Academic literature on the topic '3D patterning'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D patterning.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "3D patterning"

1

Giakoumaki, Argyro N., George Kenanakis, Argyro Klini, Maria Androulidaki, Zacharias Viskadourakis, Maria Farsari, and Alexandros Selimis. "3D patterning of ZnO nanostructures." Materials Today 20, no. 7 (September 2017): 392–93. http://dx.doi.org/10.1016/j.mattod.2017.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elder, Brian, Rajan Neupane, Eric Tokita, Udayan Ghosh, Samuel Hales, and Yong Lin Kong. "Nanomaterial Patterning in 3D Printing." Advanced Materials 32, no. 17 (March 4, 2020): 1907142. http://dx.doi.org/10.1002/adma.201907142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

UMEZU, Shinjiro, Tomohiko AOKI, and Hitoshi OHMORI. "Patterning collagen for 3D cell structures." Journal of Advanced Science 24, no. 1+2 (2012): 11–15. http://dx.doi.org/10.2978/jsas.24.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Van Zeijl, Henk W., J. Wei, C. Shen, T. M. Verhaar, and P. M. Sarro. "From 2D Lithography to 3D Patterning." ECS Transactions 33, no. 12 (December 17, 2019): 55–70. http://dx.doi.org/10.1149/1.3501034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mayer, Andre, Marc Papenheim, Khalid Dhima, Si Wang, Christian Steinberg, Hella-Christin Scheer, and Felix Schröter. "Stamp design towards instability-induced 3D patterning." Microelectronic Engineering 123 (July 2014): 100–104. http://dx.doi.org/10.1016/j.mee.2014.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Corbett, Daniel C., Wesley B. Fabyan, Bagrat Grigoryan, Colleen E. O’Connor, Fredrik Johansson, Ivan Batalov, Mary C. Regier, Cole A. DeForest, Jordan S. Miller, and Kelly R. Stevens. "Thermofluidic heat exchangers for actuation of transcription in artificial tissues." Science Advances 6, no. 40 (September 2020): eabb9062. http://dx.doi.org/10.1126/sciadv.abb9062.

Full text
Abstract:
Spatial patterns of gene expression in living organisms orchestrate cell decisions in development, homeostasis, and disease. However, most methods for reconstructing gene patterning in 3D cell culture and artificial tissues are restricted by patterning depth and scale. We introduce a depth- and scale-flexible method to direct volumetric gene expression patterning in 3D artificial tissues, which we call “heat exchangers for actuation of transcription” (HEAT). This approach leverages fluid-based heat transfer from printed networks in the tissues to activate heat-inducible transgenes expressed by embedded cells. We show that gene expression patterning can be tuned both spatially and dynamically by varying channel network architecture, fluid temperature, fluid flow direction, and stimulation timing in a user-defined manner and maintained in vivo. We apply this approach to activate the 3D positional expression of Wnt ligands and Wnt/β-catenin pathway regulators, which are major regulators of development, homeostasis, regeneration, and cancer throughout the animal kingdom.
APA, Harvard, Vancouver, ISO, and other styles
7

Unno, Noriyuki, and Jun Taniguchi. "3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology." Advanced Optical Technologies 8, no. 3-4 (June 26, 2019): 253–66. http://dx.doi.org/10.1515/aot-2019-0004.

Full text
Abstract:
Abstract Nanostructures have unique characteristics, such as large specific surface areas, that provide a wide range of engineering applications, such as electronics, optics, biotics, and thermal and fluid dynamics. They can be used to downsize many engineering products; therefore, new nanofabrication techniques are strongly needed to meet this demand. A simple fabrication process with high throughput is necessary for low-cost nanostructures. In recent years, three-dimensional (3D) nanostructures have attracted much attention because they dramatically opened up new fields for applications. However, conventional techniques for fabricating 3D nanostructures contain many complex processes, such as multiple patterning lithography, metal deposition, lift-off, etching, and chemical-mechanical polishing. This paper focuses on controlled-acceleration-voltage electron beam lithography (CAV-EBL), which can fabricate 3D nanostructures in one shot. The applications of 3D nanostructures are introduced, and the conventional 3D patterning technique is compared with CAV-EBL and various 3D patterning techniques using CAV-EBL with nanoimprinting technology. Finally, the outlook for next-generation devices that can be fabricated by CAV-EBL is presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Menon, Nishanth Venugopal, Hui Min Tay, Soon Nan Wee, King Ho Holden Li, and Han Wei Hou. "Micro-engineered perfusable 3D vasculatures for cardiovascular diseases." Lab on a Chip 17, no. 17 (2017): 2960–68. http://dx.doi.org/10.1039/c7lc00607a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ceylan, Hakan, Immihan Ceren Yasa, and Metin Sitti. "3D Chemical Patterning of Micromaterials for Encoded Functionality." Advanced Materials 29, no. 9 (December 22, 2016): 1605072. http://dx.doi.org/10.1002/adma.201605072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Han, Sewoon, Junghyun Kim, Rui Li, Alice Ma, Vincent Kwan, Kevin Luong, and Lydia L. Sohn. "Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay." Advanced Healthcare Materials 7, no. 12 (April 26, 2018): 1800122. http://dx.doi.org/10.1002/adhm.201800122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "3D patterning"

1

Wang, Dazhi. "2D and 3D electrohydrodynamic atomization print-patterning." Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolozny, Gomez Robelo Daniel Andre. "Additive Manufacturing for Robust and Affordable Medical Devices." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73295.

Full text
Abstract:
Additive manufacturing in the form of 3D printing is a revolutionary technology that has developed within the last two decades. Its ability to print an object with accurate features down to the micro scale have made its use in medical devices and research feasible. A range of life-saving technologies can now go from the laboratory and into field with the application of 3D-printing. This technology can be applied to medical diagnosis of patients in at-risk populations. Living biosensors are limited by being Genetically Modified Organisms (GMOs) from being employed for medical diagnosis. However, by containing them within a 3D-printed enclosure, these technologies can serve as a vehicle to translate life-saving diagnosis technologies from the laboratory and into the field where the lower cost would allow more people to benefit from inexpensive diagnosis. Also, the GMO biosensors would be contained with a press-fit, ensuring that the living biosensors are unable to escape into the environment without user input. In addition, 3D-printing can also be applied to reduce the cost of lab-based technologies. Cell patterning technology is a target of interest for applying more cost-effective technologies, as elucidation of the variables defining cell patterning and motility may help explain the mechanics of cancer and other diseases. Through the use of a 3D-printed stamp, bacterial cells can be patterning without the use of a clean room, thus lowering the entry-barrier for researchers to explore cell patterning. With the commercialization of 3D-printing an opportunity has arisen to transition life-saving technologies into more cost-effective versions of existing technologies. This would not only allow more research into existing fields, but also to ensure that potentially life-saving technologies reach the people that need them.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Dharaminder. "2D patterning and 3D printing of novel PGSm for peripheral nerve repair and soft tissue engineering." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/19943/.

Full text
Abstract:
PGSm was synthesized, and characterized chemically and mechanically. Porous PGSm was photocured into 3D foams. PGSm was printed via microstereolithography into nerve guidance conduits and tested for use in peripheral nerve repair in vitro, ex vivo and in vivo. Porous PGSm conduits were developed and tested ex vivo, with an intended use for larger gap injuries. Porous PGSm was developed into tunable microparticles and explored for use as a cartilage tissue-engineering scaffold. The polyHIPE was also developed as an in vitro neuronal model and a scaffold for ESCs. Results show the material was developed into a photocurable polymer, capable of being 3D printed into highly accurate NGCs. PGSm conduits performed well overall and regeneration into the distal stump was witnessed in vivo. Techniques were developed to photocure reproducible porous polyHIPE conduits, with promising initial in vitro/ex vivo results. Porous microparticles were seen to allow for the development of cartilage like tissue in vitro. Porous PGSm was used for neuronal models and stem cell scaffolds. In summary the developed PGSm is useful for simple and complex scaffolds for soft tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles
4

Issa, Ali. "Functionalization and 2-photon Patterning of Photopolymers for 1D and 3D Directed Assembly of Nano-objects." Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0015.

