Academic literature on the topic '3D print materiál'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D print materiál.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "3D print materiál"
Kiński, Wojciech, and Paweł Pietkiewicz. "The concept of the material supply system in 3D printer using a wear FDM material." Mechanik 91, no. 7 (July 9, 2018): 543–45. http://dx.doi.org/10.17814/mechanik.2018.7.78.
Full textCzerwiński, Maciej, and Mateusz Pasternak. "Use of 3D printing technology for planar antenna constructions." Bulletin of the Military University of Technology 69, no. 1 (March 31, 2020): 57–65. http://dx.doi.org/10.5604/01.3001.0014.2799.
Full textHuber, Tim, Hossein Najaf Zadeh, Sean Feast, Thea Roughan, and Conan Fee. "3D Printing of Gelled and Cross-Linked Cellulose Solutions; an Exploration of Printing Parameters and Gel Behaviour." Bioengineering 7, no. 2 (March 27, 2020): 30. http://dx.doi.org/10.3390/bioengineering7020030.
Full textWawrek, I. "Building materials for 3D print." IOP Conference Series: Materials Science and Engineering 867 (October 9, 2020): 012047. http://dx.doi.org/10.1088/1757-899x/867/1/012047.
Full textGeiger, R., S. Rommel, J. Burkhardt, and T. Prof Bauernhansl. "Additiver Hybrid-Leichtbau – Highlight 3D print*/Additive Hybrid Lightweight Construction - Highlight 3D print." wt Werkstattstechnik online 106, no. 03 (2016): 169–74. http://dx.doi.org/10.37544/1436-4980-2016-03-73.
Full textPristiansyah, Pristiansyah, Hasdiansah Hasdiansah, and Sugiyarto Sugiyarto. "Optimasi Parameter Proses 3D Printing FDM Terhadap Akurasi Dimensi Menggunakan Filament Eflex." Manutech : Jurnal Teknologi Manufaktur 11, no. 01 (July 31, 2019): 33–40. http://dx.doi.org/10.33504/manutech.v11i01.98.
Full textMilde, Ján, František Jurina, Jozef Peterka, Patrik Dobrovszký, Jakub Hrbál, and Jozef Martinovič. "Influence of Part Orientation on the Surface Roughness in the Process of Fused Deposition Modeling." Key Engineering Materials 896 (August 10, 2021): 29–37. http://dx.doi.org/10.4028/www.scientific.net/kem.896.29.
Full textDeneault, James R., Jorge Chang, Jay Myung, Daylond Hooper, Andrew Armstrong, Mark Pitt, and Benji Maruyama. "Toward autonomous additive manufacturing: Bayesian optimization on a 3D printer." MRS Bulletin 46, no. 7 (April 19, 2021): 566–75. http://dx.doi.org/10.1557/s43577-021-00051-1.
Full textBrookes, Ken. "3D Print Show." Metal Powder Report 69, no. 1 (January 2014): 33–35. http://dx.doi.org/10.1016/s0026-0657(14)70030-x.
Full textAi, Ju Mei, and Ping Du. "Discussion on 3D Print Model and Technology." Applied Mechanics and Materials 543-547 (March 2014): 130–33. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.130.
Full textDissertations / Theses on the topic "3D print materiál"
Kašpárková, Kristýna. "3D tisk kompozitních materiálů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417454.
Full textŠafl, Pavel. "Použití technologie 3D tisku pro návrh výroby náhradních dílů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442437.
Full textČerný, Martin. "Stanovení mechanických vlastností materiálů používaných pro 3D tisk." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402542.
Full textMudrák, Michal. "Analýza mechanických vlastností kompozitních materiálů vytisknutých aditivní technologií 3D tisku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444288.
Full textSears, Forest (Forest Orion). "3D print quality in the context of PLA color." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104320.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 45).
3D printing is a hot topic in manufacturing and a truly useful tool, but it has limitations. Print quality properties - like raft peelability, dimensional tolerance and surface roughness - are hard to calibrate perfectly. A common material used in fused deposition modeling (FDM) printers is polylactic acid (PLA). One print quality concern is how different colors of PLA print differently under the exact same settings. The inconsistency in print quality by color is bad for designers, students, and engineers who want to rapidly prototype effectively. Analyzing the thermal, chemical and mechanical properties of the different colors of PLA and relating it to the quality of the prints gives the user a chance to calibrate their machine effectively for higher quality prints. The quality of prints are quantified by scoring systems that measure three properties of a print: dimensional tolerance, how easily the raft peels from the print, and the surface roughness. The thermal properties of the different colors of PLA were analyzed using differential scanning calorimetry (DSC) up to 230° C. The integrals of peaks and troughs from the DSC - representing heat absorbed and released by the different colors of PLA - show that each color responds differently to thermal treatment. The mechanical strength of each color was found to be different through uniaxial tensile testing. Yellow and orange filament had high percent crystallinity at -12.1%, while having a high yield stress at 41-45 MPa, and a low yield strain at 6.6%-11% extension. Red and blue filament had low percent crystallinity at ~8.8-10.2%, while having a low yield stress at 33-36 MPa, and a high yield strain at 18%-23% extension. Additionally, Fourier transform infrared spectroscopy (FTIR) analysis determined each PLA color had unique additives. For calibrating printers for reliably high quality prints, crystallinity has a relationship with the amount of material extruded which could factor into qualities like dimensional tolerance and surface finish.
by Forest Sears.
S.B.
Tipton, Roger B. "Direct Print Additive Manufacturing of Optical Fiber Interconnects." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7651.
Full textČáslavský, František. "Zkoušky vybraných vlastností materiálů pro 3D tisk." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400683.
Full textCarter, Justin B. "Vibration and Aeroelastic Prediction of Multi-Material Structures based on 3D-Printed Viscoelastic Polymers." Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1627048967306654.
Full textPersson, Matilda. "Materializing." Thesis, KTH, Arkitektur, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231952.
Full textScully, Sean W. "Cameos For Modern Times." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1279137863.
Full textBook chapters on the topic "3D print materiál"
Wüthrich, Michael, Wilfried J. Elspass, Philip Bos, and Simon Holdener. "Novel 4-Axis 3D Printing Process to Print Overhangs Without Support Material." In Industrializing Additive Manufacturing, 130–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54334-1_10.
Full textMao, Gang. "A Study of Bio-Computational Design in Terms of Enhancing Water Absorption by Method of Bionics Within the Architectural Fields." In Proceedings of the 2021 DigitalFUTURES, 102–13. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_10.
Full textYuan, Jiangping, Jieni Tian, Danyang Yao, and Guangxue Chen. "Color Assessment of Paper-Based Color 3D Prints Using Layer-Specific Color 3D Test Charts." In Advances in Graphic Communication, Printing and Packaging Technology and Materials, 123–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0503-1_20.
Full textVan Der Putten, J., G. De Schutter, and K. Van Tittelboom. "The Effect of Print Parameters on the (Micro)structure of 3D Printed Cementitious Materials." In RILEM Bookseries, 234–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99519-9_22.
Full textWang, Yi-Ta, and Yi-Ting Yeh. "Effect of Print Angle on Mechanical Properties of FDM 3D Structures Printed with POM Material." In Lecture Notes in Mechanical Engineering, 157–67. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1771-1_20.
Full textMalik, Fasih Munir, Syed Faiz Ali, Burak Bal, and Emin Faruk Kececi. "Determination of Optimum Process Parameter Values in Additive Manufacturing for Impact Resistance." In Additive Manufacturing Technologies From an Optimization Perspective, 221–34. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-9167-2.ch011.
Full textBalasubramanian, K. R., V. Senthilkumar, and Divakar Senthilvel. "Introduction to Additive Manufacturing." In Advances in Civil and Industrial Engineering, 1–24. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-4054-1.ch001.
Full textŁąpieś, Zuzanna, Przemysław Siemiński, Jarosław Mańkowski, Jakub Lipnicki, Łukasz Żrodowski, Piotr Żach, Michał Fotek, and Łukasz Gołębiewski. "The Concept of Applying the Polyjet Matrix Incremental Technology to the Manufacture of Innovative Orthopaedic Corsets – Research and Analysis." In Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200081.
Full textFang, Edna Ho Chu, and Sameer Kumar. "The Trends and Challenges of 3D Printing." In Encyclopedia of Information Science and Technology, Fourth Edition, 4382–89. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-2255-3.ch380.
Full textFang, Edna Ho Chu, and Sameer Kumar. "The Trends and Challenges of 3D Printing." In Advances in Environmental Engineering and Green Technologies, 415–23. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7359-3.ch028.
Full textConference papers on the topic "3D print materiál"
McGrady, Garrett, and Kevin Walsh. "Dual Extrusion FDM Printer for Flexible and Rigid Polymers." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8377.
Full textDing, Houzhu, and Robert C. Chang. "Bioprinting of Liquid Hydrogel Precursors in a Support Bath by Analyzing Two Key Features: Cell Distribution and Shape Fidelity." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6675.
Full textGallant, Lucas, Amy Hsiao, and Grant McSorley. "Benchmarking of print properties and microstructures of 316L stainless steel DMLS prints." In HT2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.ht2021p0037.
Full textDei Rossi, Joseph, Ozgur Keles, and Vimal Viswanathan. "Fused Deposition Modeling With Added Vibrations: A Parametric Study on the Accuracy of Printed Parts." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11698.
Full textChirico Scheele, Stefania, Martin Binks, and Paul F. Egan. "Design and Manufacturing of 3D Printed Foods With User Validation." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22462.
Full textHeinrich, Andreas. "Can one 3D print a laser?" In Organic Photonic Materials and Devices XXII, edited by Christopher E. Tabor, François Kajzar, and Toshikuni Kaino. SPIE, 2020. http://dx.doi.org/10.1117/12.2547183.
Full textLe, Xiaobin, Rami Akouri, Anthony Latassa, Brett Passemato, and Ryan Wales. "Mechanical Property Testing and Analysis of 3D Printing Objects." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65067.
Full textHalama, Radim, Marek Pagáč, Zbyněk Paška, Pavel Pavlíček, and Xu Chen. "Ratcheting Behaviour of 3D Printed and Conventionally Produced SS316L Material." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93384.
Full textRooney, Sean, and Kishore Pochiraju. "Simulations of Online Non-Destructive Acoustic Diagnosis of 3D-Printed Parts Using Air-Coupled Ultrasonic Transducers." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11101.
Full textLai, Heather L., Cuiyu Kuang, and Jared Nelson. "Modeling and Experimental Characterization of Viscoelastic 3D Printed Spring/Damper Systems." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71957.
Full textReports on the topic "3D print materiál"
Al-Chaar, Ghassan K., Peter B. Stynoski, Todd S. Rushing, Lynette A. Barna, Jedadiah F. Burroughs, John L. Vavrin, and Michael P. Case. Automated Construction of Expeditionary Structures (ACES) : Materials and Testing. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39721.
Full textVavrin, John L., Ghassan K. Al-Chaar, Eric L. Kreiger, Michael P. Case, Brandy N. Diggs, Richard J. Liesen, Justine Yu, et al. Automated Construction of Expeditionary Structures (ACES) : Energy Modeling. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39641.
Full textDiggs, Brandy N., Richard J. Liesen, Michael P. Case, Sameer Hamoush, and Ahmed C. Megri. Automated Construction of Expeditionary Structures (ACES) : Energy Modeling. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39759.
Full text