To see the other types of publications on this topic, follow the link: 28nm.

Journal articles on the topic '28nm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '28nm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kalia, Kartik, Khyati Nanda, Arushi Aggarwal, Akshita Goel, and Shivani Malhotra. "Transistor Resizing Based Low Power Thermal Aware Adder Design on FPGA." Advanced Materials Research 1098 (April 2015): 37–43. http://dx.doi.org/10.4028/www.scientific.net/amr.1098.37.

Full text
Abstract:
In this work, we are going to search the most thermal and energy efficient technology among 90nm, 65nm, 45nm, 40nm and 38nm technology based FPGA, and also searching the most thermal and energy efficient airflow, and heat sink profile. We are also doing thermal analysis for 273.15K-343.15K temperature. we are getting 31.67%, 75.71%, reduction in leakage power for 250LFM and 58.53%, 75.71% reduction in leakage power for 500LFM when we scale down ambient temperature from 343.15K to 283.15K for 65nm, 28nm technology based FPGA. There is 84.54%, 85.65%, reduction in junction temperature for 250LFM, 84.90%, 85.65%, reduction in junction temperature for 500LFM when we scale down ambient temperature from 343.15K to 283.15K for 65nm, 28nm technology based FPGA. In this work, we are using 90nm Spartan-3E FPGA, 65nm Virtex-5 FPGA, 45nm Spartan-6 FPGA, 40nm Virtex-6 FPGA, and 28nm Artix-7 FPGA. We are taking two different airflow of 250LFM and 500LFM. LFM is a unit of airflow. LFM is linear feet per minute. Adder is our target design.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Fu Ping, Hai Bo Lei, Xiao Yan Zhang, Wen Jun Wang, She Na Jia, Jane Wang, Jason Lee, et al. "High Performance, Eco-Friendly SPM Cleaning Technology Using Integrated Bench-Single Wafer Cleaning System." Solid State Phenomena 314 (February 2021): 133–39. http://dx.doi.org/10.4028/www.scientific.net/ssp.314.133.

Full text
Abstract:
Batch SPM systems do not meet the current clean specification/requirements below 28nm. Single wafer SPM systems use a high volume of chemistry which runs to drain, while meeting the cleaning specifications below 28nm. The work in this paper describe the use of a batch SPM system and a single wafer clean in an integrated system, Ultra-C Tahoe which results in meeting the technical specification and using less that 80% of the SPM chemistry used in single wafer systems. The data collected shows this new system meet the specifications, whilst saving more than 80%of SPM chemistry.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Beichao, Bin Zhang, Haibo Xiao, Hao Deng, Hao Tong, Jingjing Tan, Ming Zhou, et al. "Thin Film Challenges in 28nm Technology Node." ECS Transactions 44, no. 1 (December 15, 2019): 391–94. http://dx.doi.org/10.1149/1.3694344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aguiar, V. A. P., N. H. Medina, N. Added, E. L. A. Macchione, S. G. Alberton, C. L. Rodrigues, T. F. Silva, et al. "Thermal neutron induced upsets in 28nm SRAM." Journal of Physics: Conference Series 1291 (July 2019): 012025. http://dx.doi.org/10.1088/1742-6596/1291/1/012025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rochefeuille, E., F. Alicalapa, A. Douyère, and T. P. Vuong. "FDSOI 28nm performances study for RF energy scavenging." IOP Conference Series: Materials Science and Engineering 321 (March 2018): 012009. http://dx.doi.org/10.1088/1757-899x/321/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

., Anshu Gaur. "HDL IMPLEMENTATION OF AMBA AHB ON 28NM FPGA." International Journal of Research in Engineering and Technology 06, no. 06 (June 25, 2017): 148–53. http://dx.doi.org/10.15623/ijret.2017.0606024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gupta, Arpit, Aarushi Sapra, Alisha Nagpal, and Sanchit Sharma. "Energy Efficient Traffic Light Controller Design on 28nm FGPA." International Journal of Smart Home 9, no. 10 (October 31, 2015): 133–44. http://dx.doi.org/10.14257/ijsh.2015.9.10.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chandra Verma, Puneet, Pragya Agarwal, Apurva Omer, Bhaskar Gururani, and Sanchit Verma. "Designing Green ECG Machine Based on Artix7 28nm FPGA." Gyancity Journal of Engineering and Technology 3, no. 1 (January 1, 2017): 38–44. http://dx.doi.org/10.21058/gjet.2017.31006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Phu Phu, Tran Nguyen, Dang Phuong Gia Han, Nguyen Cong Luong, and Nguyen Van Cuong. "Design A Synchronous Single-Port Sram 1024x32xMUX4 Using 28NM Technology." International Journal of Computing and Digital Systems 10, no. 1 (January 1, 2021): 103–9. http://dx.doi.org/10.12785/ijcds/100110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shi, I., E. Tian, and C. Ren. "Defect Investigation of the Develop Process on 28nm Contact Mask." ECS Transactions 60, no. 1 (February 27, 2014): 199–204. http://dx.doi.org/10.1149/06001.0199ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tong, H., B. Zhang, H. Deng, Y. Yan, S. B. Guo, J. Zhao, Z. J. Pan, et al. "Siconi Process Applications Study for 28nm Technology Node and Beyond." ECS Transactions 60, no. 1 (February 27, 2014): 447–51. http://dx.doi.org/10.1149/06001.0447ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Saxena, Abhay, Swapnil Gaidhani, Anamika Pant, and Chandrashekhar Pate. "Capacitance Scaling Based Low Power Comparator Design on 28nm FPGA." International Journal of Computer Trends and Technology 42, no. 2 (December 25, 2016): 72–76. http://dx.doi.org/10.14445/22312803/ijctt-v42p112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tudor, Bogdan, Joddy Wang, Zhaoping Chen, Robin Tan, Weidong Liu, and Frank Lee. "An accurate MOSFET aging model for 28nm integrated circuit simulation." Microelectronics Reliability 52, no. 8 (August 2012): 1565–70. http://dx.doi.org/10.1016/j.microrel.2011.12.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Verma, Gaurav, Shikhar Maheshwari, Sukhbani Kaur, Virdi ., Neha Baishander, Ipsita Singh, and Bishwajeet Pandey. "Low Power Squarer Design Using Ekadhikena Purvena on 28nm FPGA." International Journal of Control and Automation 9, no. 5 (May 31, 2016): 281–88. http://dx.doi.org/10.14257/ijca.2016.9.5.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jin, Rui Min, Ding Zhen Li, Lan Li Chen, Xiang Ju Han, and Jing Xiao Lu. "Solid-Phase Crystallization of a-Si:H by RTA." Applied Mechanics and Materials 44-47 (December 2010): 4151–53. http://dx.doi.org/10.4028/www.scientific.net/amm.44-47.4151.

Full text
Abstract:
Amorphous silicon films prepared by PECVD on glass substrate has been crystallized by rapid thermal annealing (RTA) at the same temperature for different time. From X-ray diffraction (XRD) and scanning electronic microscope (SEM), it is found that the grain size is biggest crystallized at 720°C for 8 min, an average grain size of 28nm or so is obtained. The thin film is smoothly and perfect structure.
APA, Harvard, Vancouver, ISO, and other styles
16

Banijamali, Bahareh, Suresh Ramalingam, and Raghunandan Chaware. "Advanced Thermal Study of Very High Power TSV Interposer and Interconnects for 28nm Technology FPGA." International Symposium on Microelectronics 2011, no. 1 (January 1, 2011): 000665–68. http://dx.doi.org/10.4071/isom-2011-wp1-paper2.

Full text
Abstract:
TSV interposer has emerged as a good solution to provide high wiring density interconnections and improved electrical performance due to shorter interconnection from the die to substrate. Furthermore, silicon interposer minimizes CTE mismatch between the chip and copper filled TSV interposer resulting in high reliability micro bumps. This paper presents the thermal study of TSV interposer technology for a high-performance 28nm logic die that is mounted on a large silicon interposer with Cu through silicon via. A representative silicon interposer test chip with thousands of micro-bumps at 45um pitch has been fabricated. The silicon interposer is 100um thick, and is mounted on a 42.5mmx42.5mm substrate through 180um pitch C4 bumps. 3D thermal modeling and simulation for the packaged device with TSV interposer have been performed. Several DOEs have been constructed to optimize thermal interface material selection and to study the effect of high power and hot spots on underfill and solder bump material properties as well as the effect of bump pitch and underfill properties on the die junction temperatures. Furthermore, thermal behavior of 28nm technology monolithic FPGA was compared to the 3D TSV interposer FPGA package. Optimized passive thermal solution was recommended for this high power FPGA in order to cool down up to 100 Watt power.
APA, Harvard, Vancouver, ISO, and other styles
17

THARAYIL NARAYANAN, Aravind, Wei DENG, Dongsheng YANG, Rui WU, Kenichi OKADA, and Akira MATSUZAWA. "A Fully-Synthesizable 10.06Gbps 16.1mW Injection-Locked CDR in 28nm FDSOI." IEICE Transactions on Electronics E100.C, no. 3 (2017): 259–67. http://dx.doi.org/10.1587/transele.e100.c.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liao, C. I., T. C. Hsuan, C. C. Chien, M. Chan, C. L. Yang, J. Y. Wu, and B. Ramachandran. "High Quality Silicon Cap Layer for 28nm and Beyond PMOS Processes." ECS Transactions 50, no. 9 (March 15, 2013): 419–24. http://dx.doi.org/10.1149/05009.0419ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Xing, B., J. Hao, G. Deng, J. Zhao, and Q. Wu. "Studies of the Water-Spot like Defect in 28nm Metal Layer." ECS Transactions 60, no. 1 (February 27, 2014): 225–29. http://dx.doi.org/10.1149/06001.0225ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Diao, L., X. Meng, Q. Han, H. Zhang, R. Elliston, H. PhanVu, V. Vaniapura, N. Zhang, K. Zhou, and C. Lee. "Defect Free HDIS Process for Sub 28nm HKMG Using Reducing Chemistry." ECS Transactions 60, no. 1 (February 27, 2014): 313–18. http://dx.doi.org/10.1149/06001.0313ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhou, M., Q. Chai, Y. Chen, X. Li, H. Deng, Z. Wang, G. Zhao, and B. Zhang. "K Repair and RC Improvement in 28nm Logic Devices and Beyond." ECS Transactions 60, no. 1 (February 27, 2014): 459–61. http://dx.doi.org/10.1149/06001.0459ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lai, Jerander, Yi-Wei Chen, Nien-Ting Ho, Yu Shan Shiu, J. F. Lin, Shuen Chen Lei, Nick Z. H. Chang, Ling Chun Chou, C. C. Huang, and J. Y. Wu. "NiPt salicide process improvement for 28nm CMOS with Pt(10%) additive." Microelectronic Engineering 92 (April 2012): 137–39. http://dx.doi.org/10.1016/j.mee.2011.05.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bhalla, Simran, Tanmeet Kaur, Kashish Bansal, Itanshu Ahuja, and Sabia Chawla. "LVCMOS IO Standard Based High Performance RAM Design on 28nm FPGA." International Journal of Control and Automation 9, no. 9 (September 30, 2016): 213–20. http://dx.doi.org/10.14257/ijca.2016.9.9.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mahajan, Devanshi, and Daizy Gupta. "LVCMOS and BLVDS Based Energy Efficient Counter Design on 28nm FPGA." Gyancity Journal of Engineering and Technology 1, no. 2 (July 1, 2015): 31–41. http://dx.doi.org/10.21058/gjet.2015.1206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kilic, Mustafa, Themistoklis G. Mavrogordatos, and Yusuf Leblebici. "A hybrid CDAC-threshold configuring SAR ADC in 28nm FDSOI CMOS." Analog Integrated Circuits and Signal Processing 97, no. 3 (June 12, 2018): 397–404. http://dx.doi.org/10.1007/s10470-018-1222-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, Win Der, and Mu Chun Wang. "Early Effect for 28nm HK/MG PMOSFETs after Post Deposition Annealing Treatment." Advanced Materials Research 910 (March 2014): 40–43. http://dx.doi.org/10.4028/www.scientific.net/amr.910.40.

Full text
Abstract:
Exposing the Early effect (or called channel-length modulation effect) at deep subnano node high-k/metal gate (HK/MG) process is still beneficial to IC designers to reduce the obsession in design. This effect contributes the operating point in circuit concern and process adjustment. For the long channel device, the intercept under various gate voltages focuses on one point consistent with conventional device. However, the divergent phenomenon was observed at the short channel tested device due to the higher strain effect, causing the non-uniform electrical field distribution in channel.
APA, Harvard, Vancouver, ISO, and other styles
27

Pandey, Bishwajeet, Vandana Thind, Simran Kaur Sandhu, Tamanna Walia, and Sumit Sharma. "SSTL Based Power Efficient Implementation of DES Security Algorithm on 28nm FPGA." International Journal of Security and Its Applications 9, no. 7 (July 31, 2015): 267–74. http://dx.doi.org/10.14257/ijsia.2015.9.7.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhao, J., X. Song, L. Zhou, F. Bai, B. Peng, L. Zou, B. Zhao, and L. Chen. "Ultra Low-k Damage Control and k Recovery for 28nm RC Improvement." ECS Transactions 52, no. 1 (March 8, 2013): 607–12. http://dx.doi.org/10.1149/05201.0607ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bazizi, E. M., A. Zaka, G. Dilliway, B. Bai, M. Wiatr, F. Benistant, and M. Horstmann. "Investigation of Embedded SiGe Source/Drain for 28nm HKMG PFET Performance Enhancement." ECS Transactions 53, no. 3 (May 2, 2013): 27–32. http://dx.doi.org/10.1149/05303.0027ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zu, Y., C. Liu, S. J. Zhang, and Q. Wu. "28nm Overlay Control Improvement By Wafer Quality Enhancement and Mask Registration Control." ECS Transactions 60, no. 1 (February 27, 2014): 179–85. http://dx.doi.org/10.1149/06001.0179ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shen, M., Y. L. Zu, Q. Shu, Q. Wu, and J. Liu. "Sub-Resolution Assist Features Challenge and Solution in 28nm Active Area Lithography." ECS Transactions 60, no. 1 (February 27, 2014): 257–62. http://dx.doi.org/10.1149/06001.0257ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhang, Bin, Yang Hui Xiang, Hao Deng, Shibi Guo, and Beichao Zhang. "A High-Quality Spacer Oxide Formation for 28nm Technology Node and Beyond." ECS Transactions 44, no. 1 (December 15, 2019): 407–10. http://dx.doi.org/10.1149/1.3694347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Litty, Antoine, Sylvie Ortolland, Dominique Golanski, and Sorin Cristoloveanu. "Dual Ground Plane EDMOS in 28nm FDSOI for 5V power management applications." Solid-State Electronics 113 (November 2015): 42–48. http://dx.doi.org/10.1016/j.sse.2015.05.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ramon, Hannes, Xin Yin, Johan Bauwelinck, Michael Vanhoecke, Jochem Verbist, Wouter Soenen, Peter De Heyn, et al. "Low-Power 56Gb/s NRZ Microring Modulator Driver in 28nm FDSOI CMOS." IEEE Photonics Technology Letters 30, no. 5 (March 1, 2018): 467–70. http://dx.doi.org/10.1109/lpt.2018.2799004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bravaix, A., F. Cacho, X. Federspiel, C. Ndiaye, S. Mhira, and V. Huard. "Potentiality of healing techniques in hot-carrier damaged 28nm FDSOI CMOS nodes." Microelectronics Reliability 64 (September 2016): 163–67. http://dx.doi.org/10.1016/j.microrel.2016.07.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Madhok, Shivani, Navdeep Singh, Furqan Fazili, Sumita Nagah, Sweety Dabas, Ravinder Kaur, and Sweety Dabas. "SSTL IO Standard Based Energy Efficient Digital Clock Design on 28nm FPGA." International Journal of Control and Automation 8, no. 6 (June 30, 2015): 35–42. http://dx.doi.org/10.14257/ijca.2015.8.6.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Madhok, Shivani, Navdeep Singh, Jasleen Kaur, Khyati Nanda, Sweety Dabas, and Minal Dhankar. "HSTL IO Standard Based Energy Efficient FIR Filter Design on 28nm FPGA." International Journal of Control and Automation 8, no. 7 (July 31, 2015): 47–54. http://dx.doi.org/10.14257/ijca.2015.8.7.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gupta, Daizy, Devanshi Mahajan, Bishwajeet Pandey, Amanpreet Kaur, Amit Yadav, and Apoorv Verma. "High Performance Energy Efficient Different Counters Design and Implementation on 28nm FPGA." International Journal of Control and Automation 9, no. 9 (September 30, 2016): 151–62. http://dx.doi.org/10.14257/ijca.2016.9.9.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jia, Xiao Lin, Su Ping Li, Hai Jun Zhang, Jiang Tao Zhu, and He Long Hu. "Hydrothermal Synthesis of Nanosized Mullite Powders." Key Engineering Materials 368-372 (February 2008): 806–8. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.806.

Full text
Abstract:
Nanosized mullite powders were prepared by hydrothermal method with bauxite as precursor. The effects of mineralizer, hydrothermal temperature, hydrothermal time, dispersant on the phase, crystal size and secondary granularity of the powders were discussed. The properties of the prepared powders were characterized by XRD, SEM, and ZETASIZER. The results show that the spherical nanosized mullite powders with crystal size of 28nm are prepared under the conditions of 0.92 mol·L-1 concentration of NaOH, less than 85% filling ratio, 110°C for 6 h with bauxite calcined at 1040°C as starting material.
APA, Harvard, Vancouver, ISO, and other styles
40

Kwon, Woon-Seong, Myongseob Kim, Jonathan Chang, Suresh Ramalingam, Liam Madden, Genie Tsai, Stephen Tseng, J. Y. Lai, Terren Lu, and Steve Chiu. "Enabling a Manufacturable 3D Technologies and Ecosystem using 28nm FPGA with Stack Silicon Interconnect Technology." International Symposium on Microelectronics 2013, no. 1 (January 1, 2013): 000217–22. http://dx.doi.org/10.4071/isom-2013-tp11.

Full text
Abstract:
Technology challenges and solutions in the development and manufacturing of Stacked Silicon Interconnect (SSI) Technology have been investigated with the established foundry and OSAT ecosystem. Key enabling technologies, such as TSV processing, interposer backside manufacturing yield enhancement, new stacking technology, interposer warpage control, micro-bump (μ-bump) processes and joining, that comprise the building blocks for SSI technology were developed. Xilinx 28nm FPGA with stacked silicon interconnect technology (SSIT) platform is used to develop and optimize the seamless integration of the processes, structures, parameter, as well as to evaluate the yield, reliability and device performance of them.
APA, Harvard, Vancouver, ISO, and other styles
41

Han, Yuanyuan, Tongde Li, Xu Cheng, Liang Wang, Jun Han, Yuanfu Zhao, and Xiaoyang Zeng. "Radiation Hardened 12T SRAM With Crossbar-Based Peripheral Circuit in 28nm CMOS Technology." IEEE Transactions on Circuits and Systems I: Regular Papers 68, no. 7 (July 2021): 2962–75. http://dx.doi.org/10.1109/tcsi.2021.3074699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Broussous, Lucile, Remy Fabre, Thomas Massin, Hiwadezu Ishikawa, Fabrice Buisine, and Alain Lamaury. "BEOL Post-Etch Clean Robustness Improvement with Ultra-Diluted Hf for 28nm Node." Solid State Phenomena 282 (August 2018): 244–49. http://dx.doi.org/10.4028/www.scientific.net/ssp.282.244.

Full text
Abstract:
For 28 nm and beyond, severe specifications in terms of dimensions and materials integrity still drive further cleaning process improvements. As the global “HF budget” drastically decreases with interconnections dimensions, HF solution dilution and process time both decreased stepwise. However, very short recipes with process time shorter than 15s start to suffer from lack of robustness, in particular for the monitoring of inline parameters such as flow-rates and temperature. In this paper, we highlighted that a first matching of silicon oxide consumption was usefull to select temperature and concentration range for the diluted HF solution. High dilution ratio, and “room temperature” (20 °C) were then selected. Variations in cleaning efficiency were analyzed as regard with electrical defects density at three metals levels, then the use of 0.025 %wt. HF, 20 °C, 40 s. was pointed out as the more promising solution for process of record replacement. Process robustness, i.e. inline monitoring data collection and uniformity on wafer should thus be improved thanks to this longer process time and a lower process temperature.
APA, Harvard, Vancouver, ISO, and other styles
43

Shu, Q., Q. Wu, Y. Zu, T. Wang, S. Zhang, T. Li, Y. Lin, and Y. Gu. "Study Of Gate Critical Dimension Uniformity (CDU) Budget and Improvement at 28nm Node." ECS Transactions 52, no. 1 (March 8, 2013): 193–98. http://dx.doi.org/10.1149/05201.0193ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hsuan, T. C., Y. C. Hu, M. C. Hsu, D. Z. Zhan, S. Yu, C. C. Chien, S. J. Chang, et al. "Advanced Spectroscopic Ellipsometry Application for Multi-Layers SiGe at 28nm Node and Beyond." ECS Transactions 58, no. 7 (August 31, 2013): 137–44. http://dx.doi.org/10.1149/05807.0137ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Madhok, Shivani, Inderpreet Kaur, Vanshaj Taxali, Vandana Thind, Sweety Dabas, and Tushar Madhok. "LVCMOS Based Energy Efficient Sindhi Unicode Reader for Natural Processing on 28nm FPGA." International Journal of u- and e-Service, Science and Technology 8, no. 8 (August 31, 2015): 207–14. http://dx.doi.org/10.14257/ijunesst.2015.8.8.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hsien, Y. H., H. K. Hsu, T. C. Tsai, Welch Lin, R. P. Huang, C. H. Chen, C. L. Yang, and J. Y. Wu. "Process development of high-k metal gate aluminum CMP at 28nm technology node." Microelectronic Engineering 92 (April 2012): 19–23. http://dx.doi.org/10.1016/j.mee.2011.04.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Augur, R., C. Child, J. H. Ahn, T. J. Tang, L. Clevenger, D. Kioussis, H. Masuda, et al. "Competitive and cost effective copper/low-k interconnect (BEOL) for 28nm CMOS technologies." Microelectronic Engineering 92 (April 2012): 42–44. http://dx.doi.org/10.1016/j.mee.2011.04.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Karatsori, T. A., C. G. Theodorou, S. Haendler, C. A. Dimitriadis, and G. Ghibaudo. "Drain current local variability from linear to saturation region in 28nm bulk NMOSFETs." Solid-State Electronics 128 (February 2017): 31–36. http://dx.doi.org/10.1016/j.sse.2016.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Weihuai, Hao Jin, Wei Guo, Shurong Dong, Wei Liang, Juin J. Liou, and Yan Han. "Very small snapback silicon-controlled rectifier for electrostatic discharge protection in 28nm processing." Microelectronics Reliability 61 (June 2016): 106–10. http://dx.doi.org/10.1016/j.microrel.2015.12.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kaur, Inderpreet, Lakshay Rohilla, Alisha Nagpal, and Abhishek Gupta. "Buffer, Extraction and Style based RAM Design on 28nm Field Programmable Gate Array." International Journal of Control and Automation 9, no. 8 (August 31, 2016): 13–20. http://dx.doi.org/10.14257/ijca.2016.9.8.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography