Journal articles on the topic '3D foam electrodes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic '3D foam electrodes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Siwek, K. I., S. Eugénio, I. Aldama, J. M. Rojo, J. M. Amarilla, A. P. C. Ribeiro, T. M. Silva, and M. F. Montemor. "Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors." Journal of The Electrochemical Society 169, no. 2 (February 1, 2022): 020511. http://dx.doi.org/10.1149/1945-7111/ac4d66.
Full textVainoris, Modestas, Henrikas Cesiulis, and Natalia Tsyntsaru. "Metal Foam Electrode as a Cathode for Copper Electrowinning." Coatings 10, no. 9 (August 25, 2020): 822. http://dx.doi.org/10.3390/coatings10090822.
Full textOehm, Jonas, Marc Kamlah, and Volker Knoblauch. "Ultra-Thick Cathodes for High-Energy Lithium-Ion Batteries Based on Aluminium Foams—Microstructural Evolution during Densification and Its Impact on the Electrochemical Properties." Batteries 9, no. 6 (May 31, 2023): 303. http://dx.doi.org/10.3390/batteries9060303.
Full textAnsari, Sajid Ali, Hicham Mahfoz Kotb, and Mohamad M. Ahmad. "Wrinkle-Shaped Nickel Sulfide Grown on Three-Dimensional Nickel Foam: A Binder-Free Electrode Designed for High-Performance Electrochemical Supercapacitor Applications." Crystals 12, no. 6 (May 25, 2022): 757. http://dx.doi.org/10.3390/cryst12060757.
Full textFerriday, Thomas B., Suhas Nuggehalli Sampathkumar, Peter Hugh Middleton, Jan Van Herle, and Mohan Lal Kolhe. "How Acid Washing Nickel Foam Substrates Improves the Efficiency of the Alkaline Hydrogen Evolution Reaction." Energies 16, no. 5 (February 21, 2023): 2083. http://dx.doi.org/10.3390/en16052083.
Full textArinova, Anar, and Arailym Nurpeissova. "Electrophoretic Deposition of Polyethylene Oxide-Based Gel-Polymer Electrolyte for 3D Lithium-Ion Batteries." ECS Meeting Abstracts MA2023-02, no. 23 (December 22, 2023): 3280. http://dx.doi.org/10.1149/ma2023-02233280mtgabs.
Full textKim, Kookhan, Ji-Yong Eom, Jongmin Kim, and Yang Soo Kim. "3D Lithium-Metal Anode for High-Energy Lithium-Metal Batteries." ECS Meeting Abstracts MA2024-02, no. 7 (November 22, 2024): 947. https://doi.org/10.1149/ma2024-027947mtgabs.
Full textSliozberg, Kirill, Yauhen Aniskevich, Ugur Kayran, Justus Masa, and Wolfgang Schuhmann. "CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction." Zeitschrift für Physikalische Chemie 234, no. 5 (May 26, 2020): 995–1019. http://dx.doi.org/10.1515/zpch-2019-1466.
Full textNawaz, Bushra, Ghulam Ali, Muhammad Obaid Ullah, Sarish Rehman, and Fazal Abbas. "Investigation of the Electrochemical Properties of Ni0.5Zn0.5Fe2O4 as Binder-Based and Binder-Free Electrodes of Supercapacitors." Energies 14, no. 11 (June 4, 2021): 3297. http://dx.doi.org/10.3390/en14113297.
Full textCheng, Guanhua, Qingguo Bai, Conghui Si, Wanfeng Yang, Chaoqun Dong, Hao Wang, Yulai Gao, and Zhonghua Zhang. "Nickel oxide nanopetal-decorated 3D nickel network with enhanced pseudocapacitive properties." RSC Advances 5, no. 20 (2015): 15042–51. http://dx.doi.org/10.1039/c4ra15556d.
Full textChaudhari, Nitin K., Haneul Jin, Byeongyoon Kim, and Kwangyeol Lee. "Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting." Nanoscale 9, no. 34 (2017): 12231–47. http://dx.doi.org/10.1039/c7nr04187j.
Full textYang, Wanfeng, Guanhua Cheng, Chaoqun Dong, Qingguo Bai, Xiaoting Chen, Zhangquan Peng, and Zhonghua Zhang. "NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries." J. Mater. Chem. A 2, no. 47 (2014): 20022–29. http://dx.doi.org/10.1039/c4ta04809a.
Full textYadavalli, SIVA RAM PRASAD, Aravind Kumar Chandiran, and Raghuram Chetty. "Electrochemically Deposited Tin on High Surface Area Copper Foam for Enhanced Electrochemical Reduction of CO2 to Formic Acid." ECS Meeting Abstracts MA2022-01, no. 55 (July 7, 2022): 2306. http://dx.doi.org/10.1149/ma2022-01552306mtgabs.