Full text
Abstract:
L’organisation de Nanoparticules (NPs) sur des motifs complexes structurés en 3D est un challenge d’actualité. Une telle nanostructuration devrait donner lieu à des propriétés collectives permettant l’émergence de très nombreuses applications originales. Dans ce contexte, le contrôle de l’organisation des NPs plasmoniques en 3D est une approche prometteuse pour augmenter le nombre de « points chauds » électromagnétiques et proposer ainsi une nouvelle génération de capteurs intégrés et ultrasensibles. Dans cette thèse, nous proposons un procédé universel pour assembler des NPs et plus particulièrement d'or sur des motifs polymères structurés en 1D et 3D. La méthode implique la fonctionnalisation d’un photopolymère et sa structuration à 2 photons afin d’attirer de manière spontanée des NPs colloïdales et permettre ainsi leur organisation précise au sein même de certaines microstructures 3D complexes. Nous montrons en particulier la possibilité d’organiser des NPs d’or sous forme de monocouche sans aucune agrégation sur la surface du polymère tout en contrôlant leur localisation et densité. Nous étudions le mécanisme de fonctionnalisation de notre photopolymère et d’interaction des microstructures polymérisées avec les NPs et montrons la possibilité d’étendre cette approche prometteuse à plusieurs types de NPs. Finalement, nous illustrons le potentiel d’application de notre approche à travers, notamment, la détection de molécules organiques grâce à l’effet SERS
The precise patterning of nanoparticles (NPs) with fine control of their spatial positioning and orientation is highly desirable. Their selective assembly in multiple dimensions and on continuous length scales would lead for the formation of collective properties that differ from those of individual particles providing astronomical potential to many applications. In this context, the 3D patterning of metallic NPs offer the potential to increase the number of electromagnetic “hot spots” towards new generation of integrated and ultrasensitive sensors. In this thesis, we present a general strategy for the immobilization of NPs, particularly gold, on 1D and 3D polymer micro templates. This strategy involves the functionalization of photopolymers and their 2-photon polymerization to fabricate microstructures that selectively attract colloidal NPs with suitable ligands allowing their precise organization even within complex 3D structures. We show monolayers of NPs without aggregations collecting a clean surface besides that the surface density of NPs on the polymer surface can be controlled. We deeply investigated the functionalization mechanism of photopolymer and the interaction of the polymer surface with NPs. Finally, we show the potential of our functionalization strategy for multiple applications including SERS detection of chemicals
APA, Harvard, Vancouver, ISO, and other styles
5

Goliath, Jesse Roberto. "A 3D Morphological Analysis of the Ontogenetic Patterning of Human Subchondral Bone Microarchitecture in the Proximal Tibia." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494273830449469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wesser, Andrea. "USER-DEFINED PATTERNING OF NEURAL PROGENITOR CELLS ON 3D MICROPILLAR ARRAYS USING ROUND CROSS-SECTIONAL GEOMETRY, SPECIFIC DIMEN." Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3973.

Full text
Abstract:
The ability to control stem cell functions, particularly neuronal progenitors, has long since been believed to be the key to successful treatment of neurodegenerative disorders such as Alzheimer's, Parkinson's and accidents involving head trauma. The neurology field calls for many new solutions to address the controlled neural stem cell seeding and placement of cells for neural tissue regeneration. Self-assembled monolayers (SAM) from the alkanethiol group provide a straightforward applicable, reliable treatment for cell adhesion. An ODT/gold treatment was used to adhere the cells to patterned areas, due mainly to a high confluence of cells attracted to it, as well as the viable environment it produced for the cells. Arrays of micropillars, made of SU-8 photoresist, then covered with a thin film of gold and treated with the ODT, created scaffolding allowing manipulation of neural stem cells. Based on multiple trials of observing varying cross-sectional geometric parameters, metal layer thicknesses and the ODT/Gold treatment, this study explores seeding density control, base and circumferential cell population dependence on those parameters.
M.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering MSME
APA, Harvard, Vancouver, ISO, and other styles
7

SRIDHAR, SUPRIYA LALAPET. "Design, Simulation and Physical Characterization of 3D Photonic Crystal Woodpile Structures for High Efficacy Incandescent Thermal Emission." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1218030876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wesser, Andrea Suzette. "User-defined patterning of neural progenitor cells on 3D micropillar arrays using round cross-sectional geometry, specific dimensions and thiol-based chemical adhesion." Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Govindarajan, Sudhanva Raj. "THE DESIGN OF A MULTIFUNCTIONAL INITIATOR-FREE SOFT POLYESTER PLATFORM FOR ROOM-TEMPERATURE EXTRUSION-BASED 3D PRINTING, AND ANALYSIS OF PRINTABILITY." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1466778249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ngoloyi, Nonkululeko Mantombi Nomalanga. "Documentation du patrimoine de l'assemblage de fossiles du site de Kromdraai contenant des hominines (Afrique du Sud) : techniques de numérisation 3D, analyse spatiale quantitative et estimation de volume." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30210.

