Journal articles on the topic '2.5 geometry'

To see the other types of publications on this topic, follow the link: 2.5 geometry.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '2.5 geometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Smits, P. R. J. M., and J. C. W. Van Vroonhoven. "The polarities of the partial geometry pg(5, 5, 2)." Geometriae Dedicata 21, no. 1 (August 1986): 51–54. http://dx.doi.org/10.1007/bf00147529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hahn, Jae Ryang, Gyu-Hyeong Kim, Ki Wan Kim, and Sukmin Jeong. "Binding geometry of furan on Si(5 5 12)−2×1." Surface Science 616 (October 2013): 166–70. http://dx.doi.org/10.1016/j.susc.2013.05.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Uçum, Ali, Kazım İlarslan, and Makoto Sakaki. "k-Type bi-null slant helices in $$\mathbb {R}_{2}^{5}$$ R 2 5." Journal of Geometry 108, no. 3 (May 8, 2017): 913–24. http://dx.doi.org/10.1007/s00022-017-0385-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martí Sánchez, María. "Surfaces with $${K^2=2\mathcal{X}-2}$$ and p g ≥ 5." Geometriae Dedicata 150, no. 1 (April 8, 2010): 49–61. http://dx.doi.org/10.1007/s10711-010-9493-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Basto-Gonçalves, J., and H. Reis. "The Geometry of 2 × 2 Systems of Conservation Laws." Acta Applicandae Mathematicae 88, no. 3 (September 2005): 269–329. http://dx.doi.org/10.1007/s10440-005-9002-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Larke, Patricia J. "Geometric Extravaganza: Spicing Up Geometry." Arithmetic Teacher 36, no. 1 (September 1988): 12–16. http://dx.doi.org/10.5951/at.36.1.0012.

Full text
Abstract:
If we can have science fairs, why not geometry fairs? They are excellent ways for elementary teachers to add pizzazz to the teaching of geometry. A geometry fair or geometric extravaganza is a display or exhibit of geometry projects representing the students' culminating work in a geometry unit. The purposes of a geometry fair a re (I) to remind students of important geometric terms and concepts; (2) to enable students to explore the world of lines, angles, points, and geometric shapes; (3) to help students identify and construct geome tric shapes and designs; (4) to help students prepare projects using their knowledge of geometry and creativity; and (5) to help students share work with othe rs. thus building pride in their work.
APA, Harvard, Vancouver, ISO, and other styles
7

Shaw, Ron. "Trivectors yielding spreads in PG(5, 2)." Journal of Geometry 96, no. 1-2 (December 2009): 149–65. http://dx.doi.org/10.1007/s00022-010-0030-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shaw, Ron. "Trivectors and cubics: PG(5, 2) aspects." Journal of Geometry 99, no. 1-2 (December 2010): 167–78. http://dx.doi.org/10.1007/s00022-011-0060-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ling, Alan C. H. "On 2-chromatic (v, 5, 1)-designs." Journal of Geometry 66, no. 1-2 (November 1999): 144–48. http://dx.doi.org/10.1007/bf01225678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hussain, Saghir, Yang Deli, Shagufta Parveen, Xin Hao, and Changjin Zhu. "Bis[5-methoxy-2-(methoxycarbonyl)phenyl] methylphosphonate." Acta Crystallographica Section E Structure Reports Online 70, no. 3 (February 12, 2014): o269. http://dx.doi.org/10.1107/s1600536814002542.

Full text
Abstract:
In the title phosphonate, C19H21O9P, the dihedral angle between the benzene rings is 63.33 (3)°, and the P atom has a distorted tetrahedral geometry, with angles in the range 101.30 (6)–120.38 (6)°. No significant intermolecular interactions are observed in the crystal structure, and π–π interactions between symmetry-related benzene rings are beyond 4 Å.
APA, Harvard, Vancouver, ISO, and other styles
11

Misni, Misni, and Ferry Ferdianto. "Analisis Kesalahan dalam Menyelesaikan Soal Geometri Siswa Kelas XI SMK Bina Warga Lemahabang." Jurnal Fourier 8, no. 2 (October 31, 2019): 73–78. http://dx.doi.org/10.14421/fourier.2019.82.73-78.

Full text
Abstract:
Geometri mengandung gambar dan simbol-simbol yang abstrak sehingga butuh penalaran yang tinggi. Kebanyakan siswa kurang memahami materi geometri, sehingga ketika siswa dihadapkan dengan soal geometri akan terjadi kesalahan dalam pengerjaannya. Oleh karena itu, perlu adanya identifikasi dari kesalahan-kesalahan siswa dalam menjawab soal-soal geometri. Adapun, tujuan dari penelitian ini adalah untuk mengetahui jenis-jenis kesalahan siswa dalam menyelesaikan soal geometri dan untuk mengetahui faktor-faktor yang menjadi kesalahan siswa dalam menjawab soal geomerti. Penelitian ini menggunakan metode deskriptif kualitatif. Sampel yang digunakan dalam penelitian ini adalah siswa kelas XI AK SMK Bina Warga Lemahabang. Pengambilan sampelnya yaitu dengan teknik purposive sampling berdasarkan hasil tes siswa. Cara dalam menganalisis hasil tes siswa dilakukan dengan mengidentifikasi data yang diperoleh dari hasil tes siswa lalu disimpulkan jenis-jenis kesalahannya. Adapun hasil analisis soal dan jawaban siswa, diketahui bahwa faktor-faktor yang menyebabkan kesalahan adalah (1) kesalahan dalam memahami konsep (2) kurangnya tingkat penalaran siswa untuk mencapai sebuah ruang. (3) kurang teliti (4) kurang menguasai materi (5) kesalahan dalam menuliskan formula. [Geometry contains abstract images and symbols so it needs high reasoning. Most students do not understand geometry material, so that when students are faced with geometric problems there will be errors in the process. Therefore, it is necessary to identify students' mistakes in answering geometry questions. Meanwhile, the purpose of this study is to determine the types of student errors in solving geometry problems and to find out the factors that are the students' mistakes in answering geomechanical questions. This study used descriptive qualitative method. The sample used in this study was class XI AK SMK Bina Warga Lemahabang. Sampling is by purposive sampling technique based on student test results. The way to analyze student test results is done by identifying data obtained from student test results and then concluding the types of errors. The results of the analysis of the questions and answers of students, it is known that the factors that cause errors are (1) errors in understanding the concept (2) the lack of students' level of reasoning to reach a space. (3) inaccurate (4) lack of mastery of material (5) errors in writing formula.]
APA, Harvard, Vancouver, ISO, and other styles
12

Avelino, Catarina P., and Altino F. Santos. "Right triangular spherical dihedral f-tilings: the $${\left(\frac{\pi}{2},\frac{\pi}{3},\frac{\pi}{5}\right)}$$ , $${\left(\frac{\pi}{2},\frac{2\pi}{5},\frac{\pi}{5}\right)}$$ family." Journal of Geometry 102, no. 1-2 (December 2011): 1–17. http://dx.doi.org/10.1007/s00022-011-0101-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Anfang, Stefan, Kurt Dehnicke, and Jörg Magull. "Die Kristallstrukturen der Dysprosium-Komplexe [DyCl3(DME)2] und [DyCl2(THF)5]+[DyCl4(THF)2]- / Crystal Structures of the Dysprosium Complexes [DyCl3(DME)2] and [DyCl2(THF)5]+[DyCl4(THF)2]-." Zeitschrift für Naturforschung B 51, no. 4 (April 1, 1996): 531–35. http://dx.doi.org/10.1515/znb-1996-0416.

Full text
Abstract:
Abstract [DyCl3(DME)2] (DME = 1,2-dimethoxyethane) has been prepared from the known tetrahy-drofuran complex [Dy2Cl6(THF)7] in boiling DME. Both complexes were characterized by structure determinations. [DyCl3(DME)2]: Space group P21/c, Z = 4, lattice dimensions at -70 °C: a = 1141.9(6), b = 884.2(4), c = 1558.3(6) pm, β = 104.83(4)°. The complex has a molecular structure with a distorted pentagonal bipyramidal geometry in which the oxygen atoms of the chelating DME molecules and one chlorine atom occupy the pentagonal plane. [DyCl2(THF)5]+[DyCl4(THF)2]-: Space group C2/c, Z = 4, lattice dimensions at -70 °C: a -1241.4(9), b = 1139.4(6), c = 2735.1(19) pm, β = 91.19(4)°. The complex contains a seven-coordinate cation with axial chloride ligands in a pentagonal bipyramidal structure and a six-coordinate anion with a trans octahedral geometry.
APA, Harvard, Vancouver, ISO, and other styles
14

Caragiu, M., Th Seyller, and R. D. Diehl. "Adsorption geometry of Cu()-(12×2)-14Xe." Surface Science 539, no. 1-3 (August 2003): 165–70. http://dx.doi.org/10.1016/s0039-6028(03)00818-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fu, Hailong, Pengjie Wang, Pujia Shan, Lin Xiong, Loren N. Pfeiffer, Ken West, Marc A. Kastner, and Xi Lin. "Competing ν = 5/2 fractional quantum Hall states in confined geometry." Proceedings of the National Academy of Sciences 113, no. 44 (October 18, 2016): 12386–90. http://dx.doi.org/10.1073/pnas.1614543113.

Full text
Abstract:
Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current–tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.
APA, Harvard, Vancouver, ISO, and other styles
16

Shishkov, Igor F., Lev V. Vilkov, and István Hargittai. "Molecular geometry of 5-methyl-2-furaldehyde from gas electron diffraction." Journal of Molecular Structure 352-353 (June 1995): 157–60. http://dx.doi.org/10.1016/0022-2860(94)08500-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ellena, J., G. Punte, and B. E. Rivero. "Conformational studies of substituted nitroanilines: geometry of 2-methyl-5-nitroaniline." Journal of Chemical Crystallography 26, no. 5 (May 1996): 319–24. http://dx.doi.org/10.1007/bf01677094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Anwar, Azwar. "Perbedaan Hasil Belajar Matematika Siswa ditinjau dari Level Geometri Van Hiele SMP Kelas VII." MANDALIKA Mathematics and Educations Journal 1, no. 2 (December 31, 2019): 74. http://dx.doi.org/10.29303/mandalika.v1i2.1536.

Full text
Abstract:
This study aims to determine the distribution of student geometry levels based on Van Hiele's theory and find out the differences in students' mathematics learning outcomes in grade VII junior high school. The sampling technique is probability sampling and a sample of 182 students is obtained. Data collection techniques used were Van Hiele level geometry tests and test results. Data analysis used descriptive statistics and anova with a significance level of 5%. The results showed that only 170 students were included in the Van Hiele geometry level, namely 62 students were at level 0, 97 students were at level 1, 5 students were at level 2, and as many as 6 students are at level 3. In the inferential analysis based on analysis of variance (two-way anova) concludes that for learning outcomes based on Van Hiele level geometry obtained Fcount = 13.793 > Ftable = 9.28 means H0 is rejected means that there are differences in mathematics learning outcomes based on Van Hiele geometry level.AbstrakPenelitian ini bertujuan untuk mengetahui distribusi level geometri siswa berdasarkan teori Van Hiele dan mengetahui perbedaan hasil belajar matematika siswa di kelas VII SMP. Menggunakan teknik probability sampling dan diperoleh sampel sebanyak 182 siswa. Teknik pengumpulan data yang digunakan adalah tes level geometri Van Hiele dan tes hasil belajar. Analisis data menggunakan statistik deskriptif dan anova dengan taraf signifikansi sebesar 5%. Hasil analisis data menunjukkan bahwa dari 182 sampel, hanya 170 siswa yang termasuk dalam level geometri Van Hiele yaitu 62 siswa berada pada level 0, sebanyak 97 siswa pada level 1, sebanyak 5 siswa pada level 2, dan 6 siswa pada level 3. Analisis anova dua arah diperoleh Fhitung = 13,793 > Ftabel = 9,28 berarti H0 ditolak yang artinya terdapat perbedaan hasil belajar matematika berdasarkan level geometri Van Hiele.
APA, Harvard, Vancouver, ISO, and other styles
19

Anwar, Azwar. "Perbedaan Hasil Belajar Matematika Siswa ditinjau dari Level Geometri Van Hiele SMP Kelas VII." Mandalika Mathematics and Educations Journal 1, no. 2 (December 31, 2019): 74–80. http://dx.doi.org/10.29303/jm.v1i2.1536.

Full text
Abstract:
This study aims to determine the distribution of student geometry levels based on Van Hiele's theory and find out the differences in students' mathematics learning outcomes in grade VII junior high school. The sampling technique is probability sampling and a sample of 182 students is obtained. Data collection techniques used were Van Hiele level geometry tests and test results. Data analysis used descriptive statistics and anova with a significance level of 5%. The results showed that only 170 students were included in the Van Hiele geometry level, namely 62 students were at level 0, 97 students were at level 1, 5 students were at level 2, and as many as 6 students are at level 3. In the inferential analysis based on analysis of variance (two-way anova) concludes that for learning outcomes based on Van Hiele level geometry obtained Fcount = 13.793 > Ftable = 9.28 means H0 is rejected means that there are differences in mathematics learning outcomes based on Van Hiele geometry level.AbstrakPenelitian ini bertujuan untuk mengetahui distribusi level geometri siswa berdasarkan teori Van Hiele dan mengetahui perbedaan hasil belajar matematika siswa di kelas VII SMP. Menggunakan teknik probability sampling dan diperoleh sampel sebanyak 182 siswa. Teknik pengumpulan data yang digunakan adalah tes level geometri Van Hiele dan tes hasil belajar. Analisis data menggunakan statistik deskriptif dan anova dengan taraf signifikansi sebesar 5%. Hasil analisis data menunjukkan bahwa dari 182 sampel, hanya 170 siswa yang termasuk dalam level geometri Van Hiele yaitu 62 siswa berada pada level 0, sebanyak 97 siswa pada level 1, sebanyak 5 siswa pada level 2, dan  6 siswa pada level 3. Analisis anova dua arah diperoleh Fhitung = 13,793 > Ftabel = 9,28 berarti H0 ditolak yang artinya terdapat perbedaan hasil belajar matematika berdasarkan level geometri Van Hiele.
APA, Harvard, Vancouver, ISO, and other styles
20

Le Moigne, Francois, and Paul Tordo. "Stereoselective Synthesis, Molecular Geometry, and Oxidation of (5-Isopropyl-2-methylpyrrolidin-2-yl)phosphonates." Journal of Organic Chemistry 59, no. 12 (June 1994): 3365–67. http://dx.doi.org/10.1021/jo00091a024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Xu, Xing-You, Tong-Tao Xu, Shuai-Shuai Ni, Jian Gao, and Da-Qi Wang. "Bis{2-[1-(benzylimino)ethyl]-5-methoxyphenol}dichlorozinc(II)." Acta Crystallographica Section E Structure Reports Online 62, no. 7 (June 14, 2006): m1548—m1549. http://dx.doi.org/10.1107/s1600536806021829.

Full text
Abstract:
The title complex, [ZnCl2(C16H17NO2)2], displays a distorted tetrahedral coordination geometry around the ZnII ion. The Schiff base inner salt, (benzylimino)ethyl-5-methoxyphenol, coordinates in a monodentate manner to the ZnII ion via the deprotonated hydroxy groups. The protonated imino groups form intramolecular hydrogen bonds with the deprotonated hydroxyl groups of the same Schiff base ligand.
APA, Harvard, Vancouver, ISO, and other styles
22

Dehon, Michel. "A geometry of rank 5 associated with PGO5(3)." Journal of Combinatorial Theory, Series A 65, no. 1 (January 1994): 164–71. http://dx.doi.org/10.1016/0097-3165(94)90044-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yang, Tongou. "Uniform $$l^2$$-Decoupling in $$\mathbb R^2$$ for Polynomials." Journal of Geometric Analysis 31, no. 11 (April 3, 2021): 10846–67. http://dx.doi.org/10.1007/s12220-021-00666-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Florentino, Carlos A. A. "Invariants of 2 × 2 matrices, irreducible $${\hbox{SL}(2, \mathbb{C})}$$ characters and the Magnus trace map." Geometriae Dedicata 121, no. 1 (November 15, 2006): 167–86. http://dx.doi.org/10.1007/s10711-006-9097-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chérif, Ichraf, Jawher Abdelhak, Mohamed Faouzi Zid, and Ahmed Driss. "2-Amino-5-chloropyridinium cis-diaquadioxalatochromate(III) sesquihydrate." Acta Crystallographica Section E Structure Reports Online 68, no. 6 (May 26, 2012): m824—m825. http://dx.doi.org/10.1107/s1600536812023392.

Full text
Abstract:
In the crystal structure of the title compound, (C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O, the CrIII atom adopts a distorted octahedral geometry being coordinated by two O atoms of two cis water molecules and four O atoms from two chelating oxalate dianions. The cis-diaquadioxalatochromate(III) anions, 2-amino-5-chloropyridinium cations and uncoordinated water molecules are linked into a three-dimensional supramolecular array by O—H...O and N—H...O hydrogen-bonding interactions. One of the two independent lattice water molecules is situated on a twofold rotation axis.
APA, Harvard, Vancouver, ISO, and other styles
26

Farag, Abeer Mohamed, Teoh Siang Guan, Hasnah Osman, Madhukar Hemamalini, and Hoong-Kun Fun. "catena-Poly[[[aquamanganese(III)]-μ-(E)-5-bromo-N-[2-(5-bromo-2-oxidobenzylideneamino)-4-nitrophenyl]-2-oxidobenzamidato]N,N-dimethylfomamide monosolvate]." Acta Crystallographica Section E Structure Reports Online 68, no. 4 (March 3, 2012): m365—m366. http://dx.doi.org/10.1107/s1600536812008501.

Full text
Abstract:
The asymmetric unit of the title complex, {[Mn(C20H10Br2N3O5)(H2O)]·(CH3)2NCHO}n, consists of one MnIIIion, one (E)-5-bromo-N-[2-(5-bromo-2-oxidobenzylideneamino)-4-nitrophenyl]-2-oxidobenzamidate ligand (Schiff base), one water molecule and anN,N-dimethylformamide molecule. The coordination geometry around the MnIIIion is a distorted octahedron, being surrounded by two O and two N atoms from the Schiff base, which are positioned in the equatorial plane. The water molecule and the O atom of the carbonyl group from the adjacent MnIIIcomplex are situated at the axial positions, leading to a polymeric chain along thecaxis. In the crystal, the complex andN,N-dimethylformamide molecules are connectedviaO—H...O, C—H...O and C—H...Br hydrogen bonds, forming a three-dimensional network.
APA, Harvard, Vancouver, ISO, and other styles
27

Hummel, Hans-Ulrich, Thomas Fischer, Matthias Moll, Alexander Wolski, Peter Otto, and Wolfgang Dietzsch. "Über Verbindungen subvalenter Hauptgruppenmetallkationen mit Dithiolaten, 5. Mitteilung. Die Kristallstruktur von (AsPh4)2[Te(S2C = C(CN)2)2] und ab initio-Berechnungen an [Te(S2C =C(CN)2)2]2- / Compounds of Subvalent Main Group Cations with Dithiolates, Part 5. Crystal Structure of (AsPh4)2[Te(S2C = C(CN)2)2] and ab initio Calculation of [Te(S2C = C(CN)2)2]2-." Zeitschrift für Naturforschung B 47, no. 3 (March 1, 1992): 344–50. http://dx.doi.org/10.1515/znb-1992-0307.

Full text
Abstract:
AbstractThe crystal structure of (AsPh4)2[Te(S2C = C(CN)2)2] has been determined by X-ray diffrac tion and the electronic structure has been calculated using an effective core potential approach for core electrons of Te and minimal basis-sets for valence electrons of Te and electrons of S, C and N. Te is situated in the center of planar [Te(S2C = C(CN)2)2]2- anions and is coordinated by four sulfur atoms in a trapezoid geometry with Te -S distances of 2.463(4), 2.524(4), 2.819(4) and 2.945(3) Å. The compound crystallizes in the triclinic space group P 1̄ with a = 9.562(5), b = 11.430(6), c = 27.319(20) Å, α = 93.248(2), β = 91.06(2), γ = 112.23(4)° and Z = 2. The trapezoid geometry allows a straightforeward mixing of Te 5 s-and one 5p-orbital giving rise to the formation of sp-hybride orbitals.
APA, Harvard, Vancouver, ISO, and other styles
28

Gionfriddo, Mario. "Intersections of Steiner systemss(3,4,v) withv=5�2 n." Journal of Geometry 24, no. 2 (June 1985): 103–11. http://dx.doi.org/10.1007/bf01220481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Biś, Andrzej, and Mariusz Urbański. "Geometry of Markov systems and codimension one foliations." Annales Polonici Mathematici 94, no. 2 (2008): 187–96. http://dx.doi.org/10.4064/ap94-2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Jun-Ying, and Tian-Duo Li. "catena-Poly[[dichloridodimethyltin(IV)]-μ-5-methylpyrazine-2-carboxylato-κ3 O:O′,N-[dimethyltin(IV)]]-μ-5-methylpyrazine-2-carboxylato-κ3 O,N:O′]." Acta Crystallographica Section E Structure Reports Online 63, no. 3 (February 23, 2007): m847—m849. http://dx.doi.org/10.1107/s1600536807007866.

Full text
Abstract:
The title compound, [Sn2Cl2(CH3)4(C6H5N2O2)2], forms infinite one-dimensional zigzag chains that propagate in a helical fashion along the c axis via an Sn—O=C—O—Sn—O bridge which involves the carboxylate groups of two methylpyrazinecarboxylate ligands. These display both chelating and bridging coordination behaviour. The asymmetric unit contains two Sn atoms; one adopts a distorted trigonal–bipyramidal geometry, while the other is in a distorted pentagonal–bipyramidal configuration.
APA, Harvard, Vancouver, ISO, and other styles
31

He, Hongshan. "(Barbiturato-κO)[hydridotris(5-methyl-3-phenyl-1-pyrazolyl)borato-κ3 N 2,N 2′,N 2′′]zinc(II) methanol solvate." Acta Crystallographica Section E Structure Reports Online 63, no. 3 (February 23, 2007): m850—m852. http://dx.doi.org/10.1107/s1600536807008185.

Full text
Abstract:
In the title compound, [Zn(C30H28BN6)(C4H3N2O3)]·CH3OH, the ZnII atom is coordinated in a tetrahedral geometry by three N atoms from the pyrazolyl groups of the tripodal ligand, and by one O atom from a barbiturate anion.
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Jian-Quan, Dan Mu, and Meng-Bao Fan. "Bis[5-(pyridin-2-yl-κN)tetrazolido-κN1]copper(II)." Acta Crystallographica Section E Structure Reports Online 70, no. 3 (February 5, 2014): m79. http://dx.doi.org/10.1107/s1600536814002062.

Full text
Abstract:
In the title complex, [Cu(C6H4N5)2], the CuIIion lies on an inversion center and is coordinated by two chelating 5-(pyridin-2-yl)tetrazolide ligands in a slightly distorted square-planar coordination geometry. In the crystal, π–π stacking interactions, with centroid–centroid distances in the range 3.4301 (14)–3.4387 (13) Å, link the complex molecules along [101].
APA, Harvard, Vancouver, ISO, and other styles
33

Erjavec, Zlatko. "On Killing Magnetic Curves in Sl(2, ℝ) Geometry." Reports on Mathematical Physics 84, no. 3 (December 2019): 333–50. http://dx.doi.org/10.1016/s0034-4877(19)30096-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kramer, P. "Fricke-Klein geometry for the group Sl(2,C)." Journal of Physics A: Mathematical and General 26, no. 5 (March 7, 1993): L245—L250. http://dx.doi.org/10.1088/0305-4470/26/5/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Delamotte, B., and J. Kaplan. "The geometry of N=2 supergravity in harmonic superspace." Classical and Quantum Gravity 4, no. 5 (September 1, 1987): 1223–34. http://dx.doi.org/10.1088/0264-9381/4/5/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sumardi, Sumardi, Lutfi Nur, and Hilma Halimatus Sa’diyyah. "Kemampuan Matematika Anak Usia 5-6 Tahun di Kober Al-Hidayah Kecamatan Cikoneng Kabupaten Ciamis." JURNAL PAUD AGAPEDIA 1, no. 1 (June 20, 2017): 106–17. http://dx.doi.org/10.17509/jpa.v1i1.7164.

Full text
Abstract:
This research is motivated by the theory of mathematics learning in early childhood which has two main areas of numbers and geometry, so the researcher focuses this research on two fields. The research is a descriptive study on the mathematical ability of children aged 5-6 years in Kober Al-Hidayah Cikoneng subdistrict Ciamis regency. The purpose of this study is to describe the level of mathematical ability such as describe the ability to recognize numbers in the cardinal and ordinal, and the ability to recognize the shape of 2 dimensional geometry and 3 dimensions. The approach of research method used is quantitative method with the aim to test the theory about variable Mathematical ability in children aged 5-6 years. The research method used is survey method. The stages of this research are: 1) conducting preliminary study and problem identification. 2) data collection phase. 3) data analysis as the answer to the problem. 4) conclusion. The sample used is a saturated sample of 17 children. Data collection tools are test and observation sheet. The result of this research that 1) the mathematics ability of children aged 5-6 years in Kober Al-Hidayah Cikoneng sub-district of Ciamis Regency included in the criteria develop as expected with percentage 74,26% from total of all children, 2) ability to know cardinal number of child age 5 -6 years in Kober Al-Hidayah Cikoneng subdistrict Ciamis regency has a percentage of 94.11% of the total of all children, and the ability to recognize ordinal numbers has a percentage of 69.11% of the total of all children, and 3) the ability to recognize 2 dimensional geometry Children aged 5-6 years in Kober Al-Hidayah Cikoneng subdistrict Ciamis regency has a percentage of 70.58% of the total of all children, while the ability of 3-dimensional geometry has a percentage of 57.35% of the total of all children.Penelitian ini dilatarbelakangi oleh adanya teori tentang pembelajaran matematika pada anak usia dini yang memiliki dua bidang utama yaitu angka dan geometri, sehingga peneliti memfokuskan penelitian ini pada dua bidang tersebut. Penelitian yang dilakukan merupakan penelitian deskriptif terhadap kemampuan matematika anak usia 5-6 tahun di Kober Al-Hidayah Kecamatan Cikoneng Kabupaten Ciamis. Tujuan dari penelitian ini yaitu untuk mendeskripsikan tingkat kemampuan matematika diantaranya mendeskripsikan kemampuan mengenal angka dalam kardinal dan ordinal, serta kemampuan mengenal bentuk geometri 2 dimensi dan 3 dimensi. Pendekatan metode penelitian yang digunakan adalah metode kuantitatif dengan tujuan untuk menguji teori tentang variabel kemampuan matematika pada anak usia 5-6 tahun. Metode penelitian yang digunakan adalah metode survey. Tahapan penelitian ini yaitu : 1) melakukan studi pendahuluan dan identifikasi masalah. 2) tahap pengumpulan data. 3) analisis data sebagai jawaban dari masalah. 4) kesimpulan. Sampel yang digunakan ialah sampel jenuh yang berjumlah 17 anak. Alat pengumpulan data berupa tes dan lembar observasi. Hasil dari penelitian ini bahwa 1) kemampuan matematika anak usia 5-6 tahun di Kober Al-Hidayah Kecamatan Cikoneng Kabupaten Ciamis termasuk dalam kriteria berkembang sesuai harapan dengan persentase 74,26% dari total seluruh anak, 2) kemampuan mengenal angka kardinal anak usia 5-6 tahun di Kober Al-Hidayah Kecamatan Cikoneng Kabupaten Ciamis memiliki persentase sebanyak 94,11% dari total seluruh anak, dan pada kemampuan mengenal angka ordinal memiliki persentase sebanyak 69,11% dari total seluruh anak, dan 3) kemampuan mengenal geometri 2 dimensi anak usia 5-6 tahun di Kober Al-Hidayah Kecamatan Cikoneng Kabupaten Ciamis memiliki persentase sebanyak 70,58% dari total seluruh anak, sedangkan pada kemampuan geometri 3 dimensi memiliki persentase sebanyak 57,35% dari total seluruh anak.
APA, Harvard, Vancouver, ISO, and other styles
37

Fan, Guang, San-Ping Chen, and Sheng-Li Gao. "Diaqua(5-methylpyrazine-2-carboxylato-κ2 N,O)cobalt(II)." Acta Crystallographica Section E Structure Reports Online 63, no. 3 (February 14, 2007): m772—m773. http://dx.doi.org/10.1107/s1600536807003236.

Full text
Abstract:
In the title complex, [Co(C6H5N2O2)2(H2O)2], the Co2+ cation lies on an inversion centre and the coordination geometry is distorted octahedral, with two N atoms and two O atoms from the 5-methylpyrazine-2-carboxylate ligands in the equatorial plane. The two remaining coordination sites are occupied by two water molecules. The crystal structure is stabilized by a network of O—H...O hydrogen-bonding interactions, forming a two-dimensional supramolecular structure.
APA, Harvard, Vancouver, ISO, and other styles
38

Fan, Guang, San-Ping Chen, and Sheng-Li Gao. "Diaqua(5-methylpyrazine-2-carboxylato-κ2 N,O)zinc(II)." Acta Crystallographica Section E Structure Reports Online 63, no. 3 (February 14, 2007): m774—m775. http://dx.doi.org/10.1107/s1600536807003455.

Full text
Abstract:
In the title complex, [Zn(C6H5N2O2)2(H2O)2], the Zn2+ cation lies on an inversion centre and the coordination geometry is distorted octahedral, with two N atoms and two O atoms from the 5-methylpyrazine-2-carboxylate ligand in the equatorial plane. The two remaining coordination sites are occupied by two water molecules. The crystal structure is stabilized by a network of O—H...O hydrogen-bonding interactions, forming a two-dimensional supramolecular structure.
APA, Harvard, Vancouver, ISO, and other styles
39

Elerman, Yalçün, Mehmet Kabak, and Ayhan Elmali. "Crystal Structure and Conformation of N-(5-Chlorosalicylidene)- 2-hydroxy-5-chloroaniline." Zeitschrift für Naturforschung B 57, no. 6 (June 1, 2002): 651–56. http://dx.doi.org/10.1515/znb-2002-0610.

Full text
Abstract:
Abstract N-(5-Chlorosalicylidene)-2-hydroxy-5-chloroaniline was synthesized and its crystal structure determined. It crystallizes in the orthorhombic space group Pna21 with a = 14.668(4), b = 6.084(3), c = 27.980(4) Å , R = 0.051 for 4788 independent reflections). There are two independent nearly planar molecules in the asymmetric unit. The intramolecular hydrogen bonds occur between the pairs of atoms N1 and O1 [2.553(6) Å], N1 and O2 [2.585(5) Å], N2 and O3 [2.567(6) Å], N2 and O4 [2.620(5) Å], the hydrogen atoms essentially being bonded to the nitrogen atoms. The neighboring molecules are linked via an intermolecular O-H···O hydrogen bond [2.557(5) Å ]. Conformations of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations. The optimized geometry of the molecular structure corresponding to the nearly planar conformation is the most stable conformation in the calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded steric interactions.
APA, Harvard, Vancouver, ISO, and other styles
40

Fajari, Urip Nurul. "Analisis Miskonsepsi Siswa pada Materi Bangun Datar dan Bangun Ruang." Jurnal Kiprah 8, no. 2 (November 19, 2020): 113–22. http://dx.doi.org/10.31629/kiprah.v8i2.2071.

Full text
Abstract:
Matematika merupakan bidang studi yang memegang peranan penting dalam pendidikan. Geometri adalah salah satu materi dari matematika yang diajarkan di sekolah dasar. Geometri sering dianggap sebagai materi yang paling sulit dipahami karena memiliki istilah-istilah yang tidak mudah untuk dipahami. Permasalahan geometri yang paling sering muncul di sekolah dasar adalah miskonsepsi. Penelitian ini bertujuan untuk menganalisis miskonsepsi siswa pada materi bangun datar dan bangun ruang, penyebab, dan solusi penanganannya. Penelitian ini menggunakan metode kualitatif dengan pendekatan deskriptif eksploratif. Subjek penelitian ini adalah 56 siswa siswa kelas 5 SDN 2 Karangreja dan SDN 1 Sirandu. Hasil penelitian menunjukkan bahwa siswa mengalami miskonsepsi pada materi: (1) posisi posisi segiempat, istilah segiempat, dan hubungan antar bentuk-bentuk segiempat; (2) istilah luas daerah bangun datar; (3) alas prisma; (4) garis tinggi limas; (5) sisi balok; dan (6) rusuk kerucut. Miskonsepsi siswa disebabkan oleh beberapa faktor, yaitu (1) penjelasan guru yang tidak menyeluruh; (2) siswa belum memahami istilah-istilah dasar seperti sisi, rusuk, dll.; (3) siswa terbiasa dengan posisi bangun datar atau bangun ruang yang horizontal; (4) pembelajaran tanpa visualisasi benda konkret. Adapun solusi penanganannya adalah dengan menggunakan media pembelajaran yang konkret dan menarik, dan menjelaskan perbedaan istilah-istilah bangun datar maupun bangun ruang secara menyeluruh. Mathematics is a field of study that plays an important role in education. Geometry is one of the materials from mathematics taught in elementary schools. Geometry is often considered the most difficult material to understand because it has terms that are not easy to understand. The most common geometry problem that arises in elementary schools is misconception. This study aims to analyze students' misconceptions on two-dimensional figure material and geometry, their causes, and their handling solutions. The research method used is qualitative with a descriptive exploratory approach. The subjects of this study were 56 fifth grade students of SDN 2 Karangreja and SDN 1 Sirandu. The results showed that there were students' misconceptions on the material: (1) quadrilateral positions, quadrilateral terms, and relationships between quadrilateral forms; (2) the term area of ​​a two-dimensional figure; (3) the base of the prism; (4) pyramid altitude; (5) cuboid side; and (6) cone edge. Student misconceptions are caused by several factors, namely (1) incomplete teacher explanation; (2) students have not yet understood basic terms such as sides, edges, etc.; (3) students are accustomed to horizontal two-dimensional figure or geometry positions; (4) learning without visualization of concrete objects. The solution is to use concrete and interesting learning media, and explain the differences in terms of two-dimensional figures and geometry as a whole.
APA, Harvard, Vancouver, ISO, and other styles
41

CANARUTTO, DANIEL. ""MINIMAL GEOMETRIC DATA" APPROACH TO DIRAC ALGEBRA, SPINOR GROUPS AND FIELD THEORIES." International Journal of Geometric Methods in Modern Physics 04, no. 06 (September 2007): 1005–40. http://dx.doi.org/10.1142/s0219887807002417.

Full text
Abstract:
The first three sections contain an updated, not-so-short account of a partly original approach to spinor geometry and field theories introduced by Jadczyk and myself [3–5]; it is based on an intrinsic treatment of 2-spinor geometry in which the needed background structures do not need to be assumed, but rather arise naturally from a unique geometric datum: a vector bundle with complex 2-dimensional fibers over a real 4-dimensional manifold. The following two sections deal with Dirac algebra and 4-spinor groups in terms of two spinors, showing various aspects of spinor geometry from a different perspective. The last section examines particle momenta in 2-spinor terms and the bundle structure of 4-spinor space over momentum space.
APA, Harvard, Vancouver, ISO, and other styles
42

LE MOIGNE, F., and P. TORDO. "ChemInform Abstract: Stereoselective Synthesis, Molecular Geometry, and Oxidation of (5- Isopropyl-2-methylpyrrolidin-2-yl)phosphonates." ChemInform 25, no. 51 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199451158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Femila Nirmal, N. S., and T. F. Abbs Fen Reji. "DFT and Molecular Docking Study of 2-[2-(4-Chlorophenylaminothiazol-5-yl]benzothiazole." Asian Journal of Chemistry 31, no. 3 (2019): 695–98. http://dx.doi.org/10.14233/ajchem.2019.21780.

Full text
Abstract:
The title compound was computed by means of DFT chemical quantum calculations to obtain optimized molecular geometry, harmonic vibrational frequencies and atomic charges. Vibrational bands to the various structural groups and their importance were predicted by analyzing the vibrational spectra. The data showed that B3LYP method provide satisfactory data for assigning vibrational frequencies and structural properties.The HOMO and LUMO energies calculated permit the determination of atomic and molecular parameters and they also represented the transfer of charge in the molecule. Mulliken atomic charge analysis was also done. A comprehensive molecular picture of 2-[2-(4-chlorophenylaminothiazol-5-yl]benzothiazole and its interactions were got from NBO investigations. The molecular docking study indicates that benzothiazole derivative may possess inhibitory activity against BCL2 pancreatic cancer cell lines.
APA, Harvard, Vancouver, ISO, and other styles
44

Dey, D. K., S. P. Dey, A. Elmali, and Y. Elerman. "Crystal Structure and Conformation of 2-{(2′-Aminobenzyl)iminoethyl}- 5-methoxyphenol." Zeitschrift für Naturforschung B 56, no. 4-5 (May 1, 2001): 375–80. http://dx.doi.org/10.1515/znb-2001-4-509.

Full text
Abstract:
AbstractThe Schiff base, 2-{(2′-aminobenzyl)iminoethyl}-5-methoxyphenol, 1,2 -C6H4[NH2-2 ʹ]-CH2N=CHC6H3(OMe-5)OH (I), has been prepared by the reaction of 2 -amino-1-benzylamine and 2-hydroxy-4-methoxyacetophenone in methanol. The molecular structure has been con­firmed by single crystal X-ray crystallography (triclinic, space group P 1̄, a = 7.201(2), b = 9.802(2), c = 9.993(2) Å, α = 83.09(2), β = 73.49(2), γ = 84.09(2)°, R = 0.0415 for 2611 independent reflections). The 1H and 13C NMR spectra in CDCI3 solution indicate the forma­tion of some other minor conformations or dissociation in solution. The title compoundois not planar. Intramolecular hydrogen bonding occurs between O(1) and N(1) atoms [2.528(2) Å], the hydrogen atom essentially being bonded to the nitrogen atom. Minimum energy conformations from AMI were calculated as a function of four torsion angles. The optimized geometry of the molecular structure corresponding to the non-planar conformation is the most stable conformation in all calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded hydrogen-hydrogen repulsions.
APA, Harvard, Vancouver, ISO, and other styles
45

Essa, Ali Hashem, and A. F. Jalbout. "Analysis of the structural and electronic properties of 1-(5-Hydroxymethyl - 4 –[ 5 – (5-oxo-5-piperidin-1-yl-penta- 1,3dienyl)-benzo[1,3]dioxol-2-yl] -tetrahydro-furan-2-yl)-5- methyl-1H-pyrimidine-2,4dione molecule." Eclética Química Journal 33, no. 1 (February 1, 2018): 71. http://dx.doi.org/10.26850/1678-4618eqj.v33.1.2008.p71-76.

Full text
Abstract:
The structural and electronic properties of 1-(5-Hydroxymethyl - 4 –[ 5 – (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]- tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.
APA, Harvard, Vancouver, ISO, and other styles
46

Abdel-All, Nassar H., and Fathi M. Hamdoon. "Cyclic surfaces in E 5 generated by equiform motions." Journal of Geometry 79, no. 1-2 (April 1, 2004): 1–11. http://dx.doi.org/10.1007/s00022-003-1682-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Steffen, Eckhard. "Tutte's 5-flow conjecture for graphs of nonorientable genus 5." Journal of Graph Theory 22, no. 4 (August 1996): 309–19. http://dx.doi.org/10.1002/(sici)1097-0118(199608)22:4<309::aid-jgt5>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yavari, Morteza, S. Beyramabadi, Ali Morsali, and Mohammad Bozorgmehr. "(E)-4-(((2-amino-5-chlorophenyl)imino)methyl)-5-(hydroxy-methyl)-2-methylpyridin-3-ol and its Cu(II) complex: Synthesis, DFT calculations and AIM analysis." Journal of the Serbian Chemical Society 85, no. 8 (2020): 1033–46. http://dx.doi.org/10.2298/jsc191010022y.

Full text
Abstract:
Herein, (E)-4-{[(2-amino-5-chlorophenyl)imino]methyl}-5-(hydroxymethyl)- 2-methylpyridin-3-ol [HL] Schiff base and its [Cu(L)Cl] complex were newly synthesized and characterized by several spectroscopic methods. In addition, density functional theory (DFT) methods were used for investigation of the tautomerization of the HL Schiff base, structural parameters of HL and [Cu(L)Cl] species, assignment of the IR vibrational bands and the NMR chemical shifts as well as natural bond orbital (NBO) analyses. The most stable tautomer of the HL Schiff base is the enol form of the meta isomer. The optimized geometry of the free HL Schiff base is not planar. The L- acts as a N2O tridentate ligand, which is bonded to Cu2+ via the deprotonated phenolic oxygen, and the amine and azomethine nitrogens. The [Cu(L)Cl] has a square planar geometry in which the chloro ligand occupies the fourth coordination position. The DFT-computed values are in good consistency with the corresponding experimental values, confirming the suitability of the optimized geometries for HL and [Cu(L)Cl] species. According to the high-energy gaps, these compounds are stable. The atoms in molecule (AIM) analysis was used to evaluate strength of the bonding interactions and electron densities in structure of the compounds.
APA, Harvard, Vancouver, ISO, and other styles
49

Papadopoulos, G., and A. A. Tseytlin. "Complex geometry of conifolds and a 5-brane wrapped on a 2-sphere." Classical and Quantum Gravity 18, no. 7 (March 19, 2001): 1333–53. http://dx.doi.org/10.1088/0264-9381/18/7/315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Paul, P. K., S. A. Hussain, and D. Bhattacharjee. "Photophysical characterizations of 2-(4-biphenylyl)-5 phenyl-1,3,4-oxadiazole in restricted geometry." Journal of Luminescence 128, no. 1 (January 2008): 41–50. http://dx.doi.org/10.1016/j.jlumin.2007.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography