Dissertations / Theses on the topic '120499 Engineering Design not elsewhere classified'

To see the other types of publications on this topic, follow the link: 120499 Engineering Design not elsewhere classified.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 32 dissertations / theses for your research on the topic '120499 Engineering Design not elsewhere classified.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

(8763150), Amanda Johnston. "Teacher Talk in Engineering Design Projects." Thesis, 2020.

Find full text
Abstract:

Teacher talk is a major way in which instructors support and provide scaffolding for their students, frame their pedagogies, model ways of thinking, and convey ideas. Effective teacher talk about engineering design at all levels of students’ educational experiences has the potential to better prepare students for success in engineering and increase the diversity of engineering fields. However, the most effective ways for teachers to talk to their students during engineering design are not well understood. This three-study dissertation examines the ways in which instructors use talk to interact with their students through a variety of different engineering design settings and contexts, with potential implications to improve and educate how teachers present engineering to their students. Overall, this thesis addresses the research question: How do instructors (teachers and professors) use talk interactions to scaffold students in engineering design? The first study is a case study that focuses on the whole class verbal interactions of an experienced and successful teacher throughout the entirety of a month-long life science-based STEM integration unit in a 6th grade classroom. Results show that this teacher’s talk helped to integrate engineering with the science and mathematics content of the unit and modeled the practices of informed designers to help students learn engineering in the context of their science classroom. He framed lessons around problem scoping, incorporated engineering ideas into scientific verbal interactions and aligned individual lessons and the overall unit with the engineering design process. The second study uses naturalistic inquiry to examine how six different teachers of 6th, 7th, and 8th grades talked to their students while the students were actively working in small teams on engineering design projects. Results indicate that the teachers had conversations with the students about many areas of engineering, demonstrating that middle school teachers can have high-level conversations with their students about their design ideas. However, when students struggle to communicate their ideas, the different levels of support outlined in the coding framework and examples provide a structure of support for teachers to give their students. Additionally, there were many areas of engineering that were underemphasized in the teachers’ talk and each teacher had different emphasis. The third study examines how professors in mechanical and biomedical engineering talk to their students during introductory engineering design projects. Results show that the three professors used their talk to support their role as a guide and mentor to students during their projects, although they had different goals with their mentoring. They used their talk to push students’ ideas to consider their problems more broadly, encouraged students to brainstorm diverse out-of-the-box ideas, supported teaming, and modeled engineering language. They maintained a focus on non-technical content, including the iterative nature of design, teaming, and communication, but made references to how students would apply this knowledge in future, more technical projects. The professors supported many challenges for novice designers, including supporting prototype development to represent ideas and iterating to improve their ideas, but were not comprehensive in their support of other challenges, especially problem scoping, testing and troubleshooting, and reflecting on the process. The final chapter of this dissertation presents a synthesis across the three studies and a summary of the implications for teaching. These implications include many examples of high-quality engineering conversations with students at different levels of their education, identification of aspects of engineering education that are underemphasized in teachers’ talk to their students, and connections to needed areas of support and professional development for teachers.

APA, Harvard, Vancouver, ISO, and other styles
2

(7011485), Altyngul Jumabayeva. "Model-based Analysis and Design of Color Screen Sets for Clustered-Dot Periodic Halftoning and Design of Monochrome Screens Based on Direct Binary Search for Aperiodic Dispersed-Dot Halftoning." Thesis, 2020.

Find full text
Abstract:

Periodic clustered-dot halftones are widely used in electrophotographic printers due to the relatively poor print stability of this class of printers. It is important to analyze the nature and the causes of perceived fluctuation in order to understand the factors that prevent the high-end digital presses from achieving the same print quality as the commercial offset presses. In order to better approximate the screen sets used for the commercial offset presses, irregular screen sets can be considered. We start by developing a set of candidate screen tile-vectors that best fit the specified screen frequency, screen angle, and printer resolution. We then perform Fourier-based analysis of regular and irregular periodic, clustered-dot halftone textures in order to understand how perceived fluctuation relates to the halftoning technology. After exploring the search for the best single separation geometry, we consider the superposition of multiple periodic clustered-dot halftones, and propose to apply HVS-based model, which assists us in finding the best color assignments to the superimposed halftones. It turned out that the choice of the best color assignments depends on different combinations of colorant absorptance values, hence we propose to apply different color assignments within the image depending on the local color and content of the image. Next, we propose a step-by-step screen design for standard and high resolution periodic irregular clustered-dot halftones. Finally, we presented monochrome DBS-based screen design with overlapping clusters of 2 × 2 or 3 × 3 pixels, which can also be used in electrophotographic printers.

APA, Harvard, Vancouver, ISO, and other styles
3

(11016081), Yang Wang. "DESIGN AND IMPLEMENTATIONS OF OPEN-SOURCE AG IOT DEVICES FOR FARM MACHINERY DATA ACQUISITION AND INTEGRATED ANALYTICS." Thesis, 2021.

Find full text
Abstract:
Agricultural machinery is critical in modern farming. With continuous technological advancements in farm machinery, farm machines have evolved from simple mechanical machines to cyberphysical systems that contain rich sources of multimodal sensor data. Effective acquisition and analyses of these data have become essential but challenging tasks in revealing machine-centric and logistical insights to researchers and farmers.

In this dissertation, theses challenge are addressed in two parts. The first part demonstrates successful development and deployment of two open-source telematic devices for collecting machine network, geospatial, and video data. The first, ISOBlue 2.0, was designed to be a logger of both GPS and CAN data with wireless data streaming capabilities. The second, ISOBlue HD, an extension of ISOBlue 2.0, was configured to behave as a network server that interfaced with external cameras for automatic video recording of machine operation contexts. These devices were deployed in a variety of machines in different farming activities. A total of over 1 TB of multimodal machinery data were collected.

The second part presents three problems that focus on analyzing primarily GPS track data collected from past wheat harvests. The first poses an activity classification problem. It involved clustering a 3D feature set generated from both GPS and CAN data from a combine using the Density-Based Spatial Clustering of Applications with Noise algorithm. The
resultant clusters between on-road and in-field data samples as well as normal and anomalous activities. The second problem concentrates on combine unloading event detections using GPS tracks of multiple combines in 16 harvest sessions. The identified events from a novel algorithm that couples Interacting Multiple Models filtering and composite rules were utilized to estimate the total yield for each session. The estimated yields had an overall accuracy of over 90% when comparing to the actual weight ticket records. Lastly, two instantaneous metrics, instantaneous area capacity and swath utilization, were proposed and estimated using GPS tracks of multiple combines in 7 different fields during various harvest years. A novel algorithm was created for estimating instantaneous actual harvested area and swath utilization. This enabled exact computations of instantaneous metrics as oppose to conventional rough estimates of area capacity. Harvest performances were evaluated both temporally and geospatially by machines and years. It was discovered that three contributing factors that lead to high area capacity were wide header attachments, high harvesting speed, and uniform harvesting patterns. Moreover, it was found that the benefit of a wider header might diminish if the harvesting speed was low.
APA, Harvard, Vancouver, ISO, and other styles
4

(5929889), Joo Min Kim. "Behavior, Analysis and Design of Steel-Plate Composite (SC) Walls for Impactive Loading." Thesis, 2019.

Find full text
Abstract:
There is significant interest in the used of Steel-plate composite (SC) walls for protective structures, particularly for impactive and impulsive loading. The behavior of SC walls is fundamentally different from that of reinforced concrete (RC) walls due to the addition of steel plates on the exterior surfaces, which prevent concrete scabbing and enhance local perforation resistance.

Laboratory-scale SC wall specimens were fabricated, cast with concrete, and then tested in an indoor missile impact test-setup specially-built and commissioned for this research. The parameters included in the experimental investigations were the steel plate reinforcement ratio (3.7% - 5.2%), tie bar spacing, size, and reinforcement ratio (0.37% - 1.23%), and the steel plate yield strength (Gr.50 - Gr.65). Additional parameters include the missile diameter (1.0 in., 1.5 in.), weight (1.3 lbs, 2.0, lbs, 3.5 lbs), and velocity (410 - 760 ft/s). A total of sixteen tests were conducted, the results of which are presented in detail including measurements of missile velocity, penetration depth, rear steel plate bulging deformation, and test outcome (stopped or perforated). The test results are further used to illustrate the significant conservatism of a design method developed previously by researchers (Bruhl et al. 2015a), and the sources of this conservatism including differences in the missile penetration mechanism, dimensions of the concrete conical frustum (breaking out), and the penetration depth equations assumed in the design method.

