Academic literature on the topic '22-nm technology node'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '22-nm technology node.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "22-nm technology node"
Li, Zongru, Christopher Jarrett Elash, Chen Jin, Li Chen, Jiesi Xing, Zhiwu Yang, and Shuting Shi. "Comparison of Total Ionizing Dose Effects in 22-nm and 28-nm FD SOI Technologies." Electronics 11, no. 11 (June 1, 2022): 1757. http://dx.doi.org/10.3390/electronics11111757.
Full textXu, Peng, Yinghua Piao, Liang Ge, Cheng Hu, Lun Zhu, Zhiwei Zhu, David Wei Zhang, and Dongping Wu. "Investigation of Novel Junctionless MOSFETs for Technology Node Beyond 22 nm." ECS Transactions 44, no. 1 (December 15, 2019): 33–39. http://dx.doi.org/10.1149/1.3694293.
Full textHolmes, Steven. "22-nm-node technology active-layer patterning for planar transistor devices." Journal of Micro/Nanolithography, MEMS, and MOEMS 9, no. 1 (January 1, 2010): 013001. http://dx.doi.org/10.1117/1.3302125.
Full textBaklanov, Mikhail R., Evgeny A. Smirnov, and Larry Zhao. "Ultra Low Dielectric Constant Materials for 22 nm Technology Node and Beyond." ECS Transactions 35, no. 4 (December 16, 2019): 717–28. http://dx.doi.org/10.1149/1.3572315.
Full textSaxena, Shubhangi, and Kamsali Manjunathachari. "Novel Nanoelectronic Materials and Devices: For Future Technology Node." ECS Transactions 107, no. 1 (April 24, 2022): 15701–11. http://dx.doi.org/10.1149/10701.15701ecst.
Full textHuang, Zhengfeng, Yan Zhang, Wenhui Wu, Lanxi Duan, Huaguo Liang, Yiming Ouyang, Aibin Yan, and Tai Song. "A high-speed quadruple-node-upset-tolerant latch in 22 nm CMOS technology." Microelectronics Reliability 147 (August 2023): 115032. http://dx.doi.org/10.1016/j.microrel.2023.115032.
Full textLi, Zongru, Christopher Elash, Chen Jin, Li Chen, Shi-Jie Wen, Rita Fung, Jiesi Xing, Shuting Shi, Zhi Wu Yang, and Bharat L. Bhuva. "SEU performance of Schmitt-trigger-based flip-flops at the 22-nm FD SOI technology node." Microelectronics Reliability 146 (July 2023): 115033. http://dx.doi.org/10.1016/j.microrel.2023.115033.
Full textLu, Peng, Can Yang, Yifei Li, Bo Li, and Zhengsheng Han. "Three-Dimensional TID Hardening Design for 14 nm Node SOI FinFETs." Eng 2, no. 4 (December 3, 2021): 620–31. http://dx.doi.org/10.3390/eng2040039.
Full textChanghwan Shin, Min Hee Cho, Yasumasa Tsukamoto, Bich-Yen Nguyen, Carlos Mazuré, Borivoje Nikolić, and Tsu-Jae King Liu. "Performance and Area Scaling Benefits of FD-SOI Technology for 6-T SRAM Cells at the 22-nm Node." IEEE Transactions on Electron Devices 57, no. 6 (June 2010): 1301–9. http://dx.doi.org/10.1109/ted.2010.2046070.
Full textShin, Changhwan, Nattapol Damrongplasit, Xin Sun, Yasumasa Tsukamoto, Borivoje Nikolic, and Tsu-Jae King Liu. "Performance and Yield Benefits of Quasi-Planar Bulk CMOS Technology for 6-T SRAM at the 22-nm Node." IEEE Transactions on Electron Devices 58, no. 7 (July 2011): 1846–54. http://dx.doi.org/10.1109/ted.2011.2139213.
Full textDissertations / Theses on the topic "22-nm technology node"
Bansal, Anil Kumar. "CMOS scaling considerations in sub 10-nm node multiple-gate FETS." Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8046.
Full textBooks on the topic "22-nm technology node"
Wang, Guilei. Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6.
Full textWang, Guilei. Investigation on Sige Selective Epitaxy for Source and Drain Engineering in 22 Nm CMOS Technology Node and Beyond. Springer Singapore Pte. Limited, 2020.
Find full textWang, Guilei. Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond. Springer, 2019.
Find full textBalasinski, Artur. Design for Manufacturability: From 1d to 4D for 90 22 NM Technology Nodes. Springer New York, 2016.
Find full textBalasinski, Artur. Design for Manufacturability: From 1D to 4D for 90–22 nm Technology Nodes. Springer, 2013.
Find full textBalasinski, Artur. Design for Manufacturability: From 1D to 4D for 90-22 Nm Technology Nodes. Springer London, Limited, 2013.
Find full textBook chapters on the topic "22-nm technology node"
Wang, Guilei. "Strained Silicon Technology." In Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 9–21. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_2.
Full textKaur, Ravneet, Charu Madhu, and Deepti Singh. "Impact of Buried Oxide Layer Thickness on the Performance Parameters of SOI FinFET at 22 nm Node Technology." In Advances in Intelligent Systems and Computing, 537–44. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5903-2_54.
Full textWang, Guilei. "Introduction." In Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 1–7. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_1.
Full textWang, Guilei. "Epitaxial Growth of SiGe Thin Films." In Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 23–48. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_3.
Full textWang, Guilei. "SiGe S/D Integration and Device Verification." In Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 49–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_4.
Full textWang, Guilei. "Pattern Dependency of SiGe Layers Selective Epitaxy Growth." In Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 93–111. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_5.
Full textWang, Guilei. "Conclusions and Prospects." In Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond, 113–15. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0046-6_6.
Full textYin, Huaxiang, and Jiaxin Yao. "Advanced Transistor Process Technology from 22- to 14-nm Node." In Complementary Metal Oxide Semiconductor. InTech, 2018. http://dx.doi.org/10.5772/intechopen.78655.
Full textConference papers on the topic "22-nm technology node"
Gambino, J. P. "Copper interconnect technology for the 22 nm node." In 2011 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). IEEE, 2011. http://dx.doi.org/10.1109/vtsa.2011.5872228.
Full textFinders, Jo, Mircea Dusa, Jan Mulkens, Yu Cao, and Maryana Escalante. "Solutions for 22-nm node patterning using ArFi technology." In SPIE Advanced Lithography. SPIE, 2011. http://dx.doi.org/10.1117/12.881598.
Full textKazuya Ohuchi, Christian Lavoie, Conal E. Murray, Chris P. D'Emic, Isaac Lauer, Jack O. Chu, Bin Yang, et al. "Extendibility of NiPt silicide to the 22-nm node CMOS technology." In 2008 International Workshop on Junction Technology (IWJT). IEEE, 2008. http://dx.doi.org/10.1109/iwjt.2008.4540037.
Full textKim, Ryoung-Han, Steven Holmes, Scott Halle, Vito Dai, Jason Meiring, Aasutosh Dave, Matthew E. Colburn, and Harry J. Levinson. "22 nm technology node active layer patterning for planar transistor devices." In SPIE Advanced Lithography, edited by Harry J. Levinson and Mircea V. Dusa. SPIE, 2009. http://dx.doi.org/10.1117/12.814277.
Full textZhou, Renjie, Gabriel Popescu, and Lynford L. Goddard. "Finding defects in a 22 nm node wafer with visible light." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cleo_at.2013.af2j.2.
Full textAgarwal, Vivek Kumar, Manisha Guduri, and Aminul Islam. "Power and variability analysis of CMOS logic families @ 22-nm technology node." In 2014 3rd International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions). IEEE, 2014. http://dx.doi.org/10.1109/icrito.2014.7014674.
Full textRoy, Chandaramauleshwar, and Aminul Islam. "Comparative analysis of various 9T SRAM cell at 22-nm technology node." In 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS). IEEE, 2015. http://dx.doi.org/10.1109/retis.2015.7232929.
Full textGallitre, M., L. G. Gosset, A. Farcy, B. Blampey, R. Gras, C. Bermond, B. Flechet, and J. Torres. "Performance predictions of prospective air gap architectures for the 22 nm node." In 2007 IEEE International Interconnect Technology Conferencee. IEEE, 2007. http://dx.doi.org/10.1109/iitc.2007.382374.
Full textLu, Hai-Jin, Zong-Yan Pan, Pei-Yu Chen, Zhi-Cheng Zhang, and Ming-Zhi Chen. "Optimization of contact W related processes for 28/22 nm HKMG technology node." In 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2021. http://dx.doi.org/10.1109/edtm50988.2021.9420977.
Full textColombeau, B., T. Thanigaivelan, E. Arevalo, T. Toh, R. Miura, and H. Ito. "Ultra-shallow Carborane molecular implant for 22-nm node p-MOSFET performance boost." In 2009 International Workshop on Junction Technology (IWJT). IEEE, 2009. http://dx.doi.org/10.1109/iwjt.2009.5166211.
Full text