Full textLi, Ruiqing, Chenyang Xu, Xiangfen Jiang, Yoshio Bando, and Xuebin Wang. "Porous Monolithic Electrode of Ni3FeN on 3D Graphene for Efficient Oxygen Evolution." Journal of Nanoscience and Nanotechnology 20, no. 8 (August 1, 2020): 5175–81. http://dx.doi.org/10.1166/jnn.2020.18535.
Full textSyah, Rahmad, Awais Ahmad, Afshin Davarpanah, Marischa Elveny, Dadan Ramdan, Munirah D. Albaqami, and Mohamed Ouladsmane. "Incorporation of Bi2O3 Residuals with Metallic Bi as High Performance Electrocatalyst toward Hydrogen Evolution Reaction." Catalysts 11, no. 9 (September 12, 2021): 1099. http://dx.doi.org/10.3390/catal11091099.
Full textLin, Xuehao, Hui Li, Farayi Musharavati, Erfan Zalnezhad, Sungchul Bae, Bum-Yean Cho, and Oscar K. S. Hui. "Synthesis and characterization of cobalt hydroxide carbonate nanostructures." RSC Adv. 7, no. 74 (2017): 46925–31. http://dx.doi.org/10.1039/c7ra09050a.
Full textHao, Jian, Xiaoxu Liu, Na Li, Xusong Liu, Xiaoxuan Ma, Yi Zhang, Yao Li, and Jiupeng Zhao. "Ionic liquid electrodeposition of 3D germanium–acetylene black–Ni foam nanocomposite electrodes for lithium-ion batteries." RSC Adv. 4, no. 104 (2014): 60371–75. http://dx.doi.org/10.1039/c4ra10931g.
Full textZhou, Li-Feng, Tao Du, Li-Ying Liu, Yi-Song Wang, and Wen-Bin Luo. "A substrate surface alloy strategy for integrated sulfide electrodes for sodium ion batteries with superior lifespan." Materials Advances 2, no. 15 (2021): 5062–66. http://dx.doi.org/10.1039/d1ma00363a.
Full textSu, Lin, Guobing Ying, Lu Liu, Fengchen Ma, Kaicheng Zhang, Chen Zhang, Xiang Wang, and Cheng Wang. "Ti3C2Tx on copper and nickel foams with improved electrochemical performance produced via solution processing for supercapacitor." Processing and Application of Ceramics 12, no. 4 (2018): 366–73. http://dx.doi.org/10.2298/pac1804366s.
Full textZhang, Lu, Derek DeArmond, Noe T. Alvarez, Daoli Zhao, Tingting Wang, Guangfeng Hou, Rachit Malik, William R. Heineman, and Vesselin Shanov. "Beyond graphene foam, a new form of three-dimensional graphene for supercapacitor electrodes." Journal of Materials Chemistry A 4, no. 5 (2016): 1876–86. http://dx.doi.org/10.1039/c5ta10031c.
Full textRusso, Andrea, Jens Oluf Jensen, Mikkel Rykær Kraglund, Wenjing (Angela) Zhang, and EunAe Cho. "Catalyst Application in Three-Dimensional Porous Electrodes for Alkaline Electrolysis." ECS Meeting Abstracts MA2023-01, no. 36 (August 28, 2023): 2006. http://dx.doi.org/10.1149/ma2023-01362006mtgabs.
Full textZhang, Zheye, Kai Chi, Fei Xiao, and Shuai Wang. "Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures." Journal of Materials Chemistry A 3, no. 24 (2015): 12828–35. http://dx.doi.org/10.1039/c5ta02685g.
Full textFan, Huiqing, Hexiang Di, Yanlei Bi, Ru Wang, Guangwu Wen, and Lu-Chang Qin. "Facile synthesis of morphology-controlled hybrid structure of ZnCo2O4 nanosheets and nanowires for high-performance asymmetric supercapacitors." RSC Advances 14, no. 1 (2024): 650–61. http://dx.doi.org/10.1039/d3ra07128f.
Full textXia, Zhen Yuan, Meganne Christian, Catia Arbizzani, Vittorio Morandi, Massimo Gazzano, Vanesa Quintano, Alessandro Kovtun, and Vincenzo Palermo. "A robust, modular approach to produce graphene–MOx multilayer foams as electrodes for Li-ion batteries." Nanoscale 11, no. 12 (2019): 5265–73. http://dx.doi.org/10.1039/c8nr09195a.
Full textLu, Yang-Ming, and Sheng-Huai Hong. "Preparation of Electrodes with β-Nickel Hydroxide/CVD-Graphene/3D-Nickel Foam Composite Structures to Enhance the Capacitance Characteristics of Supercapacitors." Materials 17, no. 1 (December 20, 2023): 23. http://dx.doi.org/10.3390/ma17010023.
Full textTong, Yue, Xiaowen Yu, and Gaoquan Shi. "Cobalt disulfide/graphite foam composite films as self-standing electrocatalytic electrodes for overall water splitting." Physical Chemistry Chemical Physics 19, no. 6 (2017): 4821–26. http://dx.doi.org/10.1039/c6cp08176b.
Full textCui, Kexin, Jincheng Fan, Songyang Li, Moukaila Fatiya Khadidja, Jianghong Wu, Mingyu Wang, Jianxin Lai, Hongguang Jin, Wenbin Luo, and Zisheng Chao. "Three dimensional Ni3S2 nanorod arrays as multifunctional electrodes for electrochemical energy storage and conversion applications." Nanoscale Advances 2, no. 1 (2020): 478–88. http://dx.doi.org/10.1039/c9na00633h.
Full textMusa, Auwal M., Janice Kiely, Richard Luxton, and Kevin C. Honeychurch. "Graphene-Based Electrodes for Monitoring of Estradiol." Chemosensors 11, no. 6 (June 6, 2023): 337. http://dx.doi.org/10.3390/chemosensors11060337.
Full textMa, Yue, Xiangyang Song, Xiao Ge, Haimin Zhang, Guozhong Wang, Yunxia Zhang, and Huijun Zhao. "In situ growth of α-Fe2O3 nanorod arrays on 3D carbon foam as an efficient binder-free electrode for highly sensitive and specific determination of nitrite." Journal of Materials Chemistry A 5, no. 9 (2017): 4726–36. http://dx.doi.org/10.1039/c6ta10744c.
Full textKumar, Rudra, Thiruvelu Bhuvana, Gargi Mishra, and Ashutosh Sharma. "A polyaniline wrapped aminated graphene composite on nickel foam as three-dimensional electrodes for enzymatic microfuel cells." RSC Advances 6, no. 77 (2016): 73496–505. http://dx.doi.org/10.1039/c6ra08195a.
Full textVan Droogenbroek, Kevin, Christos Georgiadis, and Joris Proost. "Towards Multiphase Modeling and Simulation of Alkaline Water Electrolysis through Pore-Resolved Foam Electrodes." ECS Meeting Abstracts MA2023-01, no. 36 (August 28, 2023): 1980. http://dx.doi.org/10.1149/ma2023-01361980mtgabs.
Full textDeng, Ming-Jay, Cheng-Chia Wang, Pei-Jung Ho, Chih-Ming Lin, Jin-Ming Chen, and Kueih-Tzu Lu. "Facile electrochemical synthesis of 3D nano-architectured CuO electrodes for high-performance supercapacitors." J. Mater. Chem. A 2, no. 32 (2014): 12857–65. http://dx.doi.org/10.1039/c4ta02444c.
Full textWang, Hai, Chen Qing, Junling Guo, A. A. Aref, Daming Sun, Bixiao Wang, and Yiwen Tang. "Highly conductive carbon–CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors." J. Mater. Chem. A 2, no. 30 (2014): 11776–83. http://dx.doi.org/10.1039/c4ta01132e.
Full textWang, Feifei, Yanfang Zhu, Wen Tian, Xingbin Lv, Hualian Zhang, Zhufeng Hu, Yuxin Zhang, Junyi Ji, and Wei Jiang. "Co-doped Ni3S2@CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes." Journal of Materials Chemistry A 6, no. 22 (2018): 10490–96. http://dx.doi.org/10.1039/c8ta03131b.
Full textRupp, Rico, Nina Plankensteiner, Patrick Steegstra, and Philippe M. Vereecken. "Electrodeposited 3D Nano-Porous High Surface Area Metal Electrodes for Electrocatalytic Cells." ECS Meeting Abstracts MA2022-02, no. 24 (October 9, 2022): 997. http://dx.doi.org/10.1149/ma2022-0224997mtgabs.
Full textKalimuldina, Gulnur, Arailym Nurpeissova, Assyl Adylkhanova, Nurbolat Issatayev, Desmond Adair, and Zhumabay Bakenov. "3D Hierarchical Nanocrystalline CuS Cathode for Lithium Batteries." Materials 14, no. 7 (March 26, 2021): 1615. http://dx.doi.org/10.3390/ma14071615.
Full textMarimuthu, Sundaramoorthy, Ayyavu Shankar, and Govindhan Maduraiveeran. "Porous-Structured Three-Dimensional Iron Phosphides Nanosheets for Enhanced Oxygen Evolution Reaction." Energies 16, no. 3 (January 19, 2023): 1124. http://dx.doi.org/10.3390/en16031124.
Full textChen, Peng, and Michael Ruck. "A Stable Porous Aluminum Electrode with High Capacity for Rechargeable Lithium-Ion Batteries." Batteries 9, no. 1 (January 4, 2023): 37. http://dx.doi.org/10.3390/batteries9010037.
Full textSurace, R., L. A. C. De Filippis, E. Niini, A. D. Ludovico, and J. Orkas. "Morphological Investigation of Foamed Aluminum Parts Produced by Melt Gas Injection." Advances in Materials Science and Engineering 2009 (2009): 1–9. http://dx.doi.org/10.1155/2009/506024.
Full textLu, Yang-Ming, Yen-Ching Lin, and Ting-Yi Liu. "Development of Nanoporous Nickel Oxide Materials as Electrodes for Supercapacitors." Applied Functional Materials 3, no. 4 (December 30, 2023): 16–20. http://dx.doi.org/10.35745/afm2023v03.04.0003.
Full textPatil, Umakant, Su Chan Lee, Sachin Kulkarni, Ji Soo Sohn, Min Sik Nam, Suhyun Han, and Seong Chan Jun. "Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors." Nanoscale 7, no. 16 (2015): 6999–7021. http://dx.doi.org/10.1039/c5nr01135c.
Full textToufani, Maryam, Sibel Kasap, Ali Tufani, Feray Bakan, Stefan Weber, and Emre Erdem. "Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices." Nanoscale 12, no. 24 (2020): 12790–800. http://dx.doi.org/10.1039/d0nr02028a.
Full textKumar, Sumana, and Abha Misra. "Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor." ECS Meeting Abstracts MA2022-01, no. 1 (July 7, 2022): 10. http://dx.doi.org/10.1149/ma2022-01110mtgabs.
Full textPatil, Supriya A., Pranav K. Katkar, Mosab Kaseem, Ghazanfar Nazir, Sang-Wha Lee, Harshada Patil, Honggyun Kim, et al. "Cu@Fe-Redox Capacitive-Based Metal–Organic Framework Film for a High-Performance Supercapacitor Electrode." Nanomaterials 13, no. 10 (May 9, 2023): 1587. http://dx.doi.org/10.3390/nano13101587.
Full textZhang, Lijuan, Zhonggui Quan, Yan Wang, Hangyang Li, and Xu Yang. "Construction of Flower-like FeCo2O4 Nanosheets on Ni Foam as Efficient Electrocatalyst for Oxygen Evolution Reaction." Coatings 13, no. 11 (October 31, 2023): 1875. http://dx.doi.org/10.3390/coatings13111875.
Full textChen, Wei-bin, Li-na Zhang, Zhi-jing Ji, Ya-dan Zheng, Shuang Yuan, and Qiang Wang. "Self-Supported Bi2MoO6 Nanosheet Arrays as Advanced Integrated Electrodes for Li-Ion Batteries with Super High Capacity and Long Cycle Life." Nano 13, no. 06 (June 2018): 1850066. http://dx.doi.org/10.1142/s1793292018500662.
Full textXia, Qixun, Lijun Si, Keke Liu, Aiguo Zhou, Chen Su, Nanasaheb M. Shinde, Guangxin Fan, and Jun Dou. "In Situ Preparation of Three-Dimensional Porous Nickel Sulfide as a Battery-Type Supercapacitor." Molecules 28, no. 11 (May 24, 2023): 4307. http://dx.doi.org/10.3390/molecules28114307.
Full textManjakkal, Libu, Carlos García Núñez, Wenting Dang, and Ravinder Dahiya. "Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes." Nano Energy 51 (September 2018): 604–12. http://dx.doi.org/10.1016/j.nanoen.2018.06.072.
Full textPatil, Umakant M., Pranav K. Katkar, Supriya J. Marje, Chandrakant D. Lokhande, and Seong C. Jun. "Hydrous nickel sulphide nanoparticle decorated 3D graphene foam electrodes for enhanced supercapacitive performance of an asymmetric device." New Journal of Chemistry 42, no. 24 (2018): 20123–30. http://dx.doi.org/10.1039/c8nj04228d.
Full textJin, Jing, Jie Ding, Xing Wang, Congcong Hong, Huaping Wu, Min Sun, Xiehong Cao, Congda Lu, and Aiping Liu. "High mass loading flower-like MnO2 on NiCo2O4 deposited graphene/nickel foam as high-performance electrodes for asymmetric supercapacitors." RSC Advances 11, no. 27 (2021): 16161–72. http://dx.doi.org/10.1039/d0ra10948g.
Full text