Numerical models were developed to further investigate local damage behavior of SC walls. Three-dimensional finite element models were built using LS-DYNA software and employed to simulate the missile impact tests on the SC wall specimens. The numerical analysis results were benchmarked to the experimental test results for the validation of the models.

Two sets of parametric studies were conducted using the benchmarked numerical models. The first set of the parametric studies was intended to narrow the perforation velocity ranges from the experimental results for use in evaluating the accuracy of a rational design method developed later in this research. The second set of the parametric studies was intended to evaluate the influence of design parameters on the perforation resistance of SC walls. It was found that flexural reinforcement ratio and steel plate strength are significant parameters which affect the penetration depth. However, shear reinforcement ratio has negligible influence.

Results from the experimental investigations and the numerical parametric studies were used to develop a rational design method which modifies the three-step design method. The modified design method incorporates a proposed modification factor applicable to the penetration depth equations and the missile penetration mechanism observed from the experiments. The modified design method was verified using the larger-scale missile impact test data from South Korean tests as well.

Additional research was performed to evaluate the local failure modes when the perforation was prevented from missile impactive loading on SC walls. Through numerical parametric studies, three different local failure modes (punching shear, flexural yielding, and plastic mechanism formation) were investigated. Also, an innovative approach to generating static resistance functions was proposed for use in SDOF or TDOF model analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

(5930033), Curtis P. Martin. "RATIONAL DESIGN OF TYPE II KINASE INHIBITORS VIA NOVEL MULTISCALE VIRTUAL SCREENING APPROACH." Thesis, 2019.

Find full text
Abstract:
At present, the combination of high drug development costs and external pressure to lower consumer prices is forcing the pharmaceutical industry to innovate in ways unlike ever before. One of the main drivers of increased productivity in research and development recently has been the application of computational methods to the drug discovery process. While this investment has generated promising insights in many cases, there is still much progress to be made.

There currently exists a dichotomy in the types of algorithms employed which are roughly defined by the extent to which they compromise predictive accuracy for computational efficiency, and vice versa. Many computational drug discovery algorithms exist which yield commendable predictive power but are typically associated with overwhelming resource costs. High-throughput methods are also available, but often suffer from disappointing and inconsistent performance.

In the world of kinase inhibitor design, which often takes advantage of such computational tools, small molecules tend to have myriad side effects. These are usually caused by off-target binding, especially with other kinases (given the large size of the enzyme family and overall structural conservation), and so inhibitors with tunable selectivity are generally desirable. This issue is compounded when considering therapeutically relevant targets like Abelson Protein Tyrosine Kinase (Abl) and Lymphocyte Specific Protein Tyrosine Kinase (Lck) which have opposing effects in many cancers.

This work attempts to solve both of these problems by creating a methodology which incorporates high-throughput computational drug discovery methods, modern machine learning techniques, and novel protein-ligand binding descriptors based on backbone hydrogen bond (dehydron) wrapping, chosen because of their potential in differentiating between kinases. Using this approach, a procedure was developed to quickly screen focused chemical libraries (in order to narrow the domain of applicability and keep medicinal chemistry at the forefront of development) for detection of selective kinase inhibitors. In particular, five pharmacologically relevant kinases were investigated to provide a proof of concept, including those listed above.

Ultimately, this work shows that dehydron wrapping indeed has predictive value, though it's likely hindered by common and current issues derived from noisy training data, imperfect feature selection algorithms, and simplifying assumptions made by high-throughput algorithms used for structural determination. It also shows that the procedure's predictive value varies depending on the target, leading to the conclusion that the utility of dehydron wrapping for drug design is not necessarily universal, as originally thought. However, for those targets which are amenable to the concept, there are two major benefits: relatively few features are required to produce modest results; and those structural features chosen are easily interpretable and can thereby improve the overall design process by pointing out regions to optimize within any given lead. Of the five kinases explored, Src and Lck are shown in this work to fit particularly well with the general hypothesis; given their importance in treating cancer and evading off-target related side effects, the developed methodology now has the potential to play a major role in the development of drug candidates which specifically inhibit and avoid these kinases.
APA, Harvard, Vancouver, ISO, and other styles
6

(6997520), Bo Zhang. "A DESIGN PARADIGM FOR DC GENERATION SYSTEM." Thesis, 2020.

Find full text
Abstract:
The design of a dc generation system is posed as a multi-objective optimization problem which simultaneously designs the generator and the power converter. The proposed design methodology captures the interaction between various system component models and utilizes the system steady state analysis, stability analysis, and disturbance rejection analysis. System mass and power loss are considered as the optimization metrics and minimized. The methodology is demonstrated through the design of a notional dc generation system which contains a Permanent Magnet Synchronous Machine (PMSM), passive rectifier, and a dc-dc converter. To this end, a high fidelity PMSM model, passive rectifier model, semiconductor model and passive component model are developed. The output of optimization is a set of designs forming a Pareto-optimal front. Based on the requirements and the application, a design can be chosen from this set of designs. The methodology is applied to SiC based dc generation system and Si based dc generation system to quantify the advantage of Wide Bandgap (WBG) devices. A prototype SiC based dc generation system is constructed and tested at steady state. Finally a thermal equivalent circuit (TEC) based PMSM thermal model is included in the design paradigm to quantify the impact of the PMSM’s thermal performance to the system design.
APA, Harvard, Vancouver, ISO, and other styles
7

(5930180), Ashish Ranjan. "Energy-efficient Memory System Design with Spintronics." Thesis, 2019.

Find full text
Abstract:

Modern computing platforms, from servers to mobile devices, demand ever-increasing amounts of memory to keep up with the growing amounts of data they process, and to bridge the widening processor-memory gap. A large and growing fraction of chip area and energy is expended in memories, which face challenges with technology scaling due to increased leakage, process variations, and unreliability. On the other hand, data intensive workloads such as machine learning and data analytics pose increasing demands on memory systems. Consequently, improving the energy-efficiency and performance of memory systems is an important challenge for computing system designers.

Spintronic memories, which offer several desirable characteristics - near-zero leakage, high density, non-volatility and high endurance - are of great interest for designing future memory systems. However, these memories are not drop-in replacements for current memory technologies, viz. Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM). They pose unique challenges such as variable access times, and require higher write latency and write energy. This dissertation explores new approaches to improving the energy efficiency of spintronic memory systems.

The dissertation first explores the design of approximate memories, in which the need to store and access data precisely is foregone in return for improvements in energy efficiency. This is of particular interest, since many emerging workloads exhibit an inherent ability to tolerate approximations to their underlying computations and data while still producing outputs of acceptable quality. The dissertation proposes that approximate spintronic memories can be realized either by reducing the amount of data that is written to/read from them, or by reducing the energy consumed per access. To reduce memory traffic, the dissertation proposes approximate memory compression, wherein a quality-aware memory controller transparently compresses/decompresses data written to or read from memory. For broader applicability, the quality-aware memory controller can be programmed to specify memory regions that can tolerate approximations, and conforms to a specified error constraint for each such region. To reduce the per-access energy, various mechanisms are identified at the circuit and architecture levels that yield substantial energy benefits at the cost of small probabilities of read, write or retention failures. Based on these mechanisms, a quality-configurable Spin Transfer Torque Magnetic RAM (STT-MRAM) array is designed in which read/write operations can be performed at varying levels of accuracy and energy at runtime, depending on the needs of applications. To illustrate the utility of the proposed quality-configurable memory array, it is evaluated as an L2 cache in the context of a general-purpose processor, and as a scratchpad memory for a domain-specific vector processor.

The dissertation also explores the design of caches with Domain Wall Memory (DWM), a more advanced spintronic memory technology that offers unparalleled density arising from a unique tape-like structure. However, this structure also leads to serialized access to the bits in each bit-cell, resulting in increased access latency, thereby degrading overall performance. To mitigate the performance overheads, the dissertation proposes a reconfigurable DWM-based cache architecture that modulates the active bits per tape with minimal overheads depending on the application's memory access characteristics. The proposed cache is evaluated in a general purpose processor and improvements in performance are demonstrated over both CMOS and previously proposed spintronic caches.

In summary, the dissertation suggests directions to improve the energy efficiency of spintronic memories and re-affirms their potential for the design of future memory systems.

APA, Harvard, Vancouver, ISO, and other styles
8

(6618812), Harsh Patel. "IMPLEMENTING THE SUPERPAVE 5 ASPHALT MIXTURE DESIGN METHOD IN INDIANA." Thesis, 2019.

Find full text
Abstract:
Recent research developments have indicated that asphalt mixture durability and pavement life can be increased by modifying the Superpave asphalt mixture design method to achieve an in-place density of 95%, 2% higher than the conventional density requirements of approximately 93% (7% air voids content). Doing so requires increasing the design air voids content to 5% from the conventional requirement of 4 percent. After successful laboratory testing of this modified mixture design method, known as Superpave 5, two controlled field trials and one full scale demonstration project, the Indiana Department of Transportation (INDOT) let 12 trial projects across the six INDOT districts based on the design method. The Purdue University research team was tasked with observing the implementation of the Superpave 5 mixture design method, documenting the construction and completing an in-depth analysis of the quality control and quality assurance (QC/QA) data obtained from the projects. QC/QA data for each construction project were examined using various statistical metrics to determine construction performance with respect to INDOT Superpave 5 specifications. The data indicate that, on average, the contractors achieved 5% laboratory air voids, which coincides with the Superpave 5 recommendation of 5% laboratory air voids. However, on average, the as-constructed in-place density of 93.8% is roughly 1% less than the INDOT Superpave 5 specification. The findings of this study will benefit the future implementation of this modified mixture design method.
APA, Harvard, Vancouver, ISO, and other styles
9

(6641012), Genisson Silva Coutinho. "FACULTY BELIEFS AND ORIENTATIONS TO TEACHING AND LEARNING IN THE LAB: AN EXPLORATORY CASE STUDY." Thesis, 2019.

Find full text
Abstract:
This dissertation presents a two-phase multiple case study conducted to investigate the faculty
beliefs regarding the integration of labs into engineering and engineering technology education
and the relationship between such beliefs and the teaching practices adopted in the labs. In the first
phase, an exploratory study grounded on a framework of beliefs was conducted to elicit the beliefs
espoused by the participants. Interviews were used to elicit the participants’ beliefs. The
transcribed interviews were analyzed through the constant comparative method. Thirteen faculty
members from the College of Engineering and Engineering Technology participated. In the second
phase, a triangulation approach was used to investigate the relationships between the participants’
beliefs and their corresponding teaching practices. The findings from phase one were triangulated
with the data from interviews, questionnaires, and documents to elicit the relationships between
beliefs and practices.
APA, Harvard, Vancouver, ISO, and other styles
10

(8796875), Dana L. Moryl. "A STUDY ON APHONOPELMA SEEMANI BIOMECHANICS OF MOTION WITH EMPHASIS ON POTENTIAL FOR BIOMIMETIC ROBOTICS DESIGN." Thesis, 2020.

Find full text
Abstract:

With a stable center of mass, pneumatic-aided movement, and the ability to scale multiple terrain types, the uniquely efficient and lightweight form of spiders has changed the way we think about robotic design. While the number of papers on arachnid biomechanics and spider-based biomimetic robots has been increasing in recent years, the style of analysis and the motion-types analyzed have barely changed since the 1980s. Current analyses are based on a force plate and treadmill design, in which the spider is induced into an escape run. This environmental change can affect the movements of the spider. Here I propose a novel method of testing the biomechanical and kinematic properties of spiders using a tank with a built-in sensor matrix which allows for a more natural environment for the specimens and provides force data from individual legs. The system detects a minimum force of .0196 N and has a sampling rate of 1,000 samples /second, which allows for the analysis of forces during the step. Aphonopelma seemanni, a tarantula commonly used in such research, but whose forces during movement have to date not been analyzed, was recorded walking across the matrix, and the forces, step patterns, joint angles, and center of mass deviations were recorded. Walking indicated significantly different step pattern traits than current literature, and forces per leg (.07281 N±.0235) recorded were much smaller than expected in comparison to other spiders. Statistical analysis also indicated no changes in walking movement over a range of temperatures, which also varies from literature. These findings indicate that further research on spiders should be done with respect to walking gaits in order to improve upon current biomimetic models.


APA, Harvard, Vancouver, ISO, and other styles
11

(9181898), Hoda Ehsan. "A Multiple Case Study to Capture and Support the Engineering Design Thinking of Children with Mild Autism." Thesis, 2020.

Find full text
Abstract:

Research in pre-college engineering education has been on a sharp rise in the last two decades. However, less research has been conducted to explore and characterize the engineering thinking and engagement of young children, with limited attention to children with special needs. Conversations on broadening participation and diversity in engineering usually center around gender, socio-economic status, race and ethnicity, and to a lesser extent on neurodiversity. Autism is the fastest growing neurodiverse population who have the potential to succeed in engineering. In order to promote the inclusion of children with autism in engineering education, we need to gain a deep understanding of their engineering experiences.

The overarching research question that I intend to answer is how do children with mild autism engage in engineering design tasks? Grounding this study in theories of Constructivism and Defectology, I focused on children’s engagement in engineering design practices and the ways their parents supported their engagements. To engage children with mild autism in engineering, I have developed an engineering design activity by considering suggestions from these theories and previous literature on elementary-aged children’s engagement in engineering design, and by focusing on individuals with mild autism strengths in STEM. This activity provides opportunities for children to interact with their parents while solving engineering design problems. The families are asked to use a construction kit and design their solutions to the problem introduced in the engineering design activity. The engineering design activity consists of a series of five challenges, ranging from well- to ill-structed.

This is an exploratory qualitative case study, using a multiple case approach. These cases include 9-year-old children with autism and their families. Video recordings of the families are the main source of data for this study. Triangulation of data happens through interviewing parents and children, pictures of children’s artifacts (i.e. their prototypes), and use of the Empathizing-Systemizing survey to capture background information and autism characteristics. Depending on the data source, I utilized different methods including video analysis, thematic analysis and artifact analysis.

This study expands our understanding of what engineering design can look like when enacted by children with mild autism, particularly as engineering design is considered to be a very iterative process with multiple phases and actions associated with it. The findings of this study show that these children can engage in all engineering design phases in a very iterative process. Similarities and differences between these children’s design behaviors and the existing literature were discussed. Additionally, some of the behaviors these children engaged in resemble the practices of experienced designers and engineers. The findings of this study suggest that while children were not socially interacting with their family members when addressing the challenges, their parents played an important role in their design engagement. Parents used different strategies during the activity that supported and facilitated children’s engineering design problem-solving. These strategies include soliciting information, providing guidance, assisting both verbally and hands-on, disengagement and being a student of the child.

This study provides aspirations for future research with the aim to promote the inclusion of children with neurodiversity. It calls for conducting similar research in different settings to capture the engineering design engagement of children with mild autism when interacting with teachers, peers, siblings in different environments. Additionally, the findings of this study have implications for educators and curators of engineering learning resources.
APA, Harvard, Vancouver, ISO, and other styles
12

(6823670), Priyadarshini Panda. "Learning and Design Methodologies for Efficient, Robust Neural Networks." Thesis, 2019.

Find full text
Abstract:
"Can machines think?", the question brought up by Alan Turing, has led to the development of the eld of brain-inspired computing, wherein researchers have put substantial effort in building smarter devices and technology that have the potential of human-like understanding. However, there still remains a large (several orders-of-magnitude) power efficiency gap between the human brain and computers that attempt to emulate some facets of its functionality. In this thesis, we present design techniques that exploit the inherent variability in the difficulty of input data and the correlation of characteristic semantic information among inputs to scale down the computational requirements of a neural network with minimal impact on output quality. While large-scale artificial neural networks have achieved considerable success in a range of applications, there is growing interest in more biologically realistic models, such as, Spiking Neural Networks (SNNs), due to their energy-efficient spike based processing capability. We investigate neuroscientific principles to develop novel learning algorithms that can enable SNNs to conduct on-line learning. We developed an auto-encoder based unsupervised learning rule for training deep spiking convolutional networks that yields state-of-the-art results with computationally efficient learning. Further, we propose a novel "learning to forget" rule that addresses the catastrophic forgetting issue predominant with traditional neural computing paradigm and offers a promising solution for real-time lifelong learning without the expensive re-training procedure. Finally, while artificial intelligence grows in this digital age bringing large-scale social disruption, there is a growing security concern in the research community about the vulnerabilities of neural networks towards adversarial attacks. To that end, we describe discretization-based solutions, that are traditionally used for reducing the resource utilization of deep neural networks, for adversarial robustness. We also propose a novel noise-learning training strategy as an adversarial defense method. We show that implicit generative modeling of random noise with the same loss function used during posterior maximization, improves a model's understanding of the data manifold, furthering adversarial robustness. We evaluated and analyzed the behavior of the noise modeling technique using principal component analysis that yields metrics which can be generalized to all adversarial defenses.
APA, Harvard, Vancouver, ISO, and other styles
13

(5929802), Andrew M. Jackson. "A Case Study of High-School Student Self-Regulation Responses to Design Failure." Thesis, 2019.

Find full text
Abstract:
Although design is part of everyday experience, increased proficiency in managing and reflecting while designing signify greater proficiency as a designer. This capacity for regulation in design is crucial for learning, including from failure experiences, while designing. Failure and iteration are integral parts of design, with potential cognitive and psychological ramifications. On the one hand, failure can be framed as a learning experience that interrupts thinking and evokes reflection. On the other hand, it can be detrimental for confidence and motivation or derail the design process. Based on similarities between design and self-regulation, I articulate a framework whereby responses to failure might be regulated by beginning designers. Then, this case study applies the framework to describe the experiences and perspectives of beginning designers as they work and fail, illuminating issues of failure in design and the extent of their self-regulation.

The in situ design processes of four teams was examined to describe self-regulation strategies among student designers. Analysis was conducted with two methods: linkography and typological thematic analysis. Linkography, based on think-aloud data, provided a visual representation of the design process and tools to identify reflection, planning, and critical moments in the design process. Typological analysis, based on think-aloud data, follow-up interviews, and design journals, was used to investigate specific strategies of self-regulation. The complementary methods contribute to understanding beginning designers’ self-regulation from multiple perspectives.

Results portray varied trajectories in design, ranging from repeated failure and determination to fleeting success and satisfaction. Class structures emerge in designers’ patterns of planning and reflection. These highlight the contextualized and evolutionary nature of design and self-regulation. Furthermore, linkographic evidence showed a beginning sense-making process, followed by oscillating phases of forward and backward thinking, to various degrees. Moments of testing, both successes and failure, were critically connected in the design process.

Thematic analysis identified 10 themes, aligning with the self-regulatory phases of forethought, performance, and reflection. The themes highlight how regulation in forethought is used to shape performance based on past iterations; meanwhile, the identification and attribution of failures relays information on how, and whether to iterate. Collectively, thematic findings reinforce the cyclical nature of design and self-regulation.

Design and self-regulation are compatible ways of thinking; for designers, the juxtaposition of these concepts may be useful to inform patterns of navigating the problem-solving process. For educators, the imposition of classroom structures in design and self-regulatory thinking draws attention to instructional design and assessment for supporting student thinking. And for researchers of design or self-regulation, these methods can give confidence for further exploration.
APA, Harvard, Vancouver, ISO, and other styles
14

(9503810), Jose Adrian Chavez Velasco. "COMPREHENSIVE STUDY OF THE ENERGY CONSUMPTION OF MEMBRANES AND DISTILLATION." Thesis, 2020.

Find full text
Abstract:

Molecular separations are essential in the production of many chemicals and purified products. Of all the available separation technologies, distillation, which is a thermally driven process, has been and continues to be one of the most utilized separation methods in chemical and petrochemical plants. Although distillation and other commercial technologies fulfilled most of the current separation needs, the energy-intensive nature of many molecular separations and the growing concern of reducing CO2 emissions has led to intense research to seek for more energy-efficient separation processes.


Among the emerging separation technologies alternative to distillation, there is special attention on non-thermally driven methods, such as membranes. The growing interest in non-thermal methods, and particularly in the use of membranes, has been influenced significantly from the widespread perception that they have a potential to be markedly less energy-intensive than thermal methods such as distillation. Even though many publications claim that membranes are more energy-efficient than distillation, except for water desalination, the relative energy intensity between these processes in the separation of chemical mixtures has not been deeply studied in the literature. One of the objectives of this work focuses on introducing a framework for comparative analysis of the energy intensity of membranes and distillation.


A complication generally encountered when comparing the energy consumption of membranes against an alternative process is that often the purity and recovery that can be achieved through a single membrane stage is limited. While using a multi-stage membrane process is a plausible solution to achieve both high purity and recovery, even for a simple binary separation, finding the most suitable multistage membrane process is a difficult task. This is because, for a given separation, there exists multiple cascades that fulfill the separation requirements but consume different amounts of energy. Moreover, the energy requirement of each cascade depends on the operating conditions. The first part of this work is dedicated to the development of a Mixed Integer Non-linear Program (MINLP) which allows for a given gaseous or liquid binary separation, finding the most energy-efficient membrane cascade. The permeator model, which is derived from a combination of the cross-flow model and the solution diffusion theory, and is originally expressed as a differential-algebraic equation (DAE) system, was integrated analytically before being incorporated in the optimization framework. This is in contrast to the common practice in the literature, where the DAE system is solved using various discretization techniques. Since many of the constraints have a non-convex nature, local solvers could get trapped in higher energy suboptimal solutions. While an option to overcome this limitation is to use a global solver such as BARON, it fails to solve the MINLP to the desired optimality in a reasonable amount of time for most of the cases. For this reason, we derive additional cuts to the problem by exploiting the mathematical properties of the governing equations and from physical insights. Through numerical examples, we demonstrate that the additional cuts aid BARON in expediting the convergence of branch-and-bound and solve the MINLP within 5%-optimality in all the cases tested in this work.


The proposed optimization model allows identifying membrane cascades with enhanced energy efficiency that could be potentially used for existing or new separations. In addition, it allows to compare the optimum energy consumption of a multistage membrane process against alternative separations methods and aid in the decision of whether or not to use a membrane system. Nevertheless, it should be noted that when a membrane process or any other non-thermal separation process is compared with a thermal process such as distillation, an additional complication often arises because these processes usually use different types of energies. Non-thermal processes, such as membranes, consume electrical energy as work, whereas thermal processes, such as distillations, usually consume heat, which is available in a wide range of temperatures. Furthermore, the amount of fuel consumed by a separation process strongly depends on how its supplied energy is produced, and how it is energy integrated with the rest of the plant. Unfortunately, common approaches employed to compare the energy required by thermal and non-thermal methods often lead to incorrect conclusions and have driven to the flawed perception that thermal methods are inherently more energy-intensive than non-thermal counterparts. In the second part of this work, we develop a consistent framework that enables a proper comparison of the energy consumption between processes that are driven by thermal and non-thermal energy (electrical energy). Using this framework, we refute the general perception that thermal separation processes are necessarily the most energy-intensive and conclusively show that in several industrially important separations, distillation processes consume remarkably lower fuel than non-thermal membrane alternatives, which have often been touted as more energy efficient.


In order to gain more understanding of the conditions where membranes or distillation are more energy-efficient, we carried out a comprehensive analysis of the energy consumed by these two processes under different operating conditions. The introduced energy comparison analysis was applied to two important separation examples; the separation of p-xylene/o-xylene, and propylene/propane. Our results showed that distillation is more energy favored than membranes when the target purity and recovery of the most volatile (resp. most permeable) component in the distillate (resp. permeate) are high, and particularly when the feed is not too concentrated in the most volatile (resp. most permeable) component. On the other hand, when both the recovery and purity of the most volatile (resp. most permeable) component are required at moderate levels, and particularly when the feed is highly enriched in the most volatile (resp. most permeable) component, membranes show potential to save energy as compared to distillation.

APA, Harvard, Vancouver, ISO, and other styles
15

(6659816), Qizhen Li. "Coplanar Waveguide-based Low Pass Filter Design with Non-uniform Signal Trace and Ground Planes Using Different Optimization Algorithms." Thesis, 2019.

Find full text
Abstract:

In this study, a novel and systematic methodology for the design and optimization of conductor-backed coplanar waveguide (CB-CPW) based low pass filter (LPF) is proposed. The width of the signal trace is continuously varied using a truncated Fourier series, and the adjacent gaps are designed in several types established on a specific optimization setup to obtain predefined electrical characteristics with maximum compactness taking into account physical constraints. Trust-region-reflective algorithm (TRRA), genetic algorithm (GA), and particle swarm optimization algorithm (PSO) are taken into account to minimize the developed bound-constrained non-linear objective function respectively.

All types are programmed and analytically verified in MATLAB. Solutions include design parameters such as the physical length and width of the structure, which will be drawn in AutoCAD later on. Also, the optimized layouts are exported to Ansys High Frequency Structure Simulation (HFSS) software for simulation and validation. Non-uniform CB-CPW LPFs are optimized and simulated over a frequency range of 0-6 GHz with a cutoff frequency of 2 GHz. Simulation results show a good agreement with the analytical ones.

APA, Harvard, Vancouver, ISO, and other styles
16

Palmer, Kent D. "Emergent design : explorations in systems phenomenology in relation to ontology, hermeneutics and the meta-dialectics of design." 2009. http://arrow.unisa.edu.au:8081/1959.8/74458.

Full text
Abstract:
A Phenomenological Analysis of Emergent Design is performed based on the foundations of General Schemas Theory. The concept of Sign Engineering is explored in terms of Hermeneutics, Dialectics, and Ontology in order to define Emergent Systems and Meta-systems Engineering based on the concept of Meta-dialectics. Phenomenology, Ontology, Hermeneutics, and Dialectics will dominate our inquiry into the nature of the Emergent Design of the System and its inverse dual, the Meta-system. This is an speculative dissertation that attempts to produce a philosophical, mathematical, and theoretical view of the nature of Systems Engineering Design. Emergent System Design, i.e., the design of yet unheard of and/or hitherto non-existent Systems and Meta-systems is the focus. This study is a frontal assault on the hard problem of explaining how Engineering produces new things, rather than a repetition or reordering of concepts that already exist. In this work the philosophies of E. Husserl, A. Gurwitsch, M. Heidegger, J. Derrida, G. Deleuze, A. Badiou, G. Hegel, I. Kant and other Continental Philosophers are brought to bear on different aspects of how new technological systems come into existence through the midwifery of Systems Engineering. Sign Engineering is singled out as the most important aspect of Systems Engineering. We will build on the work of Pieter Wisse and extend his theory of Sign Engineering to define Meta-dialectics in the form of Quadralectics and then Pentalectics . Along the way the various ontological levels of Being are explored in conjunction with the discovery that the Quadralectic is related to the possibility of design primarily at the Third Meta-level of Being, called Hyper Being. Design Process is dependent upon the emergent possibilities that appear in Hyper Being. Hyper Being, termed by Heidegger as Being (Being crossed-out) and termed by Derrida as Differance, also appears as the widest space within the Design Field at the third meta-level of Being and therefore provides the most leverage that is needed to produce emergent effects. Hyper Being is where possibilities appear within our worldview. Possibility is necessary for emergent events to occur. Hyper Being possibilities are extended by Wild Being propensities to allow the embodiment of new things. We discuss how this philosophical background relates to meta-methods such as the Gurevich Abstract State Machine and the Wisse Metapattern methods, as well as real-time architectural design methods as described in the Integral Software Engineering Methodology . One aim of this research is to find the foundation for extending the ISEM methodology to become a general purpose Systems Design Methodology. Our purpose is also to bring these philosophical considerations into the practical realm by examining P. Bourdieu?s ideas on the relationship between theoretical and practical reason and M. de Certeau?s ideas on practice. The relationship between design and implementation is seen in terms of the Set/Mass conceptual opposition. General Schemas Theory is used as a way of critiquing the dependence of Set based mathematics as a basis for Design. The dissertation delineates a new foundation for Systems Engineering as Emergent Engineering based on General Schemas Theory, and provides an advanced theory of Design based on the understanding of the meta-levels of Being, particularly focusing upon the relationship between Hyper Being and Wild Being in the context of Pure and Process Being.
APA, Harvard, Vancouver, ISO, and other styles
17

(8815394), Claudio Freitas. "Understanding Engineering Education in Displacement: A Qualitative Study of "Localized Engineering" in Two Refugee Camps." Thesis, 2020.

Find full text
Abstract:
The duration of exile in refugee communities has grown immensely over the last two decades. Recent humanitarian reports have called for actors to create more coordinated global support for the refugee crises. In these recent calls, the desire to break a cycle of dependency between the refugee community and international aid has been a clear priority. Hence, education has emerged as a strategic action to foster refugee self-reliance, particularly higher education (HE) and technical and vocational education and training (TVET). There are many opportunities to use HE and TVET to benefit the refugee community, including: developing solutions to improve living conditions, enabling new opportunities for learning pathways, allowing refugees to contribute to the economy in hosting countries, or preparing them to rebuild their lives once they return to their home countries. However, the economic, political, and cultural complexities of refugee communities often add layers of challenges to typical formal HE and TVET programs. In addition, the existing literature in refugee education still lacks a coherent analysis of these factors and conditions for adoption of HE and TVET programs, especially for refugees living in camps.
To address these gaps, this dissertation presents three studies that investigate an undergraduate introductory engineering course for refugees called Localized Engineering in Displacement (LED). Specifically, I draw on effective learning and policy frameworks to understand how to situate engineering education across HE and TVET and advance LED in refugee camps. The first study presents a case study examining the iterative processes of creation and implementation of the LED course in the Azraq refugee camp in Jordan. As a general outcome of my study, I describe the novel approach to teaching engineering design for learners in the Azraq refugee camp and its applications to other contexts. The second study examines the LED course implemented in the Kakuma refugee camp. The Kakuma refugee camp is situated in Kenya and considered the largest refugee camp in the world, thus providing a different context of refugee camps. I discuss the contextual challenges to transfer, develop, and implement to a new context and present the course outcomes and experiences based on the course participants’ reflections. The third study extends findings from the first and second studies by using a comparative case study to critically examine the development process and challenges of engineering education in refugee camps. Central to my analysis is the connection between the challenges identified in both camps and existing actors involved with refugee education.
My research uses two case studies to underscore the complexity of the LED course development in the Azraq and Kakuma camps. I seek to foster a debate about the challenges that influence the development of higher engineering education programs in refugee camps and how different actors can collaborate to advance high-quality engineering education initiatives in refugee contexts. Overall, this dissertation clarifies some of the biggest challenges to implement engineering education in refugee settings, how different actors can collaborate to mitigate these challenges, and how these findings expose the misalignment between the international rhetoric and reality on the ground in refugee camps.
APA, Harvard, Vancouver, ISO, and other styles
18

(11167785), Nicolae Christophe Iovanac. "GENERATIVE, PREDICTIVE, AND REACTIVE MODELS FOR DATA SCARCE PROBLEMS IN CHEMICAL ENGINEERING." Thesis, 2021.

Find full text
Abstract:
Data scarcity is intrinsic to many problems in chemical engineering due to physical constraints or cost. This challenge is acute in chemical and materials design applications, where a lack of data is the norm when trying to develop something new for an emerging application. Addressing novel chemical design under these scarcity constraints takes one of two routes: the traditional forward approach, where properties are predicted based on chemical structure, and the recent inverse approach, where structures are predicted based on required properties. Statistical methods such as machine learning (ML) could greatly accelerate chemical design under both frameworks; however, in contrast to the modeling of continuous data types, molecular prediction has many unique obstacles (e.g., spatial and causal relationships, featurization difficulties) that require further ML methods development. Despite these challenges, this work demonstrates how transfer learning and active learning strategies can be used to create successful chemical ML models in data scarce situations.
Transfer learning is a domain of machine learning under which information learned in solving one task is transferred to help in another, more difficult task. Consider the case of a forward design problem involving the search for a molecule with a particular property target with limited existing data, a situation not typically amenable to ML. In these situations, there are often correlated properties that are computationally accessible. As all chemical properties are fundamentally tied to the underlying chemical topology, and because related properties arise due to related moieties, the information contained in the correlated property can be leveraged during model training to help improve the prediction of the data scarce property. Transfer learning is thus a favorable strategy for facilitating high throughput characterization of low-data design spaces.
Generative chemical models invert the structure-function paradigm, and instead directly suggest new chemical structures that should display the desired application properties. This inversion process is fraught with difficulties but can be improved by training these models with strategically selected chemical information. Structural information contained within this chemical property data is thus transferred to support the generation of new, feasible compounds. Moreover, transfer learning approach helps ensure that the proposed structures exhibit the specified property targets. Recent extensions also utilize thermodynamic reaction data to help promote the synthesizability of suggested compounds. These transfer learning strategies are well-suited for explorative scenarios where the property values being sought are well outside the range of available training data.
There are situations where property data is so limited that obtaining additional training data is unavoidable. By improving both the predictive and generative qualities of chemical ML models, a fully closed-loop computational search can be conducted using active learning. New molecules in underrepresented property spaces may be iteratively generated by the network, characterized by the network, and used for retraining the network. This allows the model to gradually learn the unknown chemistries required to explore the target regions of chemical space by actively suggesting the new training data it needs. By utilizing active learning, the create-test-refine pathway can be addressed purely in silico. This approach is particularly suitable for multi-target chemical design, where the high dimensionality of the desired property targets exacerbates data scarcity concerns.
The techniques presented herein can be used to improve both predictive and generative performance of chemical ML models. Transfer learning is demonstrated as a powerful technique for improving the predictive performance of chemical models in situations where a correlated property can be leveraged alongside scarce experimental or computational properties. Inverse design may also be facilitated through the use of transfer learning, where property values can be connected with stable structural features to generate new compounds with targeted properties beyond those observed in the training data. Thus, when the necessary chemical structures are not known, generative networks can directly propose them based on function-structure relationships learned from domain data, and this domain data can even be generated and characterized by the model itself for closed-loop chemical searches in an active learning framework. With recent extensions, these models are compelling techniques for looking at chemical reactions and other data types beyond the individual molecule. Furthermore, the approaches are not limited by choice of model architecture or chemical representation and are expected to be helpful in a variety of data scarce chemical applications.
APA, Harvard, Vancouver, ISO, and other styles
19

(9179804), Daniel Christopher Horvath. "Analysis and Design of Electric Machines Using 2D Method of Moments." Thesis, 2020.

Find full text
Abstract:
Recently, researchers have pointed their attention toward Method of Moments (MoM)-based approaches to model low frequency magnetic devices (i.e. transformers and inductors). This has been prompted by the use of population-based design (PBD) methods wherein the performance of large numbers (on the order of millions) of candidate designs must be evaluated. MoM is attractive for such problems due to the fact that only the magnetic material is discretized. In addition, for the case in which the magnetic material is linear, only a surface mesh is required. In this research, point-matching and Galerkin-based MoM formulations are utilized for the design of electric machinery. In the formulations considered, the model inputs are the free currents of machine windings and the bound currents of permanent magnets. The unknowns are the magnetizations within the magnetic material which are used to compute winding inductance, electromagnetic torque, and core loss.

The proposed Galerkin formulation has been utilized in the PBD of a surface-mount permanent magnet machine with favorable results. Specifically, it is shown that a machine's performance can be evaluated on a time scale expected of a practical design tool. This is achieved in part through judicious exploitation of the periodic structure and excitation of machines to reduce the size of the system matrix. It is shown how the exploitation of periodic structure may be extended to the point-matching formulation for use in nonlinear analyses. Finally, alternative hybrid approaches that combine surface and volume meshing are explored for the analysis of an internal permanent magnet machine. It is shown that such a combination holds promise as a tool for rapid evaluation of machine performance.
APA, Harvard, Vancouver, ISO, and other styles
20

(9726050), Onkar V. Sonur. "The Sustainable Manufacturing System Design Decomposition." Thesis, 2020.

Find full text
Abstract:
With the growing importance of the manufacturing sector, there is a tremendous demand for finding innovative ways to design manufacturing systems. Although several design methodologies are available for devising the manufacturing systems, most of the changes do not sustain for a longer period. Numerous elements contribute to issues that impede sustainability in manufacturing industries, such as the common design approach of applying solutions without understanding system requirements and appropriate thinking processes.
With a Sustainable Manufacturing System Design Decomposition (SMSDD), the precise pitfalls and areas of improvement can be well understood.
The SMSDD fosters members in the organization to collectively map the customer’s needs, identifying the requirements of the system design and the associated solutions. In this thesis, SMSDD is developed to design manufacturing systems for maximizing the potential of an enterprise to create an efficient and sustainable manufacturing system.
In addition to being able to design new manufacturing systems or to re-design existing manufacturing systems, the SMSDD provides a potent tool to analyze the design of existing manufacturing systems. SMSDD uses the Collective System Design Methodology steps to design a manufacturing system for leading to efficient and sustainable manufacturing system. Therefore, SMSDD can apply to a broad range of manufacturing systems.

APA, Harvard, Vancouver, ISO, and other styles
21

(6983504), Zhou Zeng. "Sensitivity Analysis and Topology Optimization in Plasmonics." Thesis, 2019.

Find full text
Abstract:
The rapid development of topology optimization in photonics has greatly expanded the number of photonic structures with extraordinary performance. The optimization is usually solved by using a gradient-based optimization algorithm, where gradients are evaluated by the adjoint sensitivity analysis. While the adjoint sensitivity analysis has been demonstrated to provide reliable gradients for designs of dielectrics, there has not been too much success in plasmonics. The difficulty of obtaining accurate field solutions near sharp edges and corners in plasmonic structures, and the strong field enhancement jointly increase the numerical error of gradients, leading to failure of convergence for any gradient-based algorithm.
We present a new method of calculating accurate sensitivity with the FDTD method by direct differentiation of the time-marching system in frequency domain. This new method supports general frequency-domain objective functions, does not relay on implementation details of the FDTD method, works with general isotropic materials and can be easily incorporated into both level-set-based and density-based topology optimizations. The method is demonstrated to have superior accuracy compared to the traditional continuous sensitivity. Next, we present a framework to carry out density-based topology optimization using our new sensitivity formula. We use the non-linear material interpolation to counter the rough landscape of plasmonics, adopt the filteringand-projection regularization to ensure manufacturability and perform the optimization with a continuation scheme to improve convergence.
We give two examples involving reconstruction of near fields of plasmonic structures to illustrate the robustness of the sensitivity formula and the optimization framework. In the end, we apply our method to generate a rectangular temperature profile in the recording medium of the HAMR system.
APA, Harvard, Vancouver, ISO, and other styles
22

(8740677), Jeremy Sickmiller. "REAL TIME CONTROL OF MANUFACTURING UTILIZING A MANUFACTURING EXECUTION SYSTEM (MES)." Thesis, 2020.

Find full text
Abstract:
Manufacturing facilities need control for sustainability and longevity. If no control is provided for the manufacturing facility, then chaos can be unleashed causing much alarm. Therefore, it is essential to understand how control can be utilized to support the manufacturing facility and the corresponding manufacturing processes. This thesis will walk through a tool to help provide control and that tool is a Manufacturing Execution System (MES). Thisthesis will start with research to defineMESand its implications, then will work into the development of MES from the ground up. The design process willbe systematic and utilize the Collective System Design (CSD) approach with the aiding tool of the axiomatic decomposition map. Then examples will be given for the implementation and execution of the decomposition map as it relates to inventory and traceability. Finalwork will show the 7 FRs ofmanufacturing and how they are applicable to MES with given examples. Throughout the entire design and implementation, the initial hypothesis will be evaluated to determine if MES can provide the control requiredfor a robust manufacturing facility.
APA, Harvard, Vancouver, ISO, and other styles
23

(10686675), Kyle T. Waggoner. "Design of YBCO-Based Machines Using 2D Method of Moments." Thesis, 2021.

Find full text
Abstract:
In this research, the use of a Type-2 superconducting material (i.e. Yttrium Barium Copper Oxide) as a magnetic flux source within synchronous machines is considered. To do so, an analytical model is applied to predict the magnetic field and the currents that are induced within the material when it is magnetized to a mixed-state. These induced currents are then used to model the synchronous machine performance within a 2-dimensional Method of Moments (MoM) formulation. The MoM-based model is used in tandem with a thermal equivalent circuit to calculate the cooling required to keep the YBCO below its critical temperature. These are utilized within a genetic algorithm (GA) to evaluate the tradeoffs between mass and loss for several example electric drives ranging from 10 kW-20 MW. The expected mass and loss of the YBCO machines are compared to those of a standard permanent magnet synchronous machine (PMSM). Specifically, Pareto-optimal fronts are used to assess power levels where cryo-cooled YBCO materials may be warranted.
APA, Harvard, Vancouver, ISO, and other styles
24

(7022165), Raj Sahu. "Design Paradigm for Modular Multilevel Converter Based Generator Rectifier Systems." Thesis, 2019.

Find full text
Abstract:
Modular Multilevel Converters (MMC) are being widely considered for medium to high voltage DC generation systems. Integrated system design optimization of the generator-MMC system through multi-objective optimization is of interest, because such an approach allows the trade-off between competing objectives (for example, mass and loss) to be explicitly and quantitatively identified. In this work, such an optimization based design paradigm for MMC based generator rectifier systems is developed. To formulate the design problem as a multi-objective optimization problem, it is required that the system waveforms can be obtained to facilitate the imposition of constraints and the estimation of power losses. Similarly, it is also desired to include detailed electric machine magnetic and electrical analysis in design optimization, as well as aspects such as the inductor and heat sink design. Such development typically requires detailed component design and simulation models for the electric machine and converter which are computationally expensive. As an alternative, the proposed work utilizes an electric machine metamodel, heat sink metamodel, and high-speed steady-state simulation model for the MMC to facilitate multi-objective optimization minimizing system metrics of interest while satisfying system constraints. Using the developed component simulation and design models, a multi-objective optimization based design of an MMC based generator-rectifier system is conducted.
APA, Harvard, Vancouver, ISO, and other styles
25

(7241471), Michael J. Dziekan. "DESIGN OF A HYBRID HYDROGEN-ON-DEMAND AND PRIMARY BATTERY ELECTRIC VEHICLE." Thesis, 2021.

Find full text
Abstract:

In recent years lithium-ion battery electric vehicles and stored hydrogen electric vehicles have been developed to address the ever-present threat of climate change and global warming. These technologies have failed to achieve profitability at costs consumers are willing to bear when purchasing a vehicle. IFBattery, Inc. has developed a unique primary battery chemistry which simultaneously produces both electricity and hydrogen-on-demand while being both low cost and without carbon emissions. In order to determine the feasibility of the IFBattery chemistry for mobile applications, a prototype golf cart was constructed as the first public application of IFBattery technology. The legacy lead acid batteries of the prototype golf cart were replaced with an IFBattery chemistry tuned to primarily produce hydrogen-on-demand with supplemental electricity. Hydrogen produced by the IFBattery was purified and then fed into a hydrogen fuel cell where electricity was produced to power the vehicle. Electricity from the IFBattery was converted to the common voltage of the golf cart and also used to power the vehicle. Validation testing of the IFBattery powered golf cart demonstrated favorable results as an alternative to both lithium-ion battery and stored hydrogen technologies, and displayed potential for future applications.

APA, Harvard, Vancouver, ISO, and other styles
26

(10520390), Chanel M. Beebe. "SYSTEMS THINKING IN SOCIALLY ENGAGED DESIGN SETTINGS." Thesis, 2021.

Find full text
Abstract:

Socially engaged design programs, community development coalitions, and intentional and unintentional design spaces are rich with expertise and thinkers who are developing solutions to very pressing, yet complicated problems. Little research has been conducted on the expertise and sense-making of the community partners who participate in these situations. The goal of this research endeavor is to unpack the ways various community partners make meaning of their design experiences by answering the question: What evidence of system’s thinking can be seen in the way community partners describe their work or context? A qualitative research study was conducted in which three community partners were interviewed at various points during their engagement with socially engaged design programs. They demonstrated their systems thinking ability most strongly across the following domains: differentiate and qualify elements, explore multiple perspectives, consider issues appropriately, recognize systems, identify and characterize relationships. These findings imply that the community partners are not only capable of systems thinking but have the potential to be more deeply involved in developing solutions within these settings. Future studies should investigate systems thinking beyond socially engaged design in formal settings and should consider investigation protocols that more directly surface systems thinking domains. Overall, this study contributes to existing work in systems thinking by calling for a more expansive and inclusive engagement of community partners in socially engaged work.

APA, Harvard, Vancouver, ISO, and other styles
27

(8120606), Zhaoyang Li. "Design and Simulation of Microwave Filters Using Non-uniform Transmission Line and Superformula." Thesis, 2019.

Find full text
Abstract:
In this study, a novel and systematic methodology for the design and optimization of lowpass filters (LPFs), and multiorder-bandpass filters (BPFs) are proposed. The width of the LPF signal traces consistently follow Fourier truncated series, and the thickness of the substrate as well. By studying different lengths and other physical constraints, the design meets predefined electrical requirements. Moreover, superformula is used in split ring resonators (SRRs) designs to obtain a BPF response and significant structural compactness. Non-uniform transmission lines, as well as superformula equations, are programmed in MATLAB, which is also used for analytical validations. Traces are drawn in AutoCAD. The substrate of LPF is constructed in Pro/e. Finally, the optimized layouts are imported to Ansys High Frequency Structure Simulation (HFSS) software for simulation and verification. Nonuniform LPFs are optimized over a range of 0-6 GHz with cutoff frequency 3.5 GHz. Superformula implemented multiorder-BPFs are optimized with cutoff frequency of 1.1 GHz.
APA, Harvard, Vancouver, ISO, and other styles
28

(5931200), Francisco Rivera-Abreu. "Dual Band Octagonal Microstrip Patch Antenna Design Method for Energy Harvesting." 2020.

Find full text
Abstract:
A practical method to design dual-band octagonal patch antenna is introduced. The antenna consists of an octagonal patch with a proximity coupling feed designed to radiate at 900 MHz and 1.8 GHz, respectively. The octagonal dual band patch antenna that is designed using the method introduced is then simulated with 3D FEM based electromagnetic simulator. The proposed antenna design can be used to harvest radio frequency (RF) energy from Wi-Fi and widely spread mobile networks. The simulated and analytical results are compared and good agreement is observed.
APA, Harvard, Vancouver, ISO, and other styles
29

(9187337), Zhiyao Yang. "AN AMMONIA-BASED CHEMISORPTION HEAT PUMP FOR COLD CLIMATE: EXPERIMENTS AND MODELING FOR PERFORMANCE ANALYSIS AND DESIGN OPTIMIZATION." Thesis, 2020.

Find full text
Abstract:

Space and water heating contribute over 50% of all the residential building energy consumption and are especially major energy consumers in the cold climates. Meanwhile, conventional furnaces and boilers with energy efficiency limited to below 100% dominate the residential heating in the cold climate, and the electric vapor-compression heat pump capacity and efficiency decline drastically at low ambient temperatures. Thermally driven ammonia-based chemical adsorption (chemisorption) heat pump (CSHP) systems utilize the reversible chemical reaction between the ammonia vapor and solid sorbent to generate heat pumping effect, which can provide heating with much higher energy efficiency than existing cold-climate heating technologies. Despite the significant potential of energy efficiency improvement from existing technologies, most studies in the literature on chemisorption heat pump systems focus on adopting the technology for refrigeration and energy storage applications, with very limited investigations available for using the technology for producing heating in cold climates.

This thesis study is thus conducted to characterize the operation behavior and performance of a CSHP system under cold ambient conditions and further identify optimal design and control for such systems to achieve high performance. In this study, both experimental and modelling approaches are pursued to investigate a CSHP heating system from the perspective of the sorption material using the multiple-stage LiCl-ammonia reactions, to the novel adsorber component with hybrid heat pipe heat exchanger, and finally to the performance of the complete heat pump system. The experimental studies are based on a prototype CSHP system tested to identify the chemical kinetics of the sorption material, as well as the transient performance of the adsorber and the system. The calibrated chemical kinetics are then used in the development of a transient adsorber model to analyze the operation and improve design of the adsorber. The heating COP of the prototype system was measured to be 0.75-1.16 under ambient temperatures of 8-20 C. Finally, a dynamic system model is developed based on the dynamic models of the adsorber and other components in the system. The system model is validated against the experimental data and used to analyze the detailed energy flow and operation dynamic. Based on the inefficiencies revealed by the simulation of the current prototype system, an improved system design with reduced thermal mass and heat loss is introduced. Simulation of the improved system results in heating COP of 1.17 to 1.23 under -13.9 C to 8.3 C ambient, respectively.
APA, Harvard, Vancouver, ISO, and other styles
30

(7456577), Xiang Zhang. "A COUPLED THERMAL/ELECTRIC CIRCUIT MODEL FOR DESIGN OF MVDC CABLES." Thesis, 2019.

Find full text
Abstract:
Cables play an important role in the design of a power system. DC cable design presents unique challenges due to the fact that space charge can accumulate within the dielectric over time. Space charge accumulation is a function of temperature, electric field, and dielectric properties. Of particular concern is that the space charge leads to electric fields that are sufficient to break down the cable, particularly during transient conditions such as voltage reversal.

In this research, a focus is on the development of a coupled thermal- and electricalequivalent-circuit model that is general and provides the ability to predict the electric fields and space charge accumulation within single and multi-conductor DC cables. In contrast to traditional analytical models, the approach is more general, allowing for exploration of a wide spectrum of geometries. In contrast to traditional numerical methods, including finite element or finite difference, apriori knowledge of the electric field behavior is used to discretize the dielectric into a small number of electric flux tubes. The electric field dynamics within each tube are then modeled using a first order nonlinear differential equation. The relatively coarse discretization enables the solution to be computed rapidly. This is useful in population-based design where a large number of candidate evaluations is necessary to explore a design space. The modeling approach has been validated using several examples presented in the literature. In addition, its usefulness has been highlighted in the optimization of a 20 kV cable wherein objectives include minimization of mass and loss.
APA, Harvard, Vancouver, ISO, and other styles
31

(6622304), Juan S. Martinez. "Tactile Speech Communication: Design and Evaluation of Haptic Codes for Phonemes with Game-based Learning." Thesis, 2019.

Find full text
Abstract:
This thesis research was motivated by the need for increasing speech transmission rates through a phonemic-based tactile speech communication device named TAPS (TActile Phonemic Sleeve). The device consists of a 4-by-6 tactor array worn on
the forearm that delivers vibrotactile patterns corresponding to English phonemes. Three studies that proceeded this thesis evaluated a coding strategy that mapped 39 English phonemes into vibrotactile patterns. This thesis corresponds to a continuation of the project with improvements summarized in two parts. First, a design and implementation of a training framework based on theories of second language acquisition and game-based learning is developed. A role playing game named Haptos was designed to implement this framework. A pilot study using the first version of the game showed that two participants were able to master a list of 52 words within 45 minutes of game play. Second, an improved set of haptic codes was designed. The design was based on the statistics of spoken English and included an additional set of codes that abbreviate the most frequently co-occurring phonemes in duration. The new set included 39 English phonemes and 10 additional abbreviated symbols. The new codes represent a 24 to 46% increase in word presentation rates. A second version of the Haptos game was implemented to test the new 49 codes in a learning curriculum distributed over multiple days. Eight participants learned the new codes within 6 hours of training and obtained an average score of 84.44% in symbol identification tests with error rates per haptic symbol below 18%. The results demonstrate the feasibility of employing the new codes for future work where the ability to receive longer sequences of phonemes corresponding to phrases and sentences will be trained and tested.
APA, Harvard, Vancouver, ISO, and other styles
32

(6857492), Emilie A. Siverling. "Heat Transfer Conceptions Used in an Engineering Design-Based STEM Integration Unit: A Case of Struggle." Thesis, 2019.

Find full text
Abstract:
In the United States, there has been an increased emphasis on science, technology, engineering, and mathematics (STEM), and especially engineering, in pre-college settings. There are several potential benefits of this, including: increasing the quantity and diversity of students who pursue STEM careers, improving all students’ technological literacy, and improving student learning in the STEM disciplines. While current standards support the integration of the four STEM disciplines in pre-college classrooms, research still needs to be done to determine which models of STEM integration are effective and how and why they impact student learning. The context of this study is a model of STEM integration called engineering design-based STEM integration. The purpose of this study was to do an in-depth exploration of students’ use of science conceptions during an engineering design-based STEM integration unit, with additional focus on how engineering design, redesign, teamwork, and communication influence students’ use of science conceptions. For this study, the unit was designed to address middle school-level physical science concepts related to heat transfer, including temperature, thermal energy, and processes of heat transfer (i.e., conduction, convection, and radiation).

An embedded case study design was used to explore students’ science conceptions while they participated in an engineering design STEM integration unit. The case was one student team from a seventh-grade science class, and the students within the team were the embedded sub-units. Data were collected on each day of the unit’s implementation; these data included video of the student team and entire classroom, audio of the student team, observations and field notes, and student artifacts, including their engineering notebooks. Data were analyzed primarily using methods from qualitative content analysis. Themes emerged for the whole team, with emphasis on specific students when appropriate.

The results show that there were a few key features of engineering (i.e., engineering design, redesign, teamwork, and communication) that influenced students’ use of heat transfer conceptions. During much of the problem scoping stage, which included the science lessons focused on heat transfer, students mostly used scientific conceptions about conduction, convection, and radiation. However, when they needed to think about those three processes of heat transfer together, as well as apply them to the context of the engineering design challenge, the students began to use a larger mix of scientific conceptions and alternative conceptions. Several alternative conceptions emerged when they combined ideas and vocabulary from conduction and radiation to create one set of rules about thermal properties of materials (i.e., did not distinguish between conduction and radiation). Even when they used scientific conceptions, the students sometimes applied the conceptions unscientifically when designing, which led them to create a prototype that performed poorly. However, the student team then learned from the failures of their first design and redesigned, during which they appropriately used mostly scientific conceptions. In other words, the opportunity to learn from failure and redesign was critical to this team’s use of correct conceptions about heat transfer. Two other features of engineering that emerged were teamwork and communication through notebooks. Students on the team learned from each other, but they learned both scientific and alternative conceptions from each other and from their peers on other teams. Engineering notebooks proved to be somewhat helpful to students, since they referred to them a few times when designing, but more importantly they were helpful in revealing students’ conceptions, especially for one student on the team who rarely spoke.

The findings of this study contribute to future development and implementation of other engineering design-based STEM integration curricula because they show how various features of engineering influenced this student team’s use of science conceptions. In particular, the results demonstrate the importance of giving students the opportunity to learn from failure and redesign, since this process can help students use more scientific conceptions and potentially repair their alternative conceptions. Additionally, it is important for curriculum developers and teachers to think carefully about the transition from problem scoping to solution generation and how to include effective scaffolds for students to help them combine their conceptions from science lessons and apply them correctly when designing. These results also have implications related to heat transfer conceptions, as the student team in this study demonstrated some scientific and alternative conceptions that were already in the literature. Additionally, they used alternative conceptions when they confused concepts from conduction and radiation, which are not in literature about pre-college heat transfer conceptions. These findings suggest that more research should be done to explore the interaction of engineering design and students’ science conceptions, especially heat transfer conceptions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography