Academic literature on the topic '170199 Energy efficiency not elsewhere classified'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '170199 Energy efficiency not elsewhere classified.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "170199 Energy efficiency not elsewhere classified"

1

Bisio, G. "Exergy Analysis of Thermal Energy Storage With Specific Remarks on the Variation of the Environmental Temperature." Journal of Solar Energy Engineering 118, no. 2 (May 1, 1996): 81–88. http://dx.doi.org/10.1115/1.2848020.

Full text
Abstract:
Energy storage is a key technology for many purposes and in particular for air conditioning plants and a successful exploitation of solar energy. Thermal storage devices are usually classified as either variable temperature (“sensible heat”) or constant temperature (“latent heat”) devices. For both models a basic question is to determine the efficiency suitably: Only exergy efficiency appears a proper way. The aim of this paper is to examine exergy efficiency in both variable and constant temperature systems. From a general statement of exergy efficiency by the present author, two types of actual definitions are proposed, depending on the fact that the exergy of the fluid leaving the thermal storage during the charge phase can be either totally lost or utilized elsewhere. In addition, specific remarks are made about the exergy of a system in a periodically varying temperature environment.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "170199 Energy efficiency not elsewhere classified"

1

Thakore, Renuka. "A strategic engagement model for delivering energy efficiency initiatives in the English housing sector." Thesis, University of Central Lancashire, 2016. http://clok.uclan.ac.uk/18647/.

Full text
Abstract:
Housing sectors have particular significance and impact on resource use, deployment and sustainability. Given this, they are inextricably enmeshed in a raft of conjoined issues, ranging from energy, production and consumption, through to effective governance structures and leveraged sustainable transformations. However, the real challenges facing the Housing sectors rest with the supportive societal structures which underpin the operationalisation of these issues. This includes such factors as consultation and engagement, and the identification of critical drivers and proven solutions – which are tangible barriers for sustainable transformations (particularly in the English housing system). This research presents a conceptual model – STRIDES (Strategic Tri-level Relational Interventions for Delivering Energy efficiency and Sustainability), which purposefully addresses the aforementioned barriers, and critically challenges thinking and engagement. STRIDES explicitly captures 5-INs, which embodies interrelated essential conditions needed for successful transformation. This conceptual model was developed using a mixed-method approach, engaging constructivism/interpretivism to guide the development and augmentation of this (to ensure maximum relevance and impact). The English housing system was used as the primary lens – which helped both shape and inform the research methodological approach. STRIDES was developed through: an online survey questionnaire (for systems-knowledge); Delphi questionnaires (for target-knowledge); and focus group discussions (for transformative-knowledge). The theoretical constructs and methods revealed exclusive hidden dialogue of composite correlated multi-perspective stakeholders, which highlighted tri-level influences on interdependent system-components for effective governance of sustainable transformations. Recognising and prioritising relationally responsive emerging strategies arising from STRIDES help stakeholders appreciate subtle nuances and forces across and beyond contexts. This helps positioning, especially to shape/tailor strategic interventions to deliver meaningful objectives of these sustainable transformations.
APA, Harvard, Vancouver, ISO, and other styles
2

(6623699), Juan Carlos Orozco. "Analysis of Energy Efficiency in Truck-Drone “Last Mile” Delivery Systems." Thesis, 2019.

Find full text
Abstract:

Truck-drone delivery systems have the potential to improve how the logistics industry approaches the “last mile problem”. For the purposes of this study, the “last mile” refers to the portion of the journey between the last transportation hub and the individual customer that will consume the product. Drones can deliver packages directly, without the need for an underlying transportation network but are limited by their range and payload capacity. Studies have developed multiple truck-drone configurations, each with different approaches to leverage the benefits and mitigate the limitations of drones. Existing research has also established the drone’s reduction to package delivery time over the traditional truck only model. Two key model factors that have not been considered in previous research are the distribution of package demand, and the distribution of package weight. This study analyzes the drone’s impact to the energy efficiency of a package delivery system, which has taken a backseat to minimizing delivery time. Demand distribution dictates the travel distances required for package delivery, as well as the proportion of delivery locations that are in range for drone delivery. Package weight determines the energy consumption of a delivery and further restricts the proportion of drone eligible packages. The major contributions of this study are the development of a truck-drone tandem mathematical model which minimizes energy consumption, the construction of a population-based package demand distribution, a realistic package weight distribution, and a genetic algorithm used to solve the mathematical model developed for problems that are too computationally expensive to be solved optimally using an exact method. Results show that drones can only have a significant impact to energy efficiency in package delivery systems if implemented under the right conditions. Using truck-drone tandem systems in areas with lower package demand density affords the drone the potential for larger energy savings as larger portions of the truck distance can be replaced. Further, the lower density translates to greater differences between the road-restricted driving distance and the flying distance between delivery points. Finally, energy savings are highly dependent on the underlying package weight distribution of the system. A heavier average package weight increases the energy consumption of the system, but more importantly the portion of packages above the drone’s payload capacity severely limit the savings afforded by the incorporation of drones.


APA, Harvard, Vancouver, ISO, and other styles
3

(9503810), Jose Adrian Chavez Velasco. "COMPREHENSIVE STUDY OF THE ENERGY CONSUMPTION OF MEMBRANES AND DISTILLATION." Thesis, 2020.

Find full text
Abstract:

Molecular separations are essential in the production of many chemicals and purified products. Of all the available separation technologies, distillation, which is a thermally driven process, has been and continues to be one of the most utilized separation methods in chemical and petrochemical plants. Although distillation and other commercial technologies fulfilled most of the current separation needs, the energy-intensive nature of many molecular separations and the growing concern of reducing CO2 emissions has led to intense research to seek for more energy-efficient separation processes.


Among the emerging separation technologies alternative to distillation, there is special attention on non-thermally driven methods, such as membranes. The growing interest in non-thermal methods, and particularly in the use of membranes, has been influenced significantly from the widespread perception that they have a potential to be markedly less energy-intensive than thermal methods such as distillation. Even though many publications claim that membranes are more energy-efficient than distillation, except for water desalination, the relative energy intensity between these processes in the separation of chemical mixtures has not been deeply studied in the literature. One of the objectives of this work focuses on introducing a framework for comparative analysis of the energy intensity of membranes and distillation.


A complication generally encountered when comparing the energy consumption of membranes against an alternative process is that often the purity and recovery that can be achieved through a single membrane stage is limited. While using a multi-stage membrane process is a plausible solution to achieve both high purity and recovery, even for a simple binary separation, finding the most suitable multistage membrane process is a difficult task. This is because, for a given separation, there exists multiple cascades that fulfill the separation requirements but consume different amounts of energy. Moreover, the energy requirement of each cascade depends on the operating conditions. The first part of this work is dedicated to the development of a Mixed Integer Non-linear Program (MINLP) which allows for a given gaseous or liquid binary separation, finding the most energy-efficient membrane cascade. The permeator model, which is derived from a combination of the cross-flow model and the solution diffusion theory, and is originally expressed as a differential-algebraic equation (DAE) system, was integrated analytically before being incorporated in the optimization framework. This is in contrast to the common practice in the literature, where the DAE system is solved using various discretization techniques. Since many of the constraints have a non-convex nature, local solvers could get trapped in higher energy suboptimal solutions. While an option to overcome this limitation is to use a global solver such as BARON, it fails to solve the MINLP to the desired optimality in a reasonable amount of time for most of the cases. For this reason, we derive additional cuts to the problem by exploiting the mathematical properties of the governing equations and from physical insights. Through numerical examples, we demonstrate that the additional cuts aid BARON in expediting the convergence of branch-and-bound and solve the MINLP within 5%-optimality in all the cases tested in this work.


The proposed optimization model allows identifying membrane cascades with enhanced energy efficiency that could be potentially used for existing or new separations. In addition, it allows to compare the optimum energy consumption of a multistage membrane process against alternative separations methods and aid in the decision of whether or not to use a membrane system. Nevertheless, it should be noted that when a membrane process or any other non-thermal separation process is compared with a thermal process such as distillation, an additional complication often arises because these processes usually use different types of energies. Non-thermal processes, such as membranes, consume electrical energy as work, whereas thermal processes, such as distillations, usually consume heat, which is available in a wide range of temperatures. Furthermore, the amount of fuel consumed by a separation process strongly depends on how its supplied energy is produced, and how it is energy integrated with the rest of the plant. Unfortunately, common approaches employed to compare the energy required by thermal and non-thermal methods often lead to incorrect conclusions and have driven to the flawed perception that thermal methods are inherently more energy-intensive than non-thermal counterparts. In the second part of this work, we develop a consistent framework that enables a proper comparison of the energy consumption between processes that are driven by thermal and non-thermal energy (electrical energy). Using this framework, we refute the general perception that thermal separation processes are necessarily the most energy-intensive and conclusively show that in several industrially important separations, distillation processes consume remarkably lower fuel than non-thermal membrane alternatives, which have often been touted as more energy efficient.


In order to gain more understanding of the conditions where membranes or distillation are more energy-efficient, we carried out a comprehensive analysis of the energy consumed by these two processes under different operating conditions. The introduced energy comparison analysis was applied to two important separation examples; the separation of p-xylene/o-xylene, and propylene/propane. Our results showed that distillation is more energy favored than membranes when the target purity and recovery of the most volatile (resp. most permeable) component in the distillate (resp. permeate) are high, and particularly when the feed is not too concentrated in the most volatile (resp. most permeable) component. On the other hand, when both the recovery and purity of the most volatile (resp. most permeable) component are required at moderate levels, and particularly when the feed is highly enriched in the most volatile (resp. most permeable) component, membranes show potential to save energy as compared to distillation.

APA, Harvard, Vancouver, ISO, and other styles
4

(6185759), Manish Nagaraj. "Energy Efficient Byzantine Agreement Protocols for Cyber Physical Resilience." Thesis, 2019.

Find full text
Abstract:

Cyber physical systems are deployed in a wide range of applications from sensor nodes in a factory setting to drones in defense applications. This distributed setting of nodes or processes often needs to reach agreement on a set of values. Byzantine Agreement protocols address this issue of reaching an agreement in an environment where a malicious entity can take control over a set of nodes and deviates the system from its normal operation. However these protocols do not consider the energy consumption of the nodes. We explore Byzantine Agreement protocols from an energy efficient perspective providing both energy resilience where the actions of the Byzantine nodes can not adversely effect the energy consumption of non-malicious nodes as well as fairness in energy consumption of nodes over multiple rounds of agreement.

APA, Harvard, Vancouver, ISO, and other styles
5

(6823670), Priyadarshini Panda. "Learning and Design Methodologies for Efficient, Robust Neural Networks." Thesis, 2019.

Find full text
Abstract:
"Can machines think?", the question brought up by Alan Turing, has led to the development of the eld of brain-inspired computing, wherein researchers have put substantial effort in building smarter devices and technology that have the potential of human-like understanding. However, there still remains a large (several orders-of-magnitude) power efficiency gap between the human brain and computers that attempt to emulate some facets of its functionality. In this thesis, we present design techniques that exploit the inherent variability in the difficulty of input data and the correlation of characteristic semantic information among inputs to scale down the computational requirements of a neural network with minimal impact on output quality. While large-scale artificial neural networks have achieved considerable success in a range of applications, there is growing interest in more biologically realistic models, such as, Spiking Neural Networks (SNNs), due to their energy-efficient spike based processing capability. We investigate neuroscientific principles to develop novel learning algorithms that can enable SNNs to conduct on-line learning. We developed an auto-encoder based unsupervised learning rule for training deep spiking convolutional networks that yields state-of-the-art results with computationally efficient learning. Further, we propose a novel "learning to forget" rule that addresses the catastrophic forgetting issue predominant with traditional neural computing paradigm and offers a promising solution for real-time lifelong learning without the expensive re-training procedure. Finally, while artificial intelligence grows in this digital age bringing large-scale social disruption, there is a growing security concern in the research community about the vulnerabilities of neural networks towards adversarial attacks. To that end, we describe discretization-based solutions, that are traditionally used for reducing the resource utilization of deep neural networks, for adversarial robustness. We also propose a novel noise-learning training strategy as an adversarial defense method. We show that implicit generative modeling of random noise with the same loss function used during posterior maximization, improves a model's understanding of the data manifold, furthering adversarial robustness. We evaluated and analyzed the behavior of the noise modeling technique using principal component analysis that yields metrics which can be generalized to all adversarial defenses.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "170199 Energy efficiency not elsewhere classified"

1

McElroy, Michael B. "Power from the Sun Abundant But Expensive." In Energy and Climate. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190490331.003.0015.

Full text
Abstract:
As discussed in the preceding chapter, wind resources available from nonforested, nonurban, land-based environments in the United States are more than sufficient to meet present and projected future US demand for electricity. Wind resources are comparably abundant elsewhere. As indicated in Table 10.2, a combination of onshore and offshore wind could accommodate prospective demand for electricity for all of the countries classified as top- 10 emitters of CO2. Solar energy reaching the Earth’s surface averages about 200 W m– 2 (Fig. 4.1). If this power source could be converted to electricity with an efficiency of 20%, as little as 0.1% of the land area of the United States (3% of the area of Arizona) could supply the bulk of US demand for electricity. As discussed later in this chapter, the potential source of power from the sun is significant even for sun- deprived countries such as Germany. Wind and solar energy provide potentially complementary sources of electricity in the sense that when the supply from one is low, there is a good chance that it may be offset by a higher contribution from the other. Winds blow strongest typically at night and in winter. The potential supply of energy from the sun, in contrast, is highest during the day and in summer. The source from the sun is better matched thus than wind to respond to the seasonal pattern of demand for electricity, at least for the United States (as indicated in Fig. 10.5).There are two approaches available to convert energy from the sun to electricity. The first involves using photovoltaic (PV) cells, devices in which absorption of radiation results directly in production of electricity. The second is less direct. It requires solar energy to be captured and deployed first to produce heat, with the heat used subsequently to generate steam, the steam applied then to drive a turbine. The sequence in this case is similar to that used to generate electricity in conventional coal, oil, natural gas, and nuclear- powered systems. The difference is that the energy source is light from the sun rather than a carbon- based fossil fuel or fissionable uranium.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography