Academic literature on the topic '3-Amino-1-propanol'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '3-Amino-1-propanol.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "3-Amino-1-propanol"

1

Blanco, Antonio, Alicia García-Abuín, Diego Gómez-Díaz, and José M. Navaza. "Density, Speed of Sound, Viscosity and Surface Tension of 3-Dimethylamino-1-propylamine + Water, 3-Amino-1-propanol + 3-Dimethylamino-1-propanol, and (3-Amino-1-propanol + 3-Dimethylamino-1-propanol) + Water from T = (293.15 to 323.15) K." Journal of Chemical & Engineering Data 62, no. 8 (July 13, 2017): 2272–79. http://dx.doi.org/10.1021/acs.jced.7b00042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cacela, C., A. Baudot, M. L. Duarte, A. M. Matos-Beja, M. Ramos Silva, J. A. Paixão, and R. Fausto. "Low temperature polymorphism in 3-amino-1-propanol." Journal of Molecular Structure 649, no. 1-2 (April 2003): 143–53. http://dx.doi.org/10.1016/s0022-2860(03)00049-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gol'dshleger, N. F., A. S. Lobach, A. S. Astakhova, M. G. Kaplunov, A. V. Kulikov, A. P. Moravskii, O. S. Roschupkina, and Yu M. Shul'ga. "Interaction of fullerene C60 with 3-amino-1-propanol." Russian Chemical Bulletin 43, no. 6 (June 1994): 1081–83. http://dx.doi.org/10.1007/bf01558086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Badalova, K. K., A. R. Mamedova, R. A. Alieva, A. M. Magerramov, and M. A. Allakhverdiev. "Reaction of 1-Amino-3-propoxy-2-propanol with Aldehydes." Russian Journal of Applied Chemistry 78, no. 10 (October 2005): 1656–58. http://dx.doi.org/10.1007/s11167-005-0580-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Podjed, Nina, Petra Stare, Romana Cerc Korošec, María M. Alcaide, Joaquín López-Serrano, and Barbara Modec. "3-Amino-1-propanol and N-methylaminoethanol: coordination to zinc(ii) vs. decomposition to ammonia." New Journal of Chemistry 44, no. 2 (2020): 387–400. http://dx.doi.org/10.1039/c9nj05005a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Ke-dong, Ying-bin Jia, Zhen-jiang Lai, and Yu-fang Liu. "Ab initio Study on Ionization Energies of 3-Amino-1-propanol." Chinese Journal of Chemical Physics 24, no. 3 (June 2011): 315–18. http://dx.doi.org/10.1088/1674-0068/24/03/315-318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dong, Lihu, Jian Chen, and Guanghua Gao. "Solubility of Carbon Dioxide in Aqueous Solutions of 3-Amino-1-propanol." Journal of Chemical & Engineering Data 55, no. 2 (February 11, 2010): 1030–34. http://dx.doi.org/10.1021/je900492a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Korotkii, Yu V., N. A. Vrynchanu, Yu N. Maksimov, and M. O. Lozinskii. "Synthesis and antimicrobial activity of 1-[4-(1-adamantyl)phenoxy]-3-amino-2-propanol." Pharmaceutical Chemistry Journal 43, no. 6 (June 2009): 301–4. http://dx.doi.org/10.1007/s11094-009-0299-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scheel, Rebecca, Kathrin Louven, and Carsten Strohmann. "Crystal structures of [Li7(i-PrO)3(C4H10NO)3]2O and [Na(i-PrOH)2(C8H18NO2)]2." Acta Crystallographica Section E Crystallographic Communications 76, no. 6 (May 29, 2020): 948–53. http://dx.doi.org/10.1107/s2056989020006659.

Full text
Abstract:
The title compounds, hexakis[μ3-2-(dimethylamino)ethanolato]hexa-μ2-isopropanolato-μ4-oxido-tetradecalithium(I), [Li7(i-PrO)3(C4H10NO)3]2O (1), and {3-[(2-methoxyethyl)(methyl)amino]-1,1-dimethylpropanolato}diisopropanolsodium(I), [Na(i-PrOH)2(C8H18NO2)] (2), were crystallized in the presence of 2-propanol (i-PrOH, C3H7OH). The structure 1 has monoclinic symmetry (C2/c) and the asymmetric unit contains half of the compound. Title compound 2 has triclinic symmetry (P\overline{1}) and the asymmetric unit is half of an inversion-symmetric aggregate. Both compounds consist of an alkali metal, an aminoalkoxide and a 2-propanol compound. Furthermore, the dimeric sodium aggregate 2 is build up by hydrogen bonding through the 2-propanol and the alkoxides. Compound 1 does not exhibit hydrogen bonding, due to the fact that the 2-propanol is deprotonated. In compound 1, benzene appeared as co-crystallate, but was suppressed by solvent masking because of strong disorder. The formula mass and density do not take account of the solvent.
APA, Harvard, Vancouver, ISO, and other styles
10

Álvarez, Estrella, Fernando Cerdeira, Diego Gómez-Diaz, and José M. Navaza. "Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of Binary Mixtures of 1-Amino-2-propanol or 3-Amino-1-propanol with 2-Amino-2-methyl-1-propanol, Diethanolamine, or Triethanolamine from (293.15 to 323.15) K." Journal of Chemical & Engineering Data 55, no. 7 (July 8, 2010): 2567–75. http://dx.doi.org/10.1021/je900739x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "3-Amino-1-propanol"

1

Alves, Keila dos Santos. "Alquila??o redutiva da quitosana a partir do glutaralde?do e 3-amino-1-pr." Universidade Federal do Rio Grande do Norte, 2008. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17591.

