Academic literature on the topic '3-hydroxy fatty acids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3-hydroxy fatty acids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "3-hydroxy fatty acids"
Wood, Paul L. "Fatty Acyl Esters of Hydroxy Fatty Acid (FAHFA) Lipid Families." Metabolites 10, no. 12 (December 17, 2020): 512. http://dx.doi.org/10.3390/metabo10120512.
Full textNichols, Frank, and Baliram Maraj. "Relationship between Hydroxy Fatty Acids and Prostaglandin E2 in Gingival Tissue." Infection and Immunity 66, no. 12 (December 1, 1998): 5805–11. http://dx.doi.org/10.1128/iai.66.12.5805-5811.1998.
Full textYang, Nian-Yun, Yi-Fang Yang, and Kun Li. "Analysis of Hydroxy Fatty Acids from the Pollen of Brassica campestris L. var. oleifera DC. by UPLC-MS/MS." Journal of Pharmaceutics 2013 (October 10, 2013): 1–6. http://dx.doi.org/10.1155/2013/874875.
Full textBourboula, Asimina, Dimitris Limnios, Maroula G. Kokotou, Olga G. Mountanea, and George Kokotos. "Enantioselective Organocatalysis-Based Synthesis of 3-Hydroxy Fatty Acids and Fatty γ-Lactones." Molecules 24, no. 11 (May 31, 2019): 2081. http://dx.doi.org/10.3390/molecules24112081.
Full textSjögren, Jörgen, Jesper Magnusson, Anders Broberg, Johan Schnürer, and Lennart Kenne. "Antifungal 3-Hydroxy Fatty Acids from Lactobacillus plantarum MiLAB 14." Applied and Environmental Microbiology 69, no. 12 (December 2003): 7554–57. http://dx.doi.org/10.1128/aem.69.12.7554-7557.2003.
Full textNawabi, Parwez, Stefan Bauer, Nikos Kyrpides, and Athanasios Lykidis. "Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase." Applied and Environmental Microbiology 77, no. 22 (September 16, 2011): 8052–61. http://dx.doi.org/10.1128/aem.05046-11.
Full textSebolai, Olihile M., Carolina H. Pohl, Piet J. Botes, Catharina J. Strauss, Pieter W. J. van Wyk, Alfred Botha, and Johan L. F. Kock. "3-Hydroxy fatty acids found in capsules ofCryptococcus neoformans." Canadian Journal of Microbiology 53, no. 6 (June 2007): 809–12. http://dx.doi.org/10.1139/w07-045.
Full textVenter, Pierre, Johan L. F. Kock, Dennis J. Coetzee, Piet J. Botes, and Santosh Nigam. "The production of 3-Hydroxy fatty acids by yeast." Prostaglandins & Other Lipid Mediators 59, no. 1-6 (December 1999): 198. http://dx.doi.org/10.1016/s0090-6980(99)90433-1.
Full textJacob, Jürgen, and Gottfried Raab. "2,3-Dihydroxy Fatty Acids-Containing Waxes in Storks (C iconiidae)." Zeitschrift für Naturforschung C 51, no. 9-10 (October 1, 1996): 743–49. http://dx.doi.org/10.1515/znc-1996-9-1021.
Full textGuichardant, M., and M. Lagarde. "Monohydroxylated fatty acid substrate specificity of human leukocyte 5-lipoxygenase and ω-hydroxylase." Biochemical Journal 256, no. 3 (December 15, 1988): 879–83. http://dx.doi.org/10.1042/bj2560879.
Full textDissertations / Theses on the topic "3-hydroxy fatty acids"
Jenske, Ramona. "Compound specific and enantioselective determination of 2- and 3-hydroxy fatty acids in food." Aachen Shaker, 2009. http://d-nb.info/996919910/04.
Full textMcDaniel, J., Karen A. Massey, and Anna Nicolaou. "Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds." Wiley, 2010. http://hdl.handle.net/10454/4577.
Full textChronic wounds often result from prolonged inflammation involving excessive polymorphonuclear leukocyte activity. Studies show that the omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids found in fish oils generate bioactive lipid mediators that reduce inflammation and polymorphonuclear leukocyte recruitment in numerous inflammatory disease models. The purpose of this study was to test the hypotheses that boosting plasma levels of eicosapentaenoic and docosahexaenoic acids with oral supplementation would alter lipid mediator levels in acute wound microenvironments and reduce polymorphonuclear leukocyte levels. Eighteen individuals were randomized to 28 days of either eicosapentaenoic + docosahexaenoic acid supplementation (Active Group) or placebo. After 28 days the Active Group had significantly higher plasma levels of eicosapentaenoic (p<0.001) and docosahexaenoic acid (p<0.001) than the Placebo Group and significantly lower wound fluid levels of two 15-lipoxygenase products of omega-6 polyunsaturated fatty acids, [9- hydroxyoctadecadienoic (HODE) acid (p = 0.033) and15-hydroxyeicosatrienoic acid (HETrE) (p = 0.006)], at 24 hours post wounding. The Active Group also had lower mean levels of myeloperoxidase, a leukocyte marker, at 12 hours and significantly more re-epithelialization on Day 5 post wounding. We suggest that lipid mediator profiles can be manipulated by altering polyunsaturated fatty acid intake to create a wound microenvironment more conducive to healing.
Jenske, Ramona [Verfasser]. "Compound-Specific and Enantioselective Determination of 2- and 3-Hydroxy Fatty Acids in Food / Ramona Jenske." Aachen : Shaker, 2009. http://d-nb.info/1159835012/34.
Full textKiezel-Tsugunova, Magdalena. "Elucidating the metabolism of n-3 polyunsaturated fatty acids and formation of bioactive lipid mediators in human skin." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/elucidating-the-metabolism-of-n3-polyunsaturated-fatty-acids-and-formation-of-bioactive-lipid-mediators-in-human-skin(773abedd-c726-4dab-890a-694a96b1c074).html.
Full textAwada, Manar. "L’oxydation modifie les effets métaboliques d'acides gras polyinsaturés de la série n-3 incorporés par différents vecteurs dans des régimes hyperlipidiques : contribution de l’absorption intestinale et de la réactivité cellulaire du 4-hydroxy-hexénal." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0143/document.
Full textDietary intake of n-3 long chain (LC) polyunsaturated fatty acids (PUFA) are recommended for their beneficial effects on human health, especially to prevent the development of metabolic diseases. However, the bioavailability of these PUFAs and their metabolic impact could be modulated by their chemical carriers (triacylglycerols, TG or phospholipids, PL). In addition, these PUFA are susceptible to lipid peroxidation. If they are not protected from oxidation, they can form toxic reactive species such as 4-hydroxy-hexenal (4-HHE). In this context, the aim of our study was to evaluate the impact of enriching high-fat diets with n-3 PUFA (i) bound to TG or PL and (ii) in unoxidized or oxidized form on the generation of inflammation and oxidative stress, and to understand some underlying mechanisms associated with intestinal absorption and reactivity of 4-HHE. On the one hand, our study confirmed in mice that the consumption of n-3 PUFA protects against oxidative stress and inflammation induced by high-fat diets. However, compared to TG, n-3 PUFA in the form of PL reduce the size of adipocytes and stimulate the antioxidant system. On the other hand, our study showed that the consumption of moderately oxidized n-3 PUFA results in increased plasma concentrations of 4-HHE and of inflammatory markers. In addition, activation of inflammatory pathways as well as endoplasmic reticulum stress were detected in the small intestine. Our results in vivo and in vitro, using intestinal Caco-2/TC7 cells, indicate that this can be partly due to the intestinal absorption of the end-product of n-3 PUFA oxidation, 4-HHE. In the context of the development of foods containing LC n-3 PUFA, our results contribute to identify the most effective PUFA carriers on a metabolic standpoint. Regarding public health and clinical practice, our results provide new basis for the set up of best practices regarding production and storage of food and supplements enriched with LC n-3 PUFA to avoid their lipid oxidation and its possible deleterious effects
Liu, Hong-yi, and 劉鴻毅. "Study on the roles and quantification of 3-hydroxy fatty acids in the soma and supernatant of cultured Burkholderia cepacia complex." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/78dh4t.
Full text國立高雄師範大學
生物科學研究所
97
Study on the roles and quantification of 3-hydroxy fatty acids in the soma and supernatant of cultured Burkholderia cepacia complex Abstract Although Burkholderia cepacia complex (BCC) divided into 9 of recA genomovars in present, the virulence to hosts in these genomovars were still undifferentiated. We hypothesized that, in cultural supernatants, the amounts of C14:0 3-OH fatty acids, the unique components of BCC lipopolysaccharides (LPS), acted as a biomarker for virulence, were related to the degrees of pathologically inflammatory effects on animals with BCC infection. Thirty-two strains were identified to BCC gonomorvarⅢa by the outcomes of biochemical and molecular tests, and typed to their genetic independence by the profiles of cellular fatty acid and randomly amplified polymorphic DNA (RAPD), respectively. To determine the concentration of fatty acids in supernatants, the quantitative profiles of each fatty acid methyl ester (FAME) analyzed by gas chromatography mass spectrometry (GC/MS) was developed. In this study, the instrument detection limits were reached to 26 ng/ml. The optimal reaction was defined as >90% in esterification for each fatty acid. The processing of samples were performed as that, after a 7 d-incubation, the cultural supernatants were acted as reactants and sequentially reacted to alkaline hydrolysis for 30 min and esterification for 10min. Among of the cultures of these isolates, the concentration of C14:0 3-OH fatty acid in supernatants was ranged from 19.3±0.4 to 133.7±3.6ng/ml. The molar ratio of C14:0/C16:0 3-OH fatty acid was calculated to be 1.78±0.3. With multiple regression analysis, a positive correlation was shown that the concentration of 3-OH fatty acids in supernatants of each isolates was against some levels of pathological effect (area of cell debris in liver) of Balb/c mice with tested BCC infection individually (R2=0.682). Results suggested that the concentration of C14:0 3-OH fatty acid in BCC cultural supernatants was acted as an indicator of virulence to the mice with the bacterial infection for 2 d. Keywords:Burkholderia cepacia complex, lipopolysaccharides, C14:0 3-OH fatty acid, Gas chromatography mass spectrometry
Book chapters on the topic "3-hydroxy fatty acids"
Kock, J. Lodewyk F., Pierre Venter, Alfred Botha, Dennis J. Coetzee, Pieter W. J. van Wyk, Dandré P. Smith, Tankred Schewe, and Santosh Nigam. "Production of 3-Hydroxy Fatty Acids by the Yeast Dipodascopsis Uninucleata. Biological Implications." In Advances in Experimental Medicine and Biology, 675–77. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4793-8_97.
Full textRaulin, J., D. Lapous, C. Loriette, and I. K. Grundt. "HMGR (3-Hydroxy, 3-Methylglutaryl-CoA Reductase) Activity of Cultured Rat Brain Cells: Sensitivity to n-3 and n-6 Polyunsaturated Fatty Acids (PUFAs) from Cod-Liver and Sunflower Oils." In Enzymes of Lipid Metabolism II, 479–84. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5212-9_62.
Full textZiboh, Vincent A. "Cutaneous essential fatty acids and hydroxy fatty acids: Modulation of inflammatory and hyperproliferative processes." In Fatty Acids and Inflammatory Skin Diseases, 55–67. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8761-8_4.
Full textCullingford, T. E., K. K. Bhakoo, S. Peuchen, C. T. Dolphin, and J. B. Clark. "Regulation of the Ketogenic Enzyme Mitochondrial 3-Hydroxy-3-Methylglutaryl-COA Synthase in Astrocytes and Meningeal Fibroblasts." In Current Views of Fatty Acid Oxidation and Ketogenesis, 241–51. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-46818-2_29.
Full textJones, Patricia M., and Michael J. Bennett. "3-Hydroxy-Fatty Acid Analysis by Gas Chromatography-Mass Spectrometry." In Methods in Molecular Biology, 229–43. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-459-3_21.
Full textDerogis, Priscilla Bento Matos Cruz, Adriano B. Chaves-Fillho, and Sayuri Miyamoto. "Characterization of Hydroxy and Hydroperoxy Polyunsaturated Fatty Acids by Mass Spectrometry." In Advances in Experimental Medicine and Biology, 21–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11488-6_2.
Full textTanamoto, K. "Development of a New Quantitative Method for Detection of Endotoxin by Fluorescence Labeling of 3-Hydroxy Fatty Acid." In Endotoxin, 203–13. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-5140-6_18.
Full textAitken, Alastair. "Structure determination of acylated proteins." In Lipid Modification of Proteins, 63–88. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199632749.003.0004.
Full textConference papers on the topic "3-hydroxy fatty acids"
Véquaud, P., S. Derenne, A. Thibault, C. Anquetil, G. Bonanomi, S. Collin, S. Contreras, et al. "Global Temperature and pH Calibrations Based on Bacterial 3-HYDROXY Fatty Acids in Soils." In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134047.
Full textHou, C., G. Duffy, A. Yamoah, D. Sasche, P. Chaiseanwang, C. Wang, Y. Yang, E. Norris, and J. Bendle. "Initial Calibration of 3-Hydroxy Fatty Acids Paleoclimate Proxies for European Lakes and Soils." In IMOG 2023. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202333062.
Full textVéquaud, P., S. Collin, C. Anquetil, J. Poulenard, P. Sabatier, P. Choler, S. Derenne, and A. Huguet. "Bacterial 3-Hydroxy Fatty Acids: Applicability as Temperature and Ph Proxies in Soils from the French Alps." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902985.
Full textNaeher, S., S. Rosenberg, J. A. Bendle, K. Yamoah, J. Pearman, B. Duncan, and M. J. Vandergoes. "Investigating Bacterial 3-Hydroxy Fatty Acids as New Indicators of Past Air Temperature in Lake Sediments from New Zealand." In IMOG 2023. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202333039.
Full textHuguet, Arnaud, Eve Hellequin, Pierre Véquaud, Marina Seder-Colomina, Sylvie Collin, and Adrienne Kish. "Effect of temperature and pH on the membrane lipid composition of soil Gram-negative bacteria isolates: Implications for the use of 3-hydroxy fatty acids as (paleo)environmental proxies." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.16169.
Full textWang, Canfa, James Bendle, Huan Yang, Yi Yang, Alice Hardman, Afrifa Yamoah, Amy Thorpe, et al. "Calibration of bacterial 3-hydroxy fatty acid based palaeoclimate proxies in global soils." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7290.
Full textHardman, A., A. Thorpe, K. Yamoah, C. Wang, Y. Yang, D. Read, and J. Bendle. "A Novel 3-Hydroxy Fatty Acid-Based Palaeothermometer Developed from Southwestern US Lacustrine Environments." In IMOG 2023. European Association of Geoscientists & Engineers, 2023. http://dx.doi.org/10.3997/2214-4609.202333161.
Full textBendle, J., C. Wang, Y. Yang, A. Hardman, A. Yamoah, A. Thorpe, I. Mandel, et al. "Calibration of Bacterial 3-Hydroxy Fatty Acid-Based Paleoclimate Proxies in Global Soils, Marine Sediments and Lakes." In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134241.
Full textHines, C. J., M. Petersen, M. Mendell, D. Milton, L. Larsson, and W. Fisk. "146. Endotoxin and 3-Hydroxy Fatty Acid Analysis of Air and Dust Samples from an Office Building." In AIHce 1998. AIHA, 1999. http://dx.doi.org/10.3320/1.2762528.
Full textDalli, Jesmond, Ana Rodriguez, Bernd Spur, and Charles Serhan. "Structure elucidation and biological evaluations of sulfido-conjugated specialized pro-resolving mediators." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/mqgv6628.
Full text