed by an engineer thousands of miles away. The customer receives a part in as little time as it takes to physically produce the object. To achieve this, the printer needs manufacturing information such as object dimensions, material parameters, and machine settings from the designer. The designer risks unauthorized use and the loss of intellectual property if the manufacturing information is exposed. Legal protections on intellectual property only go so far, especially across borders. Technical solutions can help protect valuable IP. In such an industry, essential data may be digitally encrypted for secure transmission around the world. This information may only be read by authorized printers and printing services and is never saved or read by an outside person or computer. The control computers which read the data also control the physical operation of the printer. Most commonly, electric motors are used to move the machine to produce the physical object. These are most often stepper motors which are connected by wires to the controlling computers and move in a predictable rhythmic fashion. The signals transmitted through the wires generate a magnetic field, which can be detected and recorded. The pattern of the magnetic field matches the steps of the motors. Each step can be counted, and the path of the motors can be precisely traced. The path reveals the shape of the object and the encrypted manufacturing instructions used by the printer. This thesis demonstrates the tracking of motors and creation of encrypted machine code in a simulated 3D printing environment, revealing a potential security flaw in a distributed manufacturing system.
Peña, Guevara Javier Nilo, Acuña Leslie Dueñas, and Lynch Oscar Dupuy. "Distribuidores exclusivos de la marca MADPAX en el Perú." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2018. http://hdl.handle.net/10757/626040.
Full textThis research covers an import business of retail, which the aim idea is the exclusive distribution of the most important foreign brand of innovate backpacks to the national market and lastly make an identity to put us in the target market’s top of mind. This project contains these important topics which represent each chapter like: General aspects of global business, strategic plan about the thorough analysis of the internal and external factors, target market research and work out, advertising plan of brand, import operations plan, organizational structure and human resources, ultimately financial economic plan. The main focus is proving the feasibility of this business through a detailed examination of relevant indicators which show the proposed project profitability.
Trabajo de investigación
Beugnon, Sébastien. "Sécurisation des maillages 3D pour l'industrie de la chaussure et la maroquinerie." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS097.
Full textWith the increase of data exchange and latest technological and social developments, multimedia contents are becoming an important part of global trafic. Today, 3D objects are used in a large number of applications, for example, medical applications, simulations, video games, animation and special effects. 3D object usage by the general public has become a lucrative market that can take the form of 3D object downloading platforms with various 3D formats.This thesis, in collaboration with the company STRATEGIES, concerns the 3D object protection, and more particularly 3D meshes against fradulent and illegal uses. These 3D meshes represent surface models of shoes and leather goods produced by customers using digital solutions proposed by STRATEGIES. First, we propose a new method to insert secret data much more efficiently in terms of execution time on very large meshes than the previous method developed in collaboration with the company STRATEGIES. We are also exploring selective encryption approaches to control access to very high quality content according to user needs. In this context, we propose to use selective encryption approaches on the geometric data of 3D objects in order to protect the visual content of these objects according to different use cases and different data representations.In a second research axis, we study the application of secret sharing methods to the domain of 3D objects. Secret sharing is an approach that seeks to divide secret content between multiple users and allows certain subgroups of users to reconstruct the secret. Secret sharing is a redundancy system that allows you to reconstruct the secret even if some users have lost their information. Secret 3D object sharing is a poorly researched domain used to protect a 3D object between collaborators. We propose new secret 3D object sharing methods using selective encryption approaches and providing hierarchical properties where users have different access rights to 3D content based on their position in a hierarchical structure.Finally, the third research axis developed in this thesis deals with the analysis of the visual confidentiality of 3D objects selectively encrypted more or less strongly. Indeed, depending on the scenario, our 3D selective encryption methods provide results that can be more or less recognizable by users. However, the metrics used to evaluate the quality of 3D objects do not distinguish two selectively encrypted 3D objects with different levels of confidentiality. So, we present the construction of a databse of selectively encrypted 3D objects in order to realize subjective assessments of visual confidentiality and try to build a new metric correlated with evaluations obtained by the human visual system
Itier, Vincent. "Nouvelles méthodes de synchronisation de nuages de points 3D pour l'insertion de données cachées." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS017/document.
Full textThis thesis addresses issues relating to the protection of 3D object meshes. For instance, these objects can be created using CAD tool developed by the company STRATEGIES. In an industrial context, 3D meshes creators need to have tools in order to verify meshes integrity, or check permission for 3D printing for example.In this context we study data hiding on 3D meshes. This approach allows us to insert information in a secure and imperceptible way in a mesh. This may be an identifier, a meta-information or a third-party content, for instance, in order to transmit secretly a texture. Data hiding can address these problems by adjusting the trade-off between capacity, imperceptibility and robustness. Generally, data hiding methods consist of two stages, the synchronization and the embedding. The synchronization stage consists of finding and ordering available components for insertion. One of the main challenges is to propose an effective synchronization method that defines an order on mesh components. In our work, we propose to use mesh vertices, specifically their geometric representation in space, as basic components for synchronization and embedding. We present three new synchronisation methods based on the construction of a Hamiltonian path in a vertex cloud. Two of these methods jointly perform the synchronization stage and the embedding stage. This is possible thanks to two new high-capacity embedding methods (from 3 to 24 bits per vertex) that rely on coordinates quantization. In this work we also highlight the constraints of this kind of synchronization. We analyze the different approaches proposed with several experimental studies. Our work is assessed on various criteria including the capacity and imperceptibility of the embedding method. We also pay attention to security aspects of the proposed methods
Mehdi, Ali. "Developing a Computer System for the Generation of Unique Wrinkle Maps for Human Faces. Generating 2D Wrinkle Maps using Various Image Processing Techniques and the Design of 3D Facial Ageing System using 3D Modelling Tools." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5144.
Full textJansen, van rensburg Bianca. "Sécurisation des données 3D par insertion de données cachées et par chiffrement pour l'industrie de la mode." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS044.
Full textOver the last few decades, 3D objects have become an essential part of everyday life, in both private and professional contexts. These 3D objects are often stored on the cloud and transferred over networks many times during their existence, where they are susceptible to malicious attacks. Therefore, 3D object security, such as encryption or data hiding, is essential. Encryption is used to protect the visual confidentiality of the 3D object's content. Selective encryption schemes can also be used, where part of a component, such as a part of each vertex, is encrypted. Data hiding is generally used to protect the copyright or the authenticity of the 3D object. However, when a 3D object is encrypted, a third party such as a server may need to embed data in the confidential 3D object. In this case, data hiding in the encrypted domain is performed. In many applications, 3D objects often consist of millions of vertices, and so storing and sharing them online is expensive, time consuming and not environmentally friendly. Consequently, 3D object compression is essential. In this work, we present three contributions in different research areas. First, we present our work on a new method to obtain a watermarked 3D object from high-capacity data hiding in the encrypted domain. Based on the homomorphic properties of the Paillier cryptosystem, our proposed method allows us to embed several secret messages in the encrypted domain with a high-capacity. These messages can be extracted in the plaintext domain after the 3D object decryption. To the best of our knowledge, we are the first to propose a data hiding method in the encrypted domain where the high-capacity watermark is conserved in the plaintext domain after the 3D object is decrypted. The encryption and the data hiding in the encrypted domain are format compliant and without size expansion, despite the use of the Paillier cryptosystem. Then, we present our work on an evaluation metric for the visual security level of selectively encrypted 3D objects. We present a new dataset composed of evaluated selectively encrypted 3D objects. We propose a model to determine the security parameters according to a desired security level. Finally, we detail our proposed 3DVS score which serves to measure the visual security level of selectively encrypted 3D objects. We also present a method which allows us to hierarchically decrypt an encrypted 3D object according to a generated ring of keys. This ring consists of a set of keys that allow a stronger or weaker decryption of the encrypted 3D object. Each hierarchically decrypted 3D object has a different visual security level, where the 3D object is more or less visually accessible. Our method is essential when it comes to preventing trade secrets from being leaked from within a company or by exterior attackers. It is also ecologically friendly and more secure than traditional selective encryption methods. Finally, we present our work on joint security and compression methods based on Google's 3D object compression method Draco, where we integrate a security step in Draco, which is becoming the new industry standard. These security steps are encryption, selective encryption and watermarking
Uddman, Lindh Carl, and Johan Norberg. "Augmented reality with holograms for combat management systems : Performance limitations for sonar tracks in a 3D map, presented with Microsoft HoloLens." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209412.
Full textTekniska framsteg inom presentation av 3D-objekt har nyligen möjliggjort användning av hologram presenterade med portabel utrustning. Istället för att använda en vanlig skärm kan glasögon, som Microsoft HoloLens, rendera objekt som användaren upplever i sin omgivning som hologram. SAAB Defence and Security utvärderar om den nya teknologin kan användas som ett komplement till deras ledningssystem 9LV Combat Management System. Det här examensarbetet är en studie av de tekniska möjligheter och begränsningar som finns för att bygga en applikation som visar sonar-information som ett hologram, främst att användas för ubåtsjakt och upptäckt av sjöminor. Projektet inleddes med en bakgrundsstudie om vilka metoder som finns tillgängliga för att rendera en 3D-karta av en havsbotten. En enkel applikation med en karta som föreställer en del av skärgården tas fram med simulerad sonar-information från ledningssystemet inlagt i kartan. Implementationen av applikationen gjordes med spelmotorn Unity3D som har inbyggt stöd för Microsoft HoloLens. Prestandautvärdering genomfördes genom att använda ett inbyggt profileringsverktyg i Unity3D som har liten påverkan på prestandan. Utvärdering av möjlig användningsmiljö gjordes genom att testa utrustningen ombord på två olika båtar för att avgöra om HoloLens kan användas i 9LV CMS normala operativa förhållanden. Resultaten visar att det är möjligt att använda holografisk visning för sonar-data men upplösningen av terrängen för kartan är något låg på grund av den begränsade beräkningskraften i Microsoft HoloLens. Hologram i Microsoft HoloLens orienteras genom att kombinera en djupseende kamera med en intern referensenhet. Användningstester ombord på båt visar på att vid accelerationer som uppkommer av sjöhävning tappar HoloLensen rumsuppfattningen tillfälligt och stoppar renderingen av hologrammet.
Brandman, Joshua Erich. "A Physical Hash for Preventing and Detecting Cyber-Physical Attacks in Additive Manufacturing Systems." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/86412.
Full textMaster of Science
Song, Qiang. "Design of synthetic diffractive structures for 3D visualization applications and their fabrication by a novel parallel-write two-photon polymerization process." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0199.
Full textDiffractive Optical Elements (DOEs) are now widely used in academic and industrial applications due to their ultrathin, compact characteristics and their highly flexible manipulation of light wave-fronts. Despite these excellent properties, the scope of DOE applications is often limited by the fact that most DOEs are designed to generate only 2D projected patterns, and even more importantly, for use only with monochromatic, coherent, often collimated, laser sources. The cost and eye safety constraints of laser sources severely restrict DOE visualisation applications such as security holograms, and the 2D nature of the generated patterns limits virtual or augmented reality applications. To overcome these restrictions, this thesis targets the design and fabrication of wavelength selective 3D diffractive structures which can produce a perceived multiple view-angle “floating” 3D object behind the DOE substrate when illuminated by readily available and cheap white LED sources. In an initial approach we develop and experimentally validate a series of novel design algorithms for conventional optically “thin” DOE structures under incoherent, divergent illumination; first to project 2D patterns, then to create virtual 2D images and finally virtual 3D patterns. In a second stage, we leverage the capacities of optically “thick”, Bragg-like structures to introduce spectral selectivity (towards colour output patterns) and improve diffraction. Since the thin element approximation is invalid when designing optically thick 3D photonic structures we develop a particle swarm optimization algorithm based on a rigorous diffraction model to design highly innovative optically thick synthetic diffractive structures. The cost-effective fabrication of such proposed fully 3Dmicro- and nano-photonics structures is highly challenging when using current traditional lithographic techniques which are generally limited, in practice, to the fabrication of 2D or 2.5D structures. To this end, an advanced prototype massively parallelized two-photon polymerization (2PP) photoplotter for the fabrication of large area fully 3D photonic structures is currently being developed by the IMT Atlantique Optics Department. We present our contributions to the design and development of the critical, high uniformity illumination modules for the new prototype 2PP photoplotter. The research and development in this thesis contributes to the broadening of DOE applications to fields which are currently inaccessible. The developed design methods can also find applications in holographic display fields such as automotive augmented reality
Mursalin, Md. "Human identification using ear biometrics: A complete pipeline from detection to recognition." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2023. https://ro.ecu.edu.au/theses/2622.
Full textResler, Tomáš. "Návrh domácí brány pro zařízení IoT využívající technologii Z-Wave." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400940.
Full textLangin, Chester Louis. "A SOM+ Diagnostic System for Network Intrusion Detection." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/389.
Full textGaw, Tyler J. "ARL-VIDS visualization techniques : 3D information visualization of network security events." 2014. http://liblink.bsu.edu/uhtbin/catkey/1745749.
Full textDepartment of Computer Science
Moein, Samer. "Systematic Analysis and Methodologies for Hardware Security." Thesis, 2015. http://hdl.handle.net/1828/6954.
Full textGraduate
0544
0984
samerm@uvic.ca
Chen, Kuan-Chieh, and 陳冠傑. "A Study on Autonomous Vehicle Navigation by 2D Object Image Matching and 3D Computer Vision Analysis for Indoor Security Patrolling Applications." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/34337662999305229023.
Full text國立交通大學
多媒體工程研究所
96
A vision-based vehicle system for security patrolling in indoor environments using an autonomous vehicle is proposed. A small vehicle with wireless control and a web camera which has the capabilities of panning, tilting, and zooming is used as a test bed. At first, an easy-to-use learning technique is proposed, which has the capability of extracting specific features, including navigation path, floor color, monitored object, and vehicle location with respect to monitored objects. Next, a security patrolling method by vehicle navigation with obstacle avoidance and security monitoring capabilities is proposed. The vehicle navigates according to the node data of the path map which is created in the learning phase and monitors concerned objects by a simplified scale-invariant feature transform (simplified-SIFT) algorithm proposed in this study. Accordingly, we can extract the features of each monitored object from acquired images and match them with the corresponding learned data by the Hough transform. Furthermore, a vehicle location estimation technique for path correction utilizing the monitored object matching result is proposed. In addition, techniques for obstacle avoidance are also proposed, which can be used to find the clusters of floor colors, detect obstacles in environments with various floor colors, and integrate a technique of goal-directed minimum path following to guide the vehicle to avoid obstacles. Good experimental results show the flexibility and feasibility of the proposed methods for the application of security patrolling in indoor environments.