Full text
Abstract:
Made available in DSpace on 2014-12-17T15:41:41Z (GMT). No. of bitstreams: 1 KeilaSA.pdf: 2159921 bytes, checksum: eaf4fb1bec7305fa007222908f6259ac (MD5) Previous issue date: 2008-02-29
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Chitosan derivatives were prepared by reductive alkylation using glutaraldehyde and 3-amino-1-propanol. The reducing agent used was the sodium borohydride. Tests of solubility, stability and viscosity were performed in order to evaluate these parameters effects in the reaction conditions (molar ratio of the reactants and presence of nitrogen in the reaction system). The molecular structure of commercial chitosan was determined by infrared (IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The intrinsic viscosity and average molecular weight of the chitosan were determined by viscosimetry in 0.3 M acetic acid aqueous solution 0.2 M sodium acetate at 25 ?C. The derivatives of chitosan soluble in aqueous acidic medium were characterized by 1H NMR. The rheological behavior of the chitosan and of the derivative of chitosan (sample QV), which presented the largest viscosity, were studied as a function of polymer concentration, temperature and ionic strength of the medium. The results of characterization of the commercial chitosan (the degree of deacetylation obtained equal 78.45 %) used in this work confirmed a sample of low molar weight (Mv = 3.57 x 104 g/mol) and low viscosity (intrinsic viscosity = 213.56 mL/g). The chemical modification of the chitosan resulted in derivatives with thickening action. The spectra of 1H NMR of the soluble derivatives in acid aqueous medium suggested the presence of hydrophobic groups grafted into chitosan in function of the chemical modification. The solubility of the derivatives of chitosan in 0.25 M acetic acid aqueous solution decreased with increase of the molar ratio of the glutaraldehyde and 3-amino-1-propanol in relation to the chitosan. The presence of nitrogen and larger amount of reducing agent in reaction system contributed to the increase of the solubility, the stability and the viscosity of the systems. The viscosity of the polymeric suspensions in function of the shear rate increased significantly with polymer concentration, suggesting the formation of strong intermolecular associations. The chitosan presented pseudoplastic behavior with the increase in polymer concentration at a low shear rate. The derivative QV presented pseudoplastic behavior at all concentrations used and in a large range of shear rate. The viscosity of chitosan in solution decreased with an increase of the temperature and with the presence of salt. However, there was an increase of the viscosity of the chitosan solution at higher temperature (65 ?C) and ionic strength of the medium which were promoted by hydrophobic associating of the acetamide groups. The solutions of the chitosan derivatives (sample QV) were significantly more viscous than chitosan solution and showed higher thermal stability in the presence of salt as a function of the hydrophobic groups grafted into chitosan backbone
Derivados de quitosana foram preparados atrav?s de alquila??o redutiva usando glutaralde?do e 3-amino-1-propanol. O agente redutor utilizado foi o boro hidreto de s?dio. Os efeitos das vari?veis reacionais (propor??es molares dos reagentes e nitrog?nio no meio reacional) nas caracter?sticas dos pol?meros em fun??o das mudan?as estruturais foram avaliados atrav?s de testes de solubilidade, estabilidade e viscosidade. A estrutura molecular da quitosana comercial foi determinada por espectroscopia de infravermelho (IV) e de resson?ncia magn?tica nuclear de hidrog?nio (RMN 1H). A viscosidade intr?nseca e a massa molar m?dia da quitosana foram determinadas por viscosimetria, em ?cido ac?tico 0,3 M acetato de s?dio 0,2 M, a 25 ?C. Os derivados de quitosana sol?veis em meio aquoso ?cido foram caracterizados por RMN 1H. O comportamento reol?gico da quitosana e do seu derivado (amostra QV), que apresentou maior viscosidade, foram estudados em fun??o da concentra??o de pol?mero, da temperatura e da for?a i?nica do meio. Os resultados da caracteriza??o da quitosana comercial utilizada neste trabalho demonstraram uma amostra de baixa massa molar (Mv = 3,57 x 104 g/mol) e de baixa viscosidade (viscosidade intr?nseca = 213,56 mL/g). O grau m?dio de desacetila??o foi 78,45 %. A modifica??o qu?mica da quitosana resultou em derivados com caracter?sticas viscosificantes. Os espectros de RMN 1H dos derivados sol?veis em meio aquoso ?cido mostraram a inser??o de grupos hidrof?bicos na estrutura da quitosana em fun??o da modifica??o qu?mica realizada. A solubilidade dos derivados de quitosana em solu??o aquosa de ?cido ac?tico 0,25 M diminuiu com o aumento da propor??o molar do glutaralde?do e 3-amino-1-propanol em rela??o ? quitosana. A presen?a de nitrog?nio e maior quantidade de agente redutor no meio reacional contribu?ram para o aumento da solubilidade, estabilidade e viscosidade dos sistemas polim?ricos. A viscosidade das dispers?es polim?ricas em fun??o da taxa de cisalhamento aumentou significativamente com a concentra??o de pol?mero, sugerindo a forma??o de fortes associa??es intermoleculares. A quitosana apresentou comportamento pseudopl?stico com o aumento da concentra??o de pol?mero em solu??o e a baixas taxas de cisalhamento, enquanto que o seu derivado, QV, apresentou comportamento pseudopl?stico em todas as concentra??es utilizadas e em uma larga faixa de taxa de cisalhamento. A viscosidade da solu??o de quitosana diminuiu com o aumento da temperatura e com a presen?a de sal. No entanto, houve um aumento da viscosidade da solu??o de quitosana ? temperatura mais alta (65 ?C) e em maior for?a i?nica, promovido por associa??es hidrof?bicas dos grupos acetamido. As solu??es do derivado QV foram significativamente mais viscosas do que as solu??es de quitosana e obtiveram maior estabilidade t?rmica em solu??o na presen?a de sal em fun??o dos grupos hidrof?bicos inseridos na estrutura da quitosana
APA, Harvard, Vancouver, ISO, and other styles
2

Zanone, Armando. "Estudo do processo de dessorção de CO2 da mistura 2-amino-2-metil-1-propanol e piperazina carbonatada." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-27022018-080456/.

Full text
Abstract:
O trabalho visa o estudo do processo de dessorção química de CO2 em solução aquosa da mistura das aminas 2-amino-2-metil-1-propanol (AMP) e piperazina (PZ) carbonatadas. Uma simulação em Aspen Hysys® foi realizada de forma a avaliar o processo de captura de CO2, sendo possível reduzir as emissões de CO2 em 79 % em comparação a um mesmo sistema de queima de butano produzindo a mesma quantidade de energia. O processo de dessorção foi realizado em uma coluna de parede molhada com promotor de película de 49 cm de comprimento e 2,2 cm de diâmetro. O processo foi monitorado de forma online por meio da técnica de espectroscopia de infravermelho integrada com a calibração multivariada, que permitiu a quantificação de AMP e PZ livres, CO2 em todas suas formas químicas, mono e dicarbamato de PZ, e bicarbonato. Os ensaios de dessorção foram realizados a pressão atmosférica (0,93 atm) e nas temperaturas de 50, 60 e 70 °C, com vazão de líquido de 3,478 mL.s-1. A vazão de ar seco variou entre os experimentos de 87,5 a 120 mL.s-1. Para cada temperatura estudaram-se quatro soluções aquosas de AMP e PZ, com as seguintes concentrações %m/m de AMP/%m/m PZ: 30/0, 25/5, 20/10 e 0/15. O coeficiente individual de transporte de massa na fase líquida apresentou influência das concentrações de PZ na mistura com AMP, sendo maior quanto maior a concentração de PZ, porém para a PZ pura apresentou o menor valor. Este coeficiente decresce com o aumento do loading (?) de CO2 no líquido (mol de CO2 por mol de amina na solução inicial). A temperatura não apresentou uma influência significativa nos valores do coeficiente individual da fase líquida. O coeficiente de transferência de massa do filme líquido está na faixa de 3,12×10-10 a 1,32×10-5 mol.Pa-1.m-2.s-1, para loadings (?) de CO2 no líquido variando de 0,18 to 0,9 e soluções de AMP (0 - 30 %m/m) e de PZ (0 - 15 %m/m).
The work aims to study the chemical desorption process of CO2 in an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) and piperazine (PZ) carbonated blend. An Aspen Hysys® simulation was carried out to evaluate the CO2 capture process, which allowed to reduce CO2 emissions by 78.9 % for the same butane combustion process producing the same energy. The desorption process was performed on a wet wall column with 49 cm long and 2.2 cm diameter film promoter. The process was online monitored by infrared spectroscopy integrated with a multivariate calibration, which allowed the quantification of free AMP and PZ, CO2 in its all chemical forms, PZ mono- and dicarbamate, and bicarbonate. The desorption tests were performed at atmospheric pressure (0.93 atm) and at temperatures of 50, 60 and 70 ° C, with a liquid flow rate of 3.478 mL.s-1. The dry air flow varied between the experiments from 87.5 to 120 mL.s-1. For each temperature, four aqueous solutions of different concentrations of AMP and PZ were evaluated, with %w/w de AMP/%w/w PZ: 30/0, 25/5, 20/10 and 0/15. The individual transport coefficient in the liquid phase was influenced by the concentration of PZ in the mixture with AMP, the higher the PZ concentration, the higher the PZ concentration. This coefficient decreases with increasing loading (?) of non-liquid CO2 (mole of CO2 per mole of amine in the initial solution). A temperature did not show a significant influence on the values of the individual coefficient of the liquid phase. The liquid film mass transfer coefficient encountered were in the range of 3.12×10-10 to 1.32×10-5 mol.Pa-1.m-2.s-1, for loadings varying from 0.18 to 0.9 and solutions of AMP (0 - 30 wt%) and of PZ (0 - 15 wt%).
APA, Harvard, Vancouver, ISO, and other styles
3

YAO, TING-LING, and 姚亭伶. "Application of 3-Amino-1-propanol functionalized chelating resin for removing heavy metal ions from aqueous solutions." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/35310991945170198868.

Full text
Abstract:
碩士
南臺科技大學
化學工程與材枓工程系
105
A chelating resin, PAOH, was synthesized throug a reaction of crosslinked poly(glycidyl methacrylate) with 3-Amino-1-propanol for adsorbing Cu2+, Cd2+ and Ni2+ from aqueous solutions. PAOH and cPGMA were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and energy dispersive x-ray spectrometer. Scanning electron microscope image showed that the diameter of PAOH was 250-350 μm and there were many pores on the resin’s surface. In non-competitive conditions, The adsorptions tended toward equilibrium at 7-8 min for Cu2+ and Ni2+ or 25 min for Cd2+ and the equilibrium adsorption capacities were ordered, Cu2+ [1.60 mmol/g (PAOH)] > Ni2+ [0.92mmol/g (PAOH)] > Cd2+ [0.66mmol/g (PAOH)]. The adsorption isotherms of Cu2+, Cd2+ and Ni2+ by PAOH followed the Langmuir isotherm. When the pH of Cu2+, Ni2+ and Cd2+ solutions > 4, the variance in adsorption capacity was insignificant. However, the adsorption capacity decreased dramatically from pH 3 to 1 and no adsorption was observed at pH 1. The competitive adsorption tests confirmed PAOH had good adsorption selectivity for the recovery of Cu2+ from Cu2+/Cd2+ and Cu2+/Ni2+ mixtures. When the pH of Ni2+/Cd2+ mixture was 2, PAOH could adsorb Ni2+ only. After 5 cycles of desorption-adsorption operations, the re-adsorption capacities of theses three metal ions could attain 96% of initial values. PAOH had good adsorption efficiency for the recovery Cu2+,Cd2+ and Ni2+ from aqueous solutions. Keywords: suspension polymerization, chelating resin, adsorption, heavy metal ion, 3-Amino-1-propanol
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Yeun-Chih, and 黃允志. "Effects of GPEUC ( 1-[(4-allyl-2-methoxy-) phenoxy]-3-[(2- methoxy phenoxyethyl)-amino]-propanol ) on cardiovascular system." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/90560911198536886108.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "3-Amino-1-propanol"

1

Holze, Rudolf. "Ionic conductivities of 3-amino-1-propanol." In Electrochemistry, 174. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pardasani, R. T., and P. Pardasani. "Magnetic properties of dinuclear copper(II) complex of Schiff base derived from 2, 6-diformyl-4-methylphenol and 3-amino-1-propanol." In Magnetic Properties of Paramagnetic Compounds, 389–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49202-4_182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dash, Sukanta K. "Post-combustion Carbon Dioxide Capture with Aqueous (Piperazine + 2-Amino-2-Methyl-1-Propanol) Blended Solvent: Performance Evaluation and Analysis of Energy Requirements." In Green Energy and Technology, 191–216. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47262-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lambert, Tristan H. "Synthesis of Heteroaromatics." In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0069.

Full text
Abstract:
Peter Wipf at the University of Pittsburgh utilized (J. Org. Chem. 2013, 78, 167) an alkynol-furan Diels-Alder reaction to convert 1 into the hydroxyindole 2. An intramolecular Larock indole synthesis was employed (Angew. Chem. Int. Ed. 2013, 52, 4902) by Yanxing Jia at Peking University for the conversion of aniline 3 to tricyclic indole 4. The reaction of boronodiene 5 with nitrosobenzene to produce pyrrole 6 was reported (Chem. Commun. 2013, 49, 5414) by Bertrand Carboni at CNRS University of Rennes and Andrew Whiting at Durham University. The merger of imine 7 with propargyl amine 8 in the presence of a strong base, leading to pyrrole 9, was disclosed (Org. Lett. 2013, 15, 3146) by Boshun Wan at the Chinese Academy of Sciences. Bin Li and Baiquan Wang at Nankai University found (Org. Lett. 2013, 15, 136) that pyrrole 12 could be prepared by the oxidative annulation of enamide 10 with alkyne 11 via ruthenium catalysis in the presence of copper(II). Naohiko Yoshikai at Nanyang Technological University demonstrated (Org. Lett. 2013, 15, 1966) that N-allyl imine 13 could be cyclized to pyrrole 14 via dehydrogenative intramolecular Heck cyclization. Rhett Kempe at the University of Bayreuth developed (Nature Chem. 2013, 5, 140) a “sustainable” pyrrole synthesis in which iridium complex 17 catalyzed the dehydrogenative coupling of alcohol 15 and phenylalaninol (16) to produce pyrrole 18. In a related process, David Milstein at the Weizmann Institute of Science found (Angew. Chem. Int. Ed. 2013, 52, 4012) that the ruthenium complex 20 effected the transformation of 2-octanol (19) and 16 to furnish pyrrole 21. An alternative ruthenium-catalyzed pyrrole synthesis from readily available components was developed (Angew. Chem. Int. Ed. 2013, 52, 597) by Matthias Beller, allowing for the preparation of 25 from ketone 22, diol 23, and amine 24. Meanwhile, with a bit of hetero-aromatic alchemy, Huw M.L. Davies at Emory University converted (J. Am. Chem. Soc. 2013, 135, 4716) the furan 26 to pyrrole 28 by reaction with triazole 27 under rhodium catalysis. Professor Kempe also developed (Angew. Chem. Int. Ed. 2013, 52, 6326) a method for the synthesis of pyridine 30 from amino alcohol 29 and propanol using an iridium catalyst closely related to 17.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "3-Amino-1-propanol"

1

Karunarathne, Sumudu S., and Lars E. Øi. "Density and Viscosity Correlations for Aqueous 3-Amino-1-propanol and Monoethanol Amine Mixtures." In The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden. Linköping University Electronic Press, 2020. http://dx.doi.org/10.3384/ecp2017067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nordin, Syamila, Ruzitah Mohd Salleh, and Norhuda Ismail. "Phase equilibrium behavior of carbon dioxide in aqueous 2-amino-2-methyl-1-propanol and N-butyl-3-methylpyridinium tetrafluoroborate." In 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER). IEEE, 2012. http://dx.doi.org/10.1109/chuser.2012.6504414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nordin, Syamila, Ruzitah Mohd Salleh, and Norhuda Ismail. "Experimental study on CO2 absorption in aqueous mixtures of 2-amino-2-methyl-1-propanol and N-butyl-3-methylpyridinium Tetrafluoroborate." In 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC). IEEE, 2013. http://dx.doi.org/10.1109/beiac.2013.6560187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kushch, S. O., M. V. Goryaeva, Ya V. Burgart, O. G. Khudina, and V. I. Saloutin. "Three-component approach to hexahydropyrido-[2,1-b] [1,3]-oxazin-6-ones and cyclohex-2-en-1-ones based on polyfluoroalkyl-3-oxo esters, methyl ketones, and 3-amino-1-propanol." In VIII Information school of a young scientist. Central Scientific Library of the Urals Branch of the Russian Academy of Sciences, 2020. http://dx.doi.org/10.32460/ishmu-2020-8-0011.

Full text
Abstract:
Найдены конкурентные пути трехкомпонентной циклизации полифторалкил-3-оксоэфиров и метилкетонов с 3-амино-1-пропанолом в зависимости от условий. Показано, что в 1,4-диоксане реакции приводят к гексагидро- пиридо-[2,1-b][1,3]-оксазин-6-онам, а в этаноле к – циклогекс-2-ен-1-онам.редложен механизм превращений полифторалкил-3-оксоэфиров и метилкетонов с 3-амино-1-пропанолом.
APA, Harvard, Vancouver, ISO, and other styles
5

Rincón, D. A., M. C. Daza, and M. Doerr. "Application of the quantum theory of atoms in molecules (QTAIM) to the study of the enzymatic kinetic resolution of propranolol, an amino alcohol with pharmaceutical applications." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020135.

Full text
Abstract:
Propranolol, ((R,S)-1-iso-propylamino-3-(1-naphthoxy)-2-propanol), is a β-adrenergic antagonist and is commercially available as a racemic mixture. Only the S-enantiomer has the desired therapeutic effect. Therefore, many researchers have been working on strategies to obtain S-propranolol with high enantiomeric purity. One approach to carry out the acetylation of (R,S)-Propranolol using Candida antarctica lipase B, CalB. This reaction leads to an enantiomeric purity of 96% at a relatively low conversion rate of 30 %. In our research group, we have been studying this reaction. The CalB active site is composed by the triad catalytic (ASP 187, HIS 224 and SER 105) and oxyanion hole (GLN 106 and THR 40). In a previous work, a QM/MM (Quantum Mechanics / Molecular Mechanics) study was carried out, using a QM region consisting only of the catalytic triad of CalB and (R,S)-propranolol [1]. In the present study, we investigate the effect of expanding the quantum region to include the oxyanion hole and to comprehend the effect of intermolecular hydrogen bonds present between the (R,S)-propranolol and the CalB active site. The electronic structure was analyzed using the Quantum Theory of Atoms In Molecules, QTAIM. Our results show that: 1. the studied reactions are more exothermic with the inclusion of the oxyanion hole than with only the catalytic triad. 2. the intermolecular interactions between (R,S)-propranolol and the CalB active site are dominated by hydrogen bonds (HB). Among those HBs, only one between propranolol and HIS 224, and another one between THR 40 and the carbonyl oxygen of acetylated SER 105 play an important role.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography