Journal articles on the topic '22~nm'

To see the other types of publications on this topic, follow the link: 22~nm.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '22~nm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bloomstein, T. M., Michael F. Marchant, Sandra Deneault, Dennis E. Hardy, and Mordechai Rothschild. "22-nm immersion interference lithography." Optics Express 14, no. 14 (2006): 6434. http://dx.doi.org/10.1364/oe.14.006434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sadana, Devendra, Stephen W. Bedell, J. P. De Souza, Y. Sun, E. Kiewra, A. Reznicek, T. Adams, et al. "CMOS Scaling Beyond 22 nm Node." ECS Transactions 19, no. 5 (December 18, 2019): 267–74. http://dx.doi.org/10.1149/1.3119551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Buengener, Ralf, Carol Boye, Bryan N. Rhoads, Sang Y. Chong, Charu Tejwani, Sean D. Burns, Andrew D. Stamper, et al. "Process Window Centering for 22 nm Lithography." IEEE Transactions on Semiconductor Manufacturing 24, no. 2 (May 2011): 165–72. http://dx.doi.org/10.1109/tsm.2011.2106807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parker, Matthew. "A sub-terahertz transceiver in 22 nm FinFET." Nature Electronics 5, no. 3 (March 2022): 126. http://dx.doi.org/10.1038/s41928-022-00741-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kurd, Nasser, Muntaquim Chowdhury, Edward Burton, Thomas P. Thomas, Christopher Mozak, Brent Boswell, Praveen Mosalikanti, et al. "Haswell: A Family of IA 22 nm Processors." IEEE Journal of Solid-State Circuits 50, no. 1 (January 2015): 49–58. http://dx.doi.org/10.1109/jssc.2014.2368126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Ru, HanMing Wu, JinFeng Kang, DeYuan Xiao, XueLong Shi, Xia An, Yu Tian, et al. "Challenges of 22 nm and beyond CMOS technology." Science in China Series F: Information Sciences 52, no. 9 (September 2009): 1491–533. http://dx.doi.org/10.1007/s11432-009-0167-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shiotani, Hideaki, Shota Suzuki, Dong Gun Lee, Patrick Naulleau, Yasuyuki Fukushima, Ryuji Ohnishi, Takeo Watanabe, and Hiroo Kinoshita. "Dual Grating Interferometric Lithography for 22-nm Node." Japanese Journal of Applied Physics 47, no. 6 (June 20, 2008): 4881–85. http://dx.doi.org/10.1143/jjap.47.4881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seifert, N., B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Quan Shi, R. Allmon, and A. Bramnik. "Soft Error Susceptibilities of 22 nm Tri-Gate Devices." IEEE Transactions on Nuclear Science 59, no. 6 (December 2012): 2666–73. http://dx.doi.org/10.1109/tns.2012.2218128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Bo, Min Zhang, and Tianhong Cui. "Low-cost shrink lithography with sub-22 nm resolution." Applied Physics Letters 100, no. 13 (March 26, 2012): 133113. http://dx.doi.org/10.1063/1.3697836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Zongru, Christopher Jarrett Elash, Chen Jin, Li Chen, Jiesi Xing, Zhiwu Yang, and Shuting Shi. "Comparison of Total Ionizing Dose Effects in 22-nm and 28-nm FD SOI Technologies." Electronics 11, no. 11 (June 1, 2022): 1757. http://dx.doi.org/10.3390/electronics11111757.

Full text
Abstract:
Total ionizing dose (TID) effects from Co-60 gamma ray and heavy ion irradiation were studied at the 22-nm FD SOI technology node and compared with the testing results from the 28-nm FD SOI technology. Ring oscillators (RO) designed with inverters, NAND2, and NOR2 gates were used to observe the output frequency drift and current draw. Experimental results show a noticeable increased device current draw and decreases in RO frequencies where NOR2 ROs have the most degradation. As well, the functionality of a 256 kb SRAM block and shift-register chains were evaluated during C0-60 irradiation. SRAM functionality deteriorated at 325 krad(Si) of the total dosage, while the FF chains remained functional up to 1 Mrad(Si). Overall, the 22-nm FD SOI results show better resilience to TID effects compared to the 28-nm FD SOI technology node.
APA, Harvard, Vancouver, ISO, and other styles
11

Seaberg, Matthew D., Daniel E. Adams, Ethan L. Townsend, Daisy A. Raymondson, William F. Schlotter, Yanwei Liu, Carmen S. Menoni, et al. "Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source." Optics Express 19, no. 23 (October 25, 2011): 22470. http://dx.doi.org/10.1364/oe.19.022470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jeong-Dong Choe, Chang-Sub Lee, Sung-Ho Kim, Sung-Min Kim, Shin-Ae Lee, Ju-Won Lee, Y. G. Shin, Donggun Park, and Kinam Kim. "A 22-nm damascene-gate MOSFET fabrication with 0.9-nm EOT and local channel implantation." IEEE Electron Device Letters 24, no. 3 (March 2003): 195–97. http://dx.doi.org/10.1109/led.2003.811401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Brewer, Rachel M., En Xia Zhang, Mariia Gorchichko, Peng Fei Wang, Jonathan Cox, Steven L. Moran, Dennis R. Ball, et al. "Total Ionizing Dose Responses of 22-nm FDSOI and 14-nm Bulk FinFET Charge-Trap Transistors." IEEE Transactions on Nuclear Science 68, no. 5 (May 2021): 677–86. http://dx.doi.org/10.1109/tns.2021.3059594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gao, Ping, Na Yao, Changtao Wang, Zeyu Zhao, Yunfei Luo, Yanqin Wang, Guohan Gao, Kaipeng Liu, Chengwei Zhao, and Xiangang Luo. "Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens." Applied Physics Letters 106, no. 9 (March 2, 2015): 093110. http://dx.doi.org/10.1063/1.4914000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Cao Zhen, 曹振, 李艳秋 Li Yanqiu, and 刘菲 Liu Fei. "Manufacturable Design of 16~22 nm Extreme Ultraviolet Lithographic Objective." Acta Optica Sinica 33, no. 9 (2013): 0922005. http://dx.doi.org/10.3788/aos201333.0922005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chakraborty, Wriddhi, Khandker Akif Aabrar, Jorge Gomez, Rakshith Saligram, Arijit Raychowdhury, Patrick Fay, and Suman Datta. "Characterization and Modeling of 22 nm FDSOI Cryogenic RF CMOS." IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 7, no. 2 (December 2021): 184–92. http://dx.doi.org/10.1109/jxcdc.2021.3131144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chung, Shine C., Wen-Kuang Fang, and Fang-Hua Chen. "A 4Kx8 Innovative Fuse OTP on 22-nm FD-SOI." IEEE Journal of the Electron Devices Society 7 (2019): 837–45. http://dx.doi.org/10.1109/jeds.2019.2922711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xiaobin Wang, Yiran Chen, Hai Li, D. Dimitrov, and H. Liu. "Spin Torque Random Access Memory Down to 22 nm Technology." IEEE Transactions on Magnetics 44, no. 11 (November 2008): 2479–82. http://dx.doi.org/10.1109/tmag.2008.2002386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rusu, Stefan, Harry Muljono, David Ayers, Simon Tam, Wei Chen, Aaron Martin, Shenggao Li, Sujal Vora, Raj Varada, and Eddie Wang. "A 22 nm 15-Core Enterprise Xeon® Processor Family." IEEE Journal of Solid-State Circuits 50, no. 1 (January 2015): 35–48. http://dx.doi.org/10.1109/jssc.2014.2368933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fukushima, Yasuyuki, Yuya Yamaguchi, Takafumi Iguchi, Takuro Urayama, Tetsuo Harada, Takeo Watanabe, and Hiroo Kinoshita. "Development of interference lithography for 22 nm node and below." Microelectronic Engineering 88, no. 8 (August 2011): 1944–47. http://dx.doi.org/10.1016/j.mee.2011.02.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Xie, Peng, and Bruce W. Smith. "Scanning interference evanescent wave lithography for sub-22-nm generations." Journal of Micro/Nanolithography, MEMS, and MOEMS 12, no. 1 (February 11, 2013): 013011. http://dx.doi.org/10.1117/1.jmm.12.1.013011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Naulleau, Patrick P., Christopher N. Anderson, Lorie-Mae Baclea-an, Paul Denham, Simi George, Kenneth A. Goldberg, Michael Goldstein, et al. "Pushing extreme ultraviolet lithography development beyond 22 nm half pitch." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, no. 6 (2009): 2911. http://dx.doi.org/10.1116/1.3237092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mohsen, Ali, Adnan Harb, Nathalie Deltimple, and Abraham Serhane. "28-nm UTBB FD-SOI vs. 22-nm Tri-Gate FinFET Review: A Designer Guide—Part I." Circuits and Systems 08, no. 04 (2017): 93–110. http://dx.doi.org/10.4236/cs.2017.84006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mohsen, Ali, Adnan Harb, Nathalie Deltimple, and Abraham Serhane. "28-nm UTBB FD-SOI vs. 22-nm Tri-Gate FinFET Review: A Designer Guide—Part II." Circuits and Systems 08, no. 05 (2017): 111–21. http://dx.doi.org/10.4236/cs.2017.85007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jeevan, B., and K. Sivani. "Design of 0.8V, 22 nm DG-FinFET based efficient VLSI multiplexers." Microelectronics Journal 113 (July 2021): 105059. http://dx.doi.org/10.1016/j.mejo.2021.105059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Freeman, G., P. Chang, E. R. Engbrecht, K. J. Giewont, D. F. Hilscher, M. Lagus, T. J. McArdle, et al. "Performance-optimized gate-first 22-nm SOI technology with embedded DRAM." IBM Journal of Research and Development 59, no. 1 (January 2015): 5:1–5:14. http://dx.doi.org/10.1147/jrd.2014.2380252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Xu, Peng, Yinghua Piao, Liang Ge, Cheng Hu, Lun Zhu, Zhiwei Zhu, David Wei Zhang, and Dongping Wu. "Investigation of Novel Junctionless MOSFETs for Technology Node Beyond 22 nm." ECS Transactions 44, no. 1 (December 15, 2019): 33–39. http://dx.doi.org/10.1149/1.3694293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Schmidt, Matthias, Martin J. Suess, Angelica D. Barros, Richard Geiger, Hans Sigg, Ralph Spolenak, and Renato A. Minamisawa. "A Patterning-Based Strain Engineering for Sub-22 nm Node FinFETs." IEEE Electron Device Letters 35, no. 3 (March 2014): 300–302. http://dx.doi.org/10.1109/led.2014.2300865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sze-Ann Wu, Yi-Lung Cheng, Chia-Yang Wu, and Wen-Hsi Lee. "A Study of Cu/CuMn Barrier for 22-nm Semiconductor Manufacturing." IEEE Transactions on Device and Materials Reliability 14, no. 1 (March 2014): 286–90. http://dx.doi.org/10.1109/tdmr.2013.2262525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Holmes, Steven. "22-nm-node technology active-layer patterning for planar transistor devices." Journal of Micro/Nanolithography, MEMS, and MOEMS 9, no. 1 (January 1, 2010): 013001. http://dx.doi.org/10.1117/1.3302125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Park, Joon-Min, Dai-Gyoung Kim, Joo-Yoo Hong, Ilsin An, and Hye-Keun Oh. "Anisotropic Resist Reflow Process Simulation for 22 nm Elongated Contact Holes." Japanese Journal of Applied Physics 47, no. 6 (June 20, 2008): 4940–43. http://dx.doi.org/10.1143/jjap.47.4940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kozawa, Takahiro, Seiichi Tagawa, Julius Joseph Santillan, and Toshiro Itani. "Quencher Effects at 22 nm Pattern Formation in Chemically Amplified Resists." Japanese Journal of Applied Physics 47, no. 7 (July 11, 2008): 5404–8. http://dx.doi.org/10.1143/jjap.47.5404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Brown, J., and Z. Zuo. "Renal receptors for atrial and C-type natriuretic peptides in the rat." American Journal of Physiology-Renal Physiology 263, no. 1 (July 1, 1992): F89—F96. http://dx.doi.org/10.1152/ajprenal.1992.263.1.f89.

Full text
Abstract:
Receptors for alpha-atrial natriuretic peptide (alpha-ANP) and C-type natriuretic peptide [CNP-(1-22)] were quantified in kidneys from adult Wistar rats by in vitro autoradiography. 125I-labeled alpha-ANP (100 pM) bound reversibly to glomeruli, outer medullary vasa recta, and inner medulla with an apparent dissociation constant (Kd) of 3–6 nM. The presence of 10 microM des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP-(4– 23) (C-ANP), a specific ligand of the ANPR-C subtype of alpha-ANP receptor, inhibited approximately 50% of the glomerular binding of 125I-alpha-ANP, and this moiety of glomerular binding was also inhibited by CNP-(1–22) with an apparent inhibitory constant (Ki) of 10.47 +/- 7.59 nM. C-ANP and CNP-(1–22) showed little affinity for the medullary binding sites of alpha-ANP. 125I-[Tyr0]CNP-(1–22) (110 pM) bound solely to glomeruli and was competitively displaced by increasing concentrations of [Tyr0]CNP-(1–22) with an apparent Kd of 1.42 +/- 0.48 nM. Binding of increasing concentrations (25 pM to 1 nM) of 125I-[Tyr0]CNP-(1–22) in the presence or absence of 1 microM [Tyr0]CNP-(1–22) also demonstrated a high affinity (Kd of 0.41 +/- 0.07 nM) for the glomerular binding of 125I-[Tyr0]CNP-(1–22). Bound 125I-[Tyr0]CNP-(1–22) could be displaced by excess alpha-ANP and excess CNP-(1–22), both with high affinities. The glomerular binding of 125I-[Tyr0]CNP-(1–22) was also prevented by 10 microM C-ANP. Guanosine 3',5'-cyclic monophosphate produced by isolated glomeruli was measured by radioimmunoassay.(ABSTRACT TRUNCATED AT 250 WORDS)
APA, Harvard, Vancouver, ISO, and other styles
34

Mayeda, Jill, Donald Y. C. Lie, and Jerry Lopez. "Broadband Millimeter-Wave 5G Power Amplifier Design in 22 nm CMOS FD-SOI and 40 nm GaN HEMT." Electronics 11, no. 5 (February 23, 2022): 683. http://dx.doi.org/10.3390/electronics11050683.

Full text
Abstract:
Three millimeter-wave (mm-Wave) power amplifiers (PAs) that cover the key 5G FR2 band of 24.25 to 43.5 GHz are designed in two different state-of-the-art device technologies and are presented in this work. First, a single-ended broadband PA that employs a third-order input matching network is designed in a 40 nm GaN/SiC HEMT (High Electron Mobility Transistor) technology. Good agreement between the measurement and post-layout parasitic extracted (PEX) electromagnetic (EM) simulation data is observed, and it achieves a measured 3-dB BW (bandwidth) of 18.0–40.3 GHz and >20% maximum PAE (power-added-efficiency) across the entire 20–44 GHz band. Expanding upon this measured design, a differential broadband GaN PA that utilizes neutralization capacitors is designed, laid out, and EM simulated. Simulation results indicate that this PA achieves 3-dB BW 20.1–44.3 GHz and maximum PAE > 23% across this range. Finally, a broadband mm-Wave differential CMOS PA using a cascode topology with RC feedback and neutralization capacitors is designed in a 22 nm FD-SOI (fully depleted silicon-on-insulator) CMOS technology. This PA achieves an outstanding measured 3-dB BW of 19.1–46.5 GHz and >12.5% maximum PAE across the entire frequency band. This CMOS PA as well as the single-ended GaN PA are tested with 256-QAM-modulated 5G NR signals with an instantaneous signal BW of 50/100/400/9 × 100 MHz at a PAPR (peak-to-average-power ratio) of 8 dB. The data exhibit impressive linearity vs. POUT trade-off and useful insights on CMOS vs. GaN PA linearity degradation against an increasing BW for potential mm-Wave 5G applications.
APA, Harvard, Vancouver, ISO, and other styles
35

Wurm, Stefan. "EUV Lithography Development and Research Challenges for the 22 nm Half-pitch." Journal of Photopolymer Science and Technology 22, no. 1 (2009): 31–42. http://dx.doi.org/10.2494/photopolymer.22.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Das, S., R. Yu, K. Cherkaoui, P. Razavi, and S. Barraud. "Performance of 22 nm Tri-Gate Junctionless Nanowire Transistors at Elevated Temperatures." ECS Solid State Letters 2, no. 8 (May 23, 2013): Q62—Q65. http://dx.doi.org/10.1149/2.004308ssl.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Benk, Markus P., Kenneth A. Goldberg, Antoine Wojdyla, Christopher N. Anderson, Farhad Salmassi, Patrick P. Naulleau, and Michael Kocsis. "Demonstration of 22-nm half pitch resolution on the SHARP EUV microscope." Journal of Vacuum Science & Technology B 33, no. 6 (November 2015): 06FE01. http://dx.doi.org/10.1116/1.4929509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baklanov, Mikhail R., Evgeny A. Smirnov, and Larry Zhao. "Ultra Low Dielectric Constant Materials for 22 nm Technology Node and Beyond." ECS Transactions 35, no. 4 (December 16, 2019): 717–28. http://dx.doi.org/10.1149/1.3572315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Seo, Soon-Cheon, Chih-Chao Yang, Miaomiao Wang, Frederic Monsieur, Lahir Adam, Jeffrey B. Johnson, Dave Horak, et al. "Copper Contact for 22 nm and Beyond: Device Performance and Reliability Evaluation." IEEE Electron Device Letters 31, no. 12 (December 2010): 1452–54. http://dx.doi.org/10.1109/led.2010.2078483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yan, H., A. J. Bergren, R. McCreery, M. L. Della Rocca, P. Martin, P. Lafarge, and J. C. Lacroix. "Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions." Proceedings of the National Academy of Sciences 110, no. 14 (March 18, 2013): 5326–30. http://dx.doi.org/10.1073/pnas.1221643110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Younkin, Todd R. "Extreme-ultraviolet secondary electron blur at the 22-nm half pitch node." Journal of Micro/Nanolithography, MEMS, and MOEMS 10, no. 3 (July 1, 2011): 033004. http://dx.doi.org/10.1117/1.3607429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wu, Banqiu. "Next-generation lithography for 22 and 16 nm technology nodes and beyond." Science China Information Sciences 54, no. 5 (May 2011): 959–79. http://dx.doi.org/10.1007/s11432-011-4227-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kozawa, Takahiro, Seiichi Tagawa, Julius Joseph Santillan, Minoru Toriumi, and Toshiro Itani. "Feasibility Study of Chemically Amplified Extreme Ultraviolet Resists for 22 nm Fabrication." Japanese Journal of Applied Physics 47, no. 6 (June 13, 2008): 4465–68. http://dx.doi.org/10.1143/jjap.47.4465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kim, Eugene, Andrea Steinbrück, Maria Teresa Buscaglia, Vincenzo Buscaglia, Thomas Pertsch, and Rachel Grange. "Second-Harmonic Generation of Single BaTiO3 Nanoparticles down to 22 nm Diameter." ACS Nano 7, no. 6 (May 24, 2013): 5343–49. http://dx.doi.org/10.1021/nn401198g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Tawarayama, Kazuo, Hajime Aoyama, Kentaro Matsunaga, Shunko Magoshi, Yukiyasu Arisawa, and Taiga Uno. "Resolution Enhancement for Beyond-22-nm Node Using Extreme Ultraviolet Exposure Tool." Japanese Journal of Applied Physics 49, no. 6 (June 21, 2010): 06GD01. http://dx.doi.org/10.1143/jjap.49.06gd01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Acri, G., F. Podevin, E. Pistono, L. Boccia, N. Corrao, T. Lim, E. N. Isa, and P. Ferrari. "A Millimeter-Wave Miniature Branch-Line Coupler in 22-nm CMOS Technology." IEEE Solid-State Circuits Letters 2, no. 6 (June 2019): 45–48. http://dx.doi.org/10.1109/lssc.2019.2930197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Huang, Mingjing, and Xiaoyong He. "A Reconfigurable Analog Baseband for Multistandard Wireless Receivers in 22-nm CMOS." Journal of Physics: Conference Series 2613, no. 1 (October 1, 2023): 012024. http://dx.doi.org/10.1088/1742-6596/2613/1/012024.

Full text
Abstract:
Abstract This paper presents a low noise, and high linearity reconfigurable receiver (RX) analog baseband (ABB) with tunable bandwidth (BW) and gain for multi-standard applications. The designed ABB consists of a programmable gain amplifier (PGA) and a second-order active RC low-pass filter (LPF) with cutoff frequency range from 0.7 MHz–10 MHz, whereas the gain could be tuned between 0 dB and 49 dB. The proposed ABB is implemented in 22 nm CMOS process. The post-simulation results show that the current consumption is 3.36 mA from 1 V supply and the area occupies 571×328 μm 2. The ABB achieves 42.8 dBm in-band third-order harmonic intercept point (IIP3). The spurious-free dynamic range (SFDR) and in-band total harmonic distortion (THD) is 83.2 dBc and is -83.1 dB, respectively. The input referred in-band integrated noise (IRN) is 144.8 μVrms . A digital DCOC is used to calibrate the output DC level.
APA, Harvard, Vancouver, ISO, and other styles
48

Haarig, Moritz, Albert Ansmann, Holger Baars, Cristofer Jimenez, Igor Veselovskii, Ronny Engelmann, and Dietrich Althausen. "Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke." Atmospheric Chemistry and Physics 18, no. 16 (August 20, 2018): 11847–61. http://dx.doi.org/10.5194/acp-18-11847-2018.

Full text
Abstract:
Abstract. We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5–6.5 km height and in a stratospheric layer from 15–16 km height during a record-breaking smoke event on 22 August 2017. Three polarization/Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths (<3 %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22 % at 355 nm and 18 % at 532 nm and a comparably low value of 4 % at 1064 nm. The lidar ratios were 40–45 sr (355 nm), 65–80 sr (532 nm), and 80–95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius >500 nm). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350–400 nm. The effective particle radius was 0.32 µm. The tropospheric smoke particles were much smaller (effective radius of 0.17 µm). Mass concentrations were of the order of 5.5 µg m−3 (tropospheric layer) and 40 µg m−3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.
APA, Harvard, Vancouver, ISO, and other styles
49

Ibe, Eishi, Hitoshi Taniguchi, Yasuo Yahagi, Ken-ichi Shimbo, and Tadanobu Toba. "Impact of Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design Rule." IEEE Transactions on Electron Devices 57, no. 7 (July 2010): 1527–38. http://dx.doi.org/10.1109/ted.2010.2047907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Eitan, Ro'ee, and Ariel Cohen. "Untrimmed Low-Power Thermal Sensor for SoC in 22 nm Digital Fabrication Technology." Journal of Low Power Electronics and Applications 4, no. 4 (December 9, 2014): 304–16. http://dx.doi.org/10.3390/jlpea4040304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography