Academic literature on the topic '3D cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3D cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "3D cell"
Bikmulina, Polina, Nastasia Kosheleva, Yuri Efremov, Artem Antoshin, Zahra Heydari, Valentina Kapustina, Valery Royuk, et al. "3D or not 3D: a guide to assess cell viability in 3D cell systems." Soft Matter 18, no. 11 (2022): 2222–33. http://dx.doi.org/10.1039/d2sm00018k.
Full textYlostalo, Joni H. "3D Stem Cell Culture." Cells 9, no. 10 (September 27, 2020): 2178. http://dx.doi.org/10.3390/cells9102178.
Full textSouza, Rhonda F., Robert E. Schwartz, and Hiroshi Mashimo. "Esophageal stem cells and 3D-cell culture models." Annals of the New York Academy of Sciences 1232, no. 1 (September 2011): 316–22. http://dx.doi.org/10.1111/j.1749-6632.2011.06070.x.
Full textSapet, Cédric, Cécile Formosa, Flavie Sicard, Elodie Bertosio, Olivier Zelphati, and Nicolas Laurent. "3D-fection: cell transfection within 3D scaffolds and hydrogels." Therapeutic Delivery 4, no. 6 (June 2013): 673–85. http://dx.doi.org/10.4155/tde.13.36.
Full textKiberstis, P. A. "Heart Cell Signaling in 3D." Science Signaling 3, no. 115 (March 30, 2010): ec93-ec93. http://dx.doi.org/10.1126/scisignal.3115ec93.
Full textBouchet, Benjamin P., and Anna Akhmanova. "Microtubules in 3D cell motility." Journal of Cell Science 130, no. 1 (January 1, 2017): 39–50. http://dx.doi.org/10.1242/jcs.189431.
Full textHarunaga, Jill S., and Kenneth M. Yamada. "Cell-matrix adhesions in 3D." Matrix Biology 30, no. 7-8 (September 2011): 363–68. http://dx.doi.org/10.1016/j.matbio.2011.06.001.
Full textGlaser, Vicki. "Novel 3D Cell Culture Systems." Genetic Engineering & Biotechnology News 33, no. 16 (September 15, 2013): 1, 22, 24–25. http://dx.doi.org/10.1089/gen.33.16.09.
Full textEven-Ram, Sharona, and Kenneth M. Yamada. "Cell migration in 3D matrix." Current Opinion in Cell Biology 17, no. 5 (October 2005): 524–32. http://dx.doi.org/10.1016/j.ceb.2005.08.015.
Full textRangarajan, Rajagopal, and Muhammad H. Zaman. "Modeling cell migration in 3D." Cell Adhesion & Migration 2, no. 2 (April 2008): 106–9. http://dx.doi.org/10.4161/cam.2.2.6211.
Full textDissertations / Theses on the topic "3D cell"
Timp, Winston (Winston G. ). "Study of cell-cell communication using 3D living cell microarrays." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42059.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 135-152).
Cellular behavior is not dictated solely from within; it is also guided by a myriad of external cues. If cells are removed from their natural environment, apart from the microenvironment and social context they are accustomed to, it is difficult to study their behavior in any meaningful way. To that end, I describe a method for using optical trapping for positioning cells with submicron accuracy in three dimensions, then encapsulating them in hydrogel, in order to mimic the in vivo microenvironment. This process has been carefully optimized for cell viability, checking both prokaryotic and eukaryotic cells for membrane integrity and metabolic activity. To demonstrate the utility of this system, I have looked at a model "quorum sensing" system in Vibrio Fischeri, which operates by the emission and detection of a small chemical signal, an acyl-homoserine lactone. Through synthetic biology, I have engineered plasmids which express "sending" and "receiving" genes. Bacteria containing these plasmids were formed into complex 3D patterns, designed to assay signaling response. The gene expression of the bacteria was tracked over time using fluorescent proteins as reporters. A model for this system was composed using a finite element method to simulate signal transport through the hydrogel, and simple mass-action kinetic equations to simulate the resulting protein expression over time.
by Winston Timp.
Ph.D.
Valldeperas, Roger. "Production Cell Simulation Visualization in 3D." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-27964.
Full textCapra, J. (Janne). "Differentiation and malignant transformation of epithelial cells:3D cell culture models." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526218236.
Full textTiivistelmä Epiteelisolut ovat erikoistuneet toimimaan rajapintana elimen ja ympäristön välillä. Ihmisten yleisin syöpä on epiteelisoluista alkunsa saanut karsinooma. Tämän tutkimuksen tarkoituksena oli ymmärtää Madin-Darby-koiran munuaisen solujen (MDCK) erilaistumista ja pahanlaatuistumista sekä analysoida sähköfysiologisia tekijöitä, jotka säätelevät näiden solujen kuljetustoimintaa. Erityisenä kiinnostuksen kohteena oli erilaisten kasvuympäristöjen vertailu. Farmakologisten aineiden tai basaalisen, solunulkopuolisen nesteen koostumuksen vaikutusta MDCK-solujen, -kystan sekä luumenin kokoon tutkittiin valomikroskooppisten aikasarjojen avulla. Tulokset osoittivat MDCK-solujen olevan kykeneviä sekä veden eritykseen että absorptioon, niin hyperpolarisoivassa kuin depolarisoivassakin ympäristössä. Basaalisen nesteen osmolaliteetin muutosta ei tarvittu. Nämä tulokset osoittavat MDCK-solujen olevan hyvä munuaisen tutkimuksen perusmalli. Seuraavaksi analysoitiin kaksi- ja kolmiulotteisten (2D ja 3D) viljely-ympäristöjen vaikutusta ei-transformoitujen MDCK-solujen ja lämpötilaherkkien ts-Src-transformoitujen MDCK-solujen geenien ilmentymiseen sekä yhden onkogeenin aktivoimisen aikaansaamia muutoksia. Microarray-analyysi osoitti apoptoosin estäjän, surviviinin, ilmentymisen vähenemisen, kun kasvuympäristö vaihdettiin 2D-ympäristöstä 3D-ympäristöön. Koska surviviinin väheneminen on normaali tapahtuma aikuisissa kudoksissa, voitiin todeta, että 3D-ympäristössä kasvatetut solut ovat lähempänä luonnonmukaista olotilaa kuin 2D-ympäristössä kasvaneet. Src-onkogeeni sai aikaan soluliitosten hajoamisen, mutta ei vähentänyt E-kadheriinin ilmentymistä. Tutkimuksen viimeinen osa keskittyi surviviinin ilmentymistä säätelevien tekijöiden analysoimiseen ja surviviinin merkitykseen solujen eloonjäämiselle. 3D-ympäristössä kasvaneet MDCK-solut eivät kärsineet apoptoosista edellyttäen, että solut pysyivät kosketuksissa soluväliaineeseen. Jos solut irtautuivat soluväliaineesta, ne päätyivät herkemmin apoptoosiin kuin surviviinia ilmentävät ts-Src MDCK-solut. Mikäli solujen väliset liitokset pakotettiin avautumaan, solut joutuivat apoptoosiin, vaikka ne olivat kosketuksissa soluväliaineeseen. Yhteenvetona nämä tulokset korostavat solujen kontaktien merkitystä: MDCK-solut tarvitsevat soluväliainekontakteja erilaistumiseen ja solujen välisiä kontakteja välttyäkseen apoptoosilta
Godeau, Amélie. "Cyclic contractions contribute to 3D cell motility." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAF038/document.
Full textCell motility is an important process in Biology. It is mainly studied on 2D planar surfaces, whereas cells experience a confining 3D environment in vivo. We prepared a 3D Cell Derived Matrix (CDM) labeled with fluorescently labeled fibronectin, and strikingly cells managed to deform the matrix with specific patterns : contractions occur cyclically with two contraction centers at the front and at the back of the cell, with a period of ~14 min and a phase shift of ~3.5 min. These cycles enable cells to optimally migrate through the CDM, as perturbation of cycles led to reduced motility. Acto-myosin was established to be the driving actor of these cycles, by using specific inhibitors. We were able to trigger cell motility externally with local laser ablations, which supports this framework of two alternating contractions involved in motion. Altogether, this study reveals a new mechanism of dynamic cellular behaviour linked to cell motility
Atefi, Ehsan. "Aqueous Biphasic 3D Cell Culture Micro-Technology." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1443112692.
Full textRajendran, Balakumar. "3D Agent Based Model of Cell Growth." Cincinnati, Ohio : University of Cincinnati, 2009. http://www.ohiolink.edu/etd/view.cgi?acc_num=ucin1231358178.
Full textAdvisors: Carla Purdy PhD (Committee Chair), Daria Narmoneva PhD (Committee Member), Ali Minai PhD (Committee Member). Title from electronic thesis title page (viewed April 30, 2009). Includes abstract. Keywords: Agent based modeling; cell growth; three dimensional. Includes bibliographical references.
CAPRETTINI, VALERIA. "Cell membrane interactions with 3D multifunctional nanostructures." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930970.
Full textTabriz, Atabak Ghanizadeh. "3D biofabrication of cell-laden alginate hydrogel structures." Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3370.
Full textPasturel, Aurélien. "Tailoring common hydrogels into 3D cell culture templates." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0302.
Full textTailoring hydrogels into biomimetic templates represents a crucial step to build better in-vitro models but it is to date still challenging. Indeed, these synthetic or natural polymeric networks are often so frail they can’t be processed through standard micro-fabrication. Here, we combine a ultra-violet pattern projector with gas permeable microreactors to control gas, reagents and photon distribution and in fine, the reaction kinetics in space and time. Doing so, enabled a generic chemistry that can structure, liquefy or decorate (locally functionalize) common hydrogels. Altogether these three hydrogel engineering operations form a flexible toolbox that supports the most commonly used hydrogels: i.e. Matrigel, Agar-agar, poly(ethylene-glycol) and poly(acryl-amide). We successfully applied this solution to grow cells into standardized micro-niches demonstrating that it can readily address cell culture challenges such has controlled adhesion on topographical structures, standardization of spheroids or culture on shaped Matrigel
Chetty, Avashnee Shamparkesh. "Thermoresponsive 3D scaffolds for non-invasive cell culture." Thesis, University of Pretoria, 2012. http://hdl.handle.net/2263/25463.
Full textThesis (PhD)--University of Pretoria, 2012.
Chemical Engineering
unrestricted
Books on the topic "3D cell"
Koledova, Zuzana, ed. 3D Cell Culture. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6.
Full textHaycock, John W., ed. 3D Cell Culture. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-984-0.
Full textKasper, Cornelia, Dominik Egger, and Antonina Lavrentieva, eds. Basic Concepts on 3D Cell Culture. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66749-8.
Full textPrzyborski, Stefan, ed. Technology Platforms for 3D Cell Culture. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118851647.
Full text3D cell culture: Methods and protocols. New York: Humana Press/Springer, 2011.
Find full textHaycock, John W. 3D cell culture: Methods and protocols. New York: Humana Press/Springer, 2011.
Find full textDmitriev, Ruslan I., ed. Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67358-5.
Full textHuang, Liang, and Wenhui Wang. 3D Electro-Rotation of Single Cells. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-01666-0.
Full textDutta, Ranjna C., and Aroop K. Dutta. 3D Cell Culture. Jenny Stanford Publishing, 2018. http://dx.doi.org/10.1201/b22417.
Full text3D Stem Cell Culture. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-03943-804-4.
Full textBook chapters on the topic "3D cell"
Moissoglu, Konstadinos, Stephen J. Lockett, and Stavroula Mili. "Visualizing and Quantifying mRNA Localization at the Invasive Front of 3D Cancer Spheroids." In Cell Migration in Three Dimensions, 263–80. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2887-4_16.
Full textDuarte Campos, Daniela F., and Andreas Blaeser. "3D-Bioprinting." In Basic Concepts on 3D Cell Culture, 201–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66749-8_9.
Full textKoch, Lothar, Andrea Deiwick, and Boris Chichkov. "Laser-Based Cell Printing." In 3D Printing and Biofabrication, 1–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40498-1_11-1.
Full textKoch, Lothar, Andrea Deiwick, and Boris Chichkov. "Laser-Based Cell Printing." In 3D Printing and Biofabrication, 303–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-45444-3_11.
Full textLeberfinger, Ashley N., Kazim Kerim Moncal, Dino J. Ravnic, and Ibrahim T. Ozbolat. "3D Printing for Cell Therapy Applications." In Cell Therapy, 227–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57153-9_11.
Full textJacobs, Kathryn A., and Julie Gavard. "3D Endothelial Cell Migration." In Methods in Molecular Biology, 51–58. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7701-7_6.
Full textEvans, David M., and Beverly A. Teicher. "3D Cell Culture Models." In Molecular and Translational Medicine, 251–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57424-0_19.
Full textRani, Madhu, Annu Devi, Shashi Prakash Singh, Rashmi Kumari, and Anil Kumar. "3D Cell Culture Techniques." In Techniques in Life Science and Biomedicine for the Non-Expert, 197–212. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19485-6_14.
Full textTytgat, L., S. Baudis, H. Ottevaere, R. Liska, H. Thienpont, P. Dubruel, and S. Van Vlierberghe. "Photopolymerizable Materials for Cell Encapsulation." In 3D Printing and Biofabrication, 1–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40498-1_15-1.
Full textTytgat, L., Stefan Baudis, H. Ottevaere, R. Liska, H. Thienpont, P. Dubruel, and S. Van Vlierberghe. "Photopolymerizable Materials for Cell Encapsulation." In 3D Printing and Biofabrication, 353–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-45444-3_15.
Full textConference papers on the topic "3D cell"
Matsusaki, Michiya, and Mitsuru Akashi. "3D-cell assembly by control of cell surfaces." In 2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2015. http://dx.doi.org/10.1109/mhs.2015.7438309.
Full textYan, Karen Chang, Kamila Paluch, Kalyani Nair, and Wei Sun. "Effects of Process Parameters on Cell Damage in a 3D Cell Printing Process." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11528.
Full textFarsari, Maria, George Flamourakis, Ioannis Spanos, Vasileia Melissinaki, Zacharias Vangelatos, Costas P. Grigoropoulos, and Anthi Ranella. "3D auxetic metamaterials as scaffolds for cell growth (Conference Presentation)." In Laser 3D Manufacturing VII, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2543752.
Full textKryou, Christina, Panos Karakaidos, Symeon Papazoglou, Apostolos Klinakis, and Ioanna Zergioti. "Laser bioprinting and laser photo-crosslinking of cell-laden bioinks." In Laser 3D Manufacturing IX, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2022. http://dx.doi.org/10.1117/12.2607113.
Full textLai, Yi-Han, and Shih-Kang Fan. "Electromolding for 3D cell culture." In 2015 IEEE 10th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2015. http://dx.doi.org/10.1109/nems.2015.7147424.
Full textCampana, Kimberly A., Eric Y. Shin, Beverly Z. Waisner, and Sherry L. Voytik-Harbin. "3D Cell Shape and Cell Fate are Regulated by the Dynamic Micro-Mechanical Properties of the Cell-ECM Interface." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176626.
Full textIsu, Giuseppe, Diana Massai, Giulia Cerino, Diego Gallo, Cristina Bignardi, Alberto Audenino, and Umberto Morbiducci. "A Novel Perfusion Bioreactor for 3D Cell Culture in Microgravity Conditions." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14502.
Full textHippler, Marc, Kai Weißenbruch, Enrico Lemma, Eva Blasco, Motomu Tanaka, Christopher Barner-Kowollik, Martin Bastmeyer, and Martin Wegener. "Stimuli-responsive 3D micro-scaffolds for single cell actuation (Conference Presentation)." In Laser 3D Manufacturing VII, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2543477.
Full textTakeuchi, Masaru, Masahiro Nakajima, and Toshio Fukuda. "Cell culture inside thermoresponsive gels towards 3D cell structures." In 2013 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2013. http://dx.doi.org/10.1109/mhs.2013.6710478.
Full textHoshino, Kenji, Sho Nabatame, Atsushi Nagate, and Teruya Fujii. "Inter-cell interference coordination by horizontal beamforming for small cells in 3D cell structure." In 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, 2015. http://dx.doi.org/10.1109/wcncw.2015.7122582.
Full textReports on the topic "3D cell"
Malik, Abir, D. Lam, H. A. Enright, S. K. G. Peters, B. Petkus, and N. O. Fischer. Characterizing the Phenotypes of Brain Cells in a 3D Hydrogel Cell Culture Model. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1466140.
Full textGrebennikov, A. N., A. K. Zhitnik, and O. A. Zvenigorodskaya. Results of comparative RBMK neutron computation using VNIIEF codes (cell computation, 3D statics, 3D kinetics). Final report. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/219464.
Full textSwanekamp, S. B., A. S. Richardson, I. Ritterdorf, J. W. Schumer, and B. V. Weber. Particle-in-Cell Simulations of Electromagnetic Power-Flow in a Complex 3D Geometry. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1422357.
Full textKiefer, M. L., D. B. Seidel, R. S. Coats, J. P. Quintenz, T. D. Pointon, and W. A. Johnson. Architecture and computing philosophy of the QUICKSILVER, 3D, electromagnetic, particle-in-cell code. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7271685.
Full textSeidel, D. B., M. F. Pasik, M. L. Kiefer, D. J. Riley, and C. D. Turner. Advanced 3D electromagnetic and particle-in-cell modeling on structured/unstructured hybrid grids. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/567511.
Full textBurris-Mog, Trevor John. 3D Particle-In-Cell Model of Axis-I: Cathode to Target Single-Code Development for Scorpius. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1492556.
Full textDolgashev, Valery A. Simulations of Currents in X-Band Accelerator Structures Using 2D and 3D Particle-in-Cell Code. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/799912.
Full textMastro, Andrea M. Altering the Microenvironment to Promote Dormancy of Metastatic Breast Cancer Cell in a 3D Bone Culture System. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada604844.
Full textMastro, Andrea M., and Erwin Vogler. Altering the Microenvironment to Promote Dormancy of Metastatic Breast Cancer Cell in a 3D Bone Culture System. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada621382.
Full textS. Ethier and Z. Lin. Porting the 3D Gyrokinetic Particle-in-cell Code GTC to the CRAY/NEC SX-6 Vector Architecture: Perspectives and Challenges. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815094.
Full text