Journal articles on the topic '3D FDM printing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic '3D FDM printing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Carrell, John, Garrett Gruss, and Elizabeth Gomez. "Four-dimensional printing using fused-deposition modeling: a review." Rapid Prototyping Journal 26, no. 5 (January 2, 2020): 855–69. http://dx.doi.org/10.1108/rpj-12-2018-0305.
Full textKumar Singh, Abhishek, and Sriram Chauhan. "Technique to Enhance FDM 3D Metal Printing." Bonfring International Journal of Industrial Engineering and Management Science 6, no. 4 (October 31, 2016): 128–34. http://dx.doi.org/10.9756/bijiems.7574.
Full textLong, Jingjunjiao, Hamideh Gholizadeh, Jun Lu, Craig Bunt, and Ali Seyfoddin. "Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery." Current Pharmaceutical Design 23, no. 3 (February 20, 2017): 433–39. http://dx.doi.org/10.2174/1381612822666161026162707.
Full textBardot, Madison, and Michael D. Schulz. "Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing." Nanomaterials 10, no. 12 (December 21, 2020): 2567. http://dx.doi.org/10.3390/nano10122567.
Full textZhang, Pengfei, Zongxing Wang, Junru Li, Xinlin Li, and Lianjun Cheng. "From materials to devices using fused deposition modeling: A state-of-art review." Nanotechnology Reviews 9, no. 1 (January 1, 2020): 1594–609. http://dx.doi.org/10.1515/ntrev-2020-0101.
Full textTümer, Eda Hazal, and Husnu Yildirim Erbil. "Extrusion-Based 3D Printing Applications of PLA Composites: A Review." Coatings 11, no. 4 (March 29, 2021): 390. http://dx.doi.org/10.3390/coatings11040390.
Full textRozmus, Magdalena, Piotr Dobrzaniecki, Michał Siegmund, and Juan Alfonso Gómez Herrero. "Design with Use of 3D Printing Technology." Management Systems in Production Engineering 28, no. 4 (December 1, 2020): 283–91. http://dx.doi.org/10.2478/mspe-2020-0040.
Full textNguyen, Vinh Du, Thai Xiem Trinh, Son Minh Pham, and Trong Huynh Nguyen. "Influence of Layer Parameters in Fused Deposition Modeling Three-Dimensional Printing on the Tensile Strength of a Product." Key Engineering Materials 861 (September 2020): 182–87. http://dx.doi.org/10.4028/www.scientific.net/kem.861.182.
Full textKristiawan, Ruben Bayu, Fitrian Imaduddin, Dody Ariawan, Ubaidillah, and Zainal Arifin. "A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters." Open Engineering 11, no. 1 (January 1, 2021): 639–49. http://dx.doi.org/10.1515/eng-2021-0063.
Full textPeak, M., K. Baj, A. Isreb, M. Wojsz, I. Mohammad, and M. Albed Alhnan. "O22 3D printed polyethylene oxide oral doses with innovative ‘radiator-like’ design: impact of molecular weight on mechanical and rheological properties and drug release." Archives of Disease in Childhood 104, no. 6 (May 17, 2019): e10.1-e10. http://dx.doi.org/10.1136/archdischild-2019-esdppp.22.
Full textBryll, Katarzyna, Elżbieta Piesowicz, Paweł Szymański, Wojciech Ślączka, and Marek Pijanowski. "Polymer Composite Manufacturing by FDM 3D Printing Technology." MATEC Web of Conferences 237 (2018): 02006. http://dx.doi.org/10.1051/matecconf/201823702006.
Full textMarbun, Frince, and Richard A. M. Napitupulu. "Desain dan Pembuatan Prototype Piston Honda MEGAPRO FI Menggunakan 3D Printing." SPROCKET JOURNAL OF MECHANICAL ENGINEERING 1, no. 2 (March 14, 2020): 81–91. http://dx.doi.org/10.36655/sprocket.v1i2.184.
Full textMetlerski, Marcin, Katarzyna Grocholewicz, Aleksandra Jaroń, Mariusz Lipski, Grzegorz Trybek, and Jacek Piskorowski. "Comparison of Presurgical Dental Models Manufactured with Two Different Three-Dimensional Printing Techniques." Journal of Healthcare Engineering 2020 (September 29, 2020): 1–6. http://dx.doi.org/10.1155/2020/8893338.
Full textDeb, Disha, and J. M. Jafferson. "Natural fibers reinforced FDM 3D printing filaments." Materials Today: Proceedings 46 (2021): 1308–18. http://dx.doi.org/10.1016/j.matpr.2021.02.397.
Full textCiornei, Mirela, Răzvan Ionuț Iacobici, Ionel Dănuț Savu, and Dalia Simion. "FDM 3D Printing Process - Risks and Environmental Aspects." Key Engineering Materials 890 (June 23, 2021): 152–56. http://dx.doi.org/10.4028/www.scientific.net/kem.890.152.
Full textNayak, Radharani, M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, and Praniket Prakash Chauhan. "An Approach towards Economized 3D Printing." Applied Mechanics and Materials 852 (September 2016): 185–91. http://dx.doi.org/10.4028/www.scientific.net/amm.852.185.
Full textPrasong, Wattanachai, Akira Ishigami, Supaphorn Thumsorn, Takashi Kurose, and Hiroshi Ito. "Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing." Polymers 13, no. 5 (February 27, 2021): 740. http://dx.doi.org/10.3390/polym13050740.
Full textWang, Jun, Bin Yang, Xiang Lin, Lei Gao, Tao Liu, Yonglai Lu, and Runguo Wang. "Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method." Polymers 12, no. 11 (October 27, 2020): 2492. http://dx.doi.org/10.3390/polym12112492.
Full textPanjaitan, Joy H., Miduk Tampubolon, Fiktor Sihombing, and Jamser Simanjuntak. "Pengaruh Kecepatan, Temperatur dan Infill Terhadap Kualitas dan Kekasaran Kotak Relay Lampu Sign Sepedamotor Hasil dari 3D Printing." SPROCKET JOURNAL OF MECHANICAL ENGINEERING 2, no. 2 (February 26, 2021): 87–99. http://dx.doi.org/10.36655/sproket.v2i2.530.
Full textDamanpack, A. R., André Sousa, and M. Bodaghi. "Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent." Micromachines 12, no. 8 (July 23, 2021): 866. http://dx.doi.org/10.3390/mi12080866.
Full textMunteanu, Adriana, Dragos Chitariu, and Florentin Cioata. "The FDM 3D Printing Application for Orthopedic Splints." Applied Mechanics and Materials 809-810 (November 2015): 375–80. http://dx.doi.org/10.4028/www.scientific.net/amm.809-810.375.
Full textHadisujoto, Budi, and Robby Wijaya. "Development and Accuracy Test of a Fused Deposition Modeling (FDM) 3D Printing using H-Bot Mechanism." Indonesian Journal of Computing, Engineering and Design (IJoCED) 3, no. 1 (March 17, 2021): 46–53. http://dx.doi.org/10.35806/ijoced.v3i1.148.
Full textChoi, Nyeonsik. "Optimized Environment Parameters from Dimensional Accuracy for FDM-type 3D Printing System." Journal of the Korean Institute of Industrial Engineers 44, no. 1 (February 28, 2018): 9–17. http://dx.doi.org/10.7232/jkiie.2018.44.1.009.
Full textShakhmurzova, Kamila T., Zhanna I. Kurdanova, Artur E. Baykaziev, Azamat Zhansitov, and Svetlana Khashirova. "3D-Printing Methods for Crystalline Polyetheretherketone." Key Engineering Materials 869 (October 2020): 466–73. http://dx.doi.org/10.4028/www.scientific.net/kem.869.466.
Full textAzad, Mohammad A., Deborah Olawuni, Georgia Kimbell, Abu Zayed Md Badruddoza, Md Shahadat Hossain, and Tasnim Sultana. "Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective." Pharmaceutics 12, no. 2 (February 3, 2020): 124. http://dx.doi.org/10.3390/pharmaceutics12020124.
Full textLarraza, Izaskun, Julen Vadillo, Tamara Calvo-Correas, Alvaro Tejado, Sheila Olza, Cristina Peña-Rodríguez, Aitor Arbelaiz, and Arantxa Eceiza. "Cellulose and Graphene Based Polyurethane Nanocomposites for FDM 3D Printing: Filament Properties and Printability." Polymers 13, no. 5 (March 9, 2021): 839. http://dx.doi.org/10.3390/polym13050839.
Full textBliedtner, J. Prof, and M. Schilling. "Hochproduktiver fertigungsangepasster 3D-Druck/Productive and manufacturing adjusted 3D printing." wt Werkstattstechnik online 107, no. 07-08 (2017): 520–23. http://dx.doi.org/10.37544/1436-4980-2017-07-08-44.
Full textBrubaker, Cole D., Kailey N. Newcome, G. Kane Jennings, and Douglas E. Adams. "3D-Printed alternating current electroluminescent devices." Journal of Materials Chemistry C 7, no. 19 (2019): 5573–78. http://dx.doi.org/10.1039/c9tc00619b.
Full textGuima, Katia-Emiko, Felipe L. B. Fialho, and Cauê Alves Martins. "Protocols for 3D-printing pieces by fused deposition modeling for research purposes: from modeling to post-printing treatment." Journal of Experimental Techniques and Instrumentation 3, no. 01 (April 20, 2020): 1–11. http://dx.doi.org/10.30609/jeti.v3i01.8625.
Full textPăcurar, Răzvan, Valentin Buzilă, Ancuţa Păcurar, Eugen Guţiu, Sergiu Dan Stan, and Petru Berce. "Research on improving the accuracy of FDM 3D printing process by using a new designed calibrating part." MATEC Web of Conferences 299 (2019): 01007. http://dx.doi.org/10.1051/matecconf/201929901007.
Full textDudek, P. "FDM 3D Printing Technology in Manufacturing Composite Elements." Archives of Metallurgy and Materials 58, no. 4 (December 1, 2013): 1415–18. http://dx.doi.org/10.2478/amm-2013-0186.
Full textMygushchenko, Ruslan, Marina Oprichnina, and Konstantyn Kushtym. "The perspective of fdm-technologies in 3D printing." Bulletin of the National Technical University «KhPI» Series: New solutions in modern technologies, no. 18 (1190) (June 30, 2016): 148. http://dx.doi.org/10.20998/2413-4295.2016.18.21.
Full textBelko, T. V., and M. A. Kurbatova. "Clothing Design Based on 3D-Printing Technology (FDM)." Proceedings of Higher Education Institutions. Textile Industry Technology, no. 3 (2021): 170–75. http://dx.doi.org/10.47367/0021-3497_2021_3_170.
Full textWang, Yunqi, Flynn Castles, and Patrick S. Grant. "3D Printing of NiZn ferrite/ABS Magnetic Composites for Electromagnetic Devices." MRS Proceedings 1788 (2015): 29–35. http://dx.doi.org/10.1557/opl.2015.661.
Full textPrzybytek, Agnieszka, Iga Gubańska, Justyna Kucińska-Lipka, and Helena Janik. "Polyurethanes as a Potential Medical-Grade Filament for Use in Fused Deposition Modeling 3D Printers – a Brief Review." Fibres and Textiles in Eastern Europe 26, no. 6(132) (December 31, 2018): 120–25. http://dx.doi.org/10.5604/01.3001.0012.5168.
Full textSnopczyński, Marcin, Jarosław Kotliński, and Ireneusz Musiałek. "Testing of mechanical properties of materials used in FDM technology." Mechanik 92, no. 4 (April 8, 2019): 285–87. http://dx.doi.org/10.17814/mechanik.2019.4.37.
Full textRompas, Alexander, Charalampos Tsirmpas, Ianos Papatheodorou, Georgia Koutsouri, and Dimitris Koutsouris. "3D Printing: Basic Concepts Mathematics and Technologies." International Journal of Systems Biology and Biomedical Technologies 2, no. 2 (April 2013): 58–71. http://dx.doi.org/10.4018/ijsbbt.2013040104.
Full textKim, Jaeyoon, and Bruce S. Kang. "Enhancing Structural Performance of Short Fiber Reinforced Objects through Customized Tool-Path." Applied Sciences 10, no. 22 (November 18, 2020): 8168. http://dx.doi.org/10.3390/app10228168.
Full textKiński, Wojciech, and Paweł Pietkiewicz. "Influence of the Printing Nozzle Diameter on Tensile Strength of Produced 3D Models in FDM Technology." Agricultural Engineering 24, no. 3 (September 1, 2020): 31–38. http://dx.doi.org/10.1515/agriceng-2020-0024.
Full textKim, Chang Geun, Kyung Seok Han, Sol Lee, Min Cheol Kim, Soo Young Kim, and Junghyo Nah. "Fabrication of Biocompatible Polycaprolactone–Hydroxyapatite Composite Filaments for the FDM 3D Printing of Bone Scaffolds." Applied Sciences 11, no. 14 (July 9, 2021): 6351. http://dx.doi.org/10.3390/app11146351.
Full textLi, Yao, and Yan Lou. "Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling." Polymers 12, no. 11 (October 27, 2020): 2497. http://dx.doi.org/10.3390/polym12112497.
Full textSon, Tran Anh, Pham Son Minh, and Trung Do Thanh. "Effect of 3D Printing Parameters on the Tensile Strength of Products." Key Engineering Materials 863 (September 2020): 103–8. http://dx.doi.org/10.4028/www.scientific.net/kem.863.103.
Full textYang, Teng-Chun, and Chin-Hao Yeh. "Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed." Polymers 12, no. 6 (June 11, 2020): 1334. http://dx.doi.org/10.3390/polym12061334.
Full textKhuong, Tran Linh, Zhao Gang, Muhammad Farid, and Rao Yu. "Izod Impact Strength of Acrylonitrile Butadiene Styrene (ABS) Matetials after Used in UP2! 3D-Printer." Applied Mechanics and Materials 713-715 (January 2015): 2737–40. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.2737.
Full textTan, Deck, Mohammed Maniruzzaman, and Ali Nokhodchi. "Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery." Pharmaceutics 10, no. 4 (October 24, 2018): 203. http://dx.doi.org/10.3390/pharmaceutics10040203.
Full textVosynek, Petr, Tomas Navrat, Adela Krejbychova, and David Palousek. "Influence of Process Parameters of Printing on Mechanical Properties of Plastic Parts Produced by FDM 3D Printing Technology." MATEC Web of Conferences 237 (2018): 02014. http://dx.doi.org/10.1051/matecconf/201823702014.
Full textKrause, Julius, Laura Müller, Dorota Sarwinska, Anne Seidlitz, Malgorzata Sznitowska, and Werner Weitschies. "3D Printing of Mini Tablets for Pediatric Use." Pharmaceuticals 14, no. 2 (February 11, 2021): 143. http://dx.doi.org/10.3390/ph14020143.
Full textPascu, Nicoleta Elisabeta, Tiberiu Gabriel Dobrescu, Emilia Balan, Gabriel Jiga, and Victor Adir. "Design of ABS Plastic Components through FDM Process for the Quick Replacement of Outworn Parts in a Technological Flow." Materiale Plastice 55, no. 2 (June 30, 2018): 211–14. http://dx.doi.org/10.37358/mp.18.2.4997.
Full textSavu, Ionel Danut, Sorin Vasile Savu, Nicusor-Alin Sirbu, Mirela Ciornei, Robert Cristian Marin, and Daniela Ioana Tudose. "Laser Marking of PLA FDM Printed Products." Materiale Plastice 57, no. 2 (July 1, 2019): 228–38. http://dx.doi.org/10.37358/mp.20.2.5369.
Full textHe, Feiyang, and Muhammad Khan. "Effects of Printing Parameters on the Fatigue Behaviour of 3D-Printed ABS under Dynamic Thermo-Mechanical Loads." Polymers 13, no. 14 (July 19, 2021): 2362. http://dx.doi.org/10.3390/polym13142362.
Full text