Full text
Abstract:
Cette thèse explore l'utilisation de données multi-échelles pour modéliser une représentation tridimensionnelle (3D) et générer un registre numérique complet d'un assemblage de fossiles contenant des hominines à partir de l'unité lithostratigraphique P à Kromdraai situé dans le " berceau de l'humanité " classé au patrimoine mondial par l'UNESCO (Province de Gauteng, Afrique du Sud). Les objectifs principaux de cette recherche sont d'illustrer en 3D la progression temporelle et spatiale des fouilles de Kromdraai sur la période 2014-2018, d'analyse la distribution spatiale des vestiges d'homininés et de faune, comme des outils, et finalement, de fournir une documentation sur le patrimoine archéologique de Kromdraai. Nous avons réalisé une analyse multi-scalaire du site, avec l'application de méthodes de photogrammétrie terrestre et aérienne. Conformément aux principes et directives de la gestion du patrimoine archéologique mandatés par les agences internationales telles que l'UNESCO, nous présentons également un protocole de documentation du patrimoine. Nous avons utilisé des technologies de capture de données 3D pour numériser le site de Kromdraai et ses éléments archéologiques découverts entre 2014 et 2018 lors des fouilles. Cette recherche présente une technique originale développée pour la visualisation et la quantification des sédiments volumiques prélevés sur le site à chaque période de fouille par chaque fouilleur. Les estimations de volume calculées à l'aide de la photogrammétrie 3D fournissent un contexte temporel et spatial des sédiments prélevés lors des fouilles successives, et permettent un repositionnement virtuel et plus précis des vestiges découverts ex situ. De plus, nous avons mis en place une modélisation des métadonnées pour démontrer l'utilisation d'un système de gestion de base de données 4D pour la fusion, l'organisation et la diffusion de l'ensemble des données du site de Kromdraai et le partage de la propriété intellectuelle. Nous introduisons également l'une des premières approches statistiques de la modélisation spatiale 3D dans un site Plio-Pléistocène porteurs d'hominines en en Afrique du Sud. En mettant en œuvre des méthodes classiques de tests statistiques telles le partitionnement de données spatiales 3D, nous avons étudié les modèles de l'assemblage de fossiles dans l'unité P, ainsi qu'un échantillon de 810 spécimens catalogués entre 2014 et 2018. Le regroupement de bovidés, de carnivores, d'homininés et de primates non humains a révélé un modèle de distribution spatiale non uniforme des fossiles in situ. Cette recherche présente des méthodes précieuses qui peuvent être appliquées à d'autres sites fossiles contenant des hominines dans le berceau de l'humanité. Ces méthodes peuvent être appliquées pour documenter une fouille archéologique et reconstruire un site en 3D, ainsi que pour documenter des informations patrimoniales. Nos résultats permettent d'améliorer l'interprétation des assemblages fossiles à l'aide d'analyses basées sur des modèles 3D au sein d'un assemblage contenant des hominines
This thesis uses multi-scalar data to create a three-dimensional (3D) representation and, to generate a complete digital record of the early hominin-bearing fossil assemblage from the lithostratigraphic Unit P at Kromdraai in the Cradle of Humankind World Heritage Site (Gauteng Province, South Africa). The main purposes of this research were to illustrate in 3D the temporal and spatial progression of the excavations at Kromdraai since 2014, to investigate the spatial distribution of the hominin, faunal assemblages and artefacts, and ultimately, to provide an archive documenting the archaeological heritage of Kromdraai. We provided a multi-scalar analysis of various aspects of the study site, with the application of methods such as multi-image land and aerial photogrammetry. In alignment with the principles and guidelines for the management of archaeological heritage mandated by international agencies such as UNESCO, we also present a protocol for heritage documentation. We used 3D data capture technologies to record the Kromdraai site and the archaeological evidence discovered between 2014 and 2018 from its main excavation. This research presents an original technique developed for the quantification and visualization of the volume sediments removed from the site during each excavation period. Volume estimations computed using 3D photogrammetry and digitization, provided a temporal and spatial context to the volume and location of material removed by each excavator and, a more precise and virtual repositioning of the fossil material discovered ex situ. Furthermore, we implemented metadata modelling to demonstrate the use of 4D relational database management systems for the fusion, organisation and dissemination of the Kromdraai site dataset and the sharing of intellectual property. We also introduce one of the first statistical approaches of 3D spatial patterning in Plio-Pleistocene early hominin-bearing assemblages in South Africa. Implementing classic statistical testing methods such as k-means and Density-Based Spatial Clustering and Application with Noise (DBSCAN) cluster computation in 3D, we investigated the spatial patterns of the fossil assemblage within Unit P, a sample of 810 individually catalogued specimens recovered between 2014 and 2018. The clustering of bovids, carnivores, hominins, and non-human primates revealed a non-uniform spatial distribution pattern of fossils in-situ. This research presents valuable methods that can be applied at other hominin-bearing fossil sites within the Cradle of Humankind to document an archaeological excavation and to reconstruct of the site in 3D, to document heritage information, and to enhance the interpretation of the fossil assemblages using evidence-based assessment of spatial patterns within a hominin-bearing assemblage
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "3D patterning"

1

Foam Patterning and Construction Techniques: Turning 2D Designs into 3D Shapes. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

McClung, Mary. Foam Patterning and Construction Techniques: Turning 2D Designs into 3D Shapes. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "3D patterning"

1

Wang, D. Z., Mohan J. Edirisinghe, and S. N. Jayasinghe. "A Novel 3D Patterning Technique for Forming Advanced Ceramics." In Key Engineering Materials, 977–79. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tsougeni, Katerina, Kosmas Ellinas, George Koukouvinos, Panagiota S. Petrou, Angeliki Tserepi, Sotirios E. Kakabakos, and Evangelos Gogolides. "3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning." In Methods in Molecular Biology, 27–40. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7792-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zehbe, Rolf, and Kerstin Zehbe. "Nervous Tissue and Neuronal Cells: Patterning by Electrophoresis for Highly Resolved 3D Images in Tissue Engineering." In Advanced High-Resolution Tomography in Regenerative Medicine, 205–15. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00368-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Özdemir, E., L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges. "Towards Self-shaping Metamaterial Shells:." In Proceedings of the 2021 DigitalFUTURES, 275–85. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_26.

Full text
Abstract:
AbstractDouble curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
APA, Harvard, Vancouver, ISO, and other styles
5

"ADVANCED 3D MANUFACTURING: MICRO & NANOSCALE PATTERNING." In Lasers in 3D Printing and Manufacturing, 175–96. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789814656436_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grigoryan, Bagrat, and Jordan S. Miller. "3D Printing and Patterning Vasculature in Engineered Tissues." In 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine, 171–89. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-800547-7.00008-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "3D patterning"

1

Gang, Oleg. "Programmable assembly of organized 3D nanosystems." In Novel Patterning Technologies 2021, edited by Eric M. Panning and J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2584574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Delly, Evan, Nicholas Liverman, Trevor Fregin, Lynelle Haugabrook, and Collin Moore. "3D micro-mirror lithography for mass production." In Novel Patterning Technologies 2018, edited by Eric M. Panning and Martha I. Sanchez. SPIE, 2018. http://dx.doi.org/10.1117/12.2300951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bathe, Mark. "Nanoscale 2D and 3D patterning using programmed DNA assemblies." In Novel Patterning Technologies 2021, edited by Eric M. Panning and J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2584969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kueenburg, Bernhard, and Peter Gruber. "UpNano: a new horizon in high-resolution 2PP 3D-printing." In Novel Patterning Technologies 2021, edited by Eric M. Panning and J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2585298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Tsu-Jae King. "Sustaining the silicon revolution: from 3D transistors to 3D integration (Presentation Recording)." In Advances in Patterning Materials and Processes XXXII, edited by Thomas I. Wallow and Christoph K. Hohle. SPIE, 2015. http://dx.doi.org/10.1117/12.2230912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nouri, Lamia, Nicolas Possémé, Stéfan Landis, Frédéric Milesi, and Frédéric-Xavier Gaillard. "New 3D structuring process for non-integrated circuit related technologies (Conference Presentation)." In Emerging Patterning Technologies 2017, edited by Christopher Bencher and Joy Y. Cheng. SPIE, 2017. http://dx.doi.org/10.1117/12.2258603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rawlings, Colin D., Tero S. Kulmala, Martin Spieser, Felix Holzner, Thomas Glinsner, Arne Schleunitz, and Franziska Bullerjahn. "Single-nanometer accurate 3D nanoimprint lithography with master templates fabricated by NanoFrazor lithography." In Novel Patterning Technologies 2018, edited by Eric M. Panning and Martha I. Sanchez. SPIE, 2018. http://dx.doi.org/10.1117/12.2305905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

George, Derosh, Marc J. Madou, and Edwin A. Peraza Hernandez. "Practical fabrication methods for 3D origami structures from 2D films patterned via photolithography." In Novel Patterning Technologies 2021, edited by Eric M. Panning and J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2582973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Toombs, Joseph, and Hayden K. Taylor. "Design of a tomographic projection lithography process for roll-to-roll fabrication of 3D microstructures." In Novel Patterning Technologies 2021, edited by Eric M. Panning and J. Alexander Liddle. SPIE, 2021. http://dx.doi.org/10.1117/12.2584009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rumpf, Raymond C., Pradeep Srinivasan, and Eric G. Johnson. "Near-Field Nano-Patterning of 3D Structures." In Frontiers in Optics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/fio.2005.fws2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography