Academic literature on the topic '1,1,3,3-tetraorganodisiloxanes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '1,1,3,3-tetraorganodisiloxanes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "1,1,3,3-tetraorganodisiloxanes"

1

Shankar, Ravi, Asmita Sharma, Bhawana Jangir, Manchal Chaudhary, and Gabriele Kociok-Köhn. "Catalytic oxidation of diorganosilanes to 1,1,3,3-tetraorganodisiloxanes with gold nanoparticle assembly at the water–chloroform interface." New Journal of Chemistry 43, no. 2 (2019): 813–19. http://dx.doi.org/10.1039/c8nj04223c.

Full text
Abstract:
The synthesis of 1,1,3,3-tetraorganodisiloxanes from the hydrolytic oxidation of diorganosilanes, RR1SiH2, using AuNPs as an interfacial catalyst is described. This study provides a manifestation of the photothermal effect in enhancing the catalytic activity at ambient temperature.
APA, Harvard, Vancouver, ISO, and other styles
2

Frampton, C. S., and K. E. B. Parkes. "1,1,3,3-Tetramethylurea." Acta Crystallographica Section C Crystal Structure Communications 52, no. 12 (December 15, 1996): 3246–48. http://dx.doi.org/10.1107/s0108270196011146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deng, Jia. "1,1,3,3-Tetramethyldisiloxane." Synlett 2011, no. 14 (July 21, 2011): 2102–3. http://dx.doi.org/10.1055/s-0030-1260971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fleischer, H., K. Hensen, D. Burgdorf, E. Flindt, U. Wannagat, H. B�rger, and G. Pawelke. "1,1,3,3-Tetrachlordisilazan." Zeitschrift f�r anorganische und allgemeine Chemie 621, no. 2 (February 1995): 239–48. http://dx.doi.org/10.1002/zaac.19956210213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vitorino, Joana, Filipe Agapito, M. Fátima M. Piedade, Carlos E. S. Bernardes, Hermínio P. Diogo, João P. Leal, and Manuel E. Minas da Piedade. "Thermochemistry of 1,1,3,3-tetramethylguanidine and 1,1,3,3-tetramethylguanidinium nitrate." Journal of Chemical Thermodynamics 77 (October 2014): 179–89. http://dx.doi.org/10.1016/j.jct.2014.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gabbutt, Christopher D., B. Mark Heron, Janice M. McCreary, and David A. Thomas. "Unusual Aminations with Tetramethylguanidine." Journal of Chemical Research 2002, no. 2 (February 2002): 69–71. http://dx.doi.org/10.3184/030823402103171302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fluck, Ekkehard, Winfried Plass, Gernot Heckmann, Hartmut Bögge, and Achim Müller. "1λ5,3 λ5-Diphosphorine (1 λ5,3 λ5-Diphosphabenzole), III [1, 2] / 1 λ5,3 λ5-Diphosphorines (1 λ5,3 λ5-Diphosphabenzenes), III [1, 2]." Zeitschrift für Naturforschung B 46, no. 2 (February 1, 1991): 202–8. http://dx.doi.org/10.1515/znb-1991-0214.

Full text
Abstract:
1,1,3,3-Tetrakis(dimethylamino)-diphosphete (3) reacts with diphenylacetylene and bis(trimethylsilyl)butadiin-1 ,3 to give 1,1,3,3-tetrakis(dimethylamino)-4,5-diphenyl-1 λ5,3λ5- diphosphorine (8) and 1,1,3,3-tetrakis(dimethylamino)-5-trimethylsilyl-4-(trimethylsilyl-ethinyl)-1λ5,3 λ5-diphosphorine (9). The new compounds are characterized by their NMR , mass and IR spectra. In addition, the results of an X-ray structure analysis of 9 are reported.
APA, Harvard, Vancouver, ISO, and other styles
8

Foitzik, Richard C., Steven E. Bottle, Jonathan M. White, and Peter J. Scammells. "Synthesis of 1,1,3,3-Tetraalkylisoindolines Using a Microwave-Assisted Grignard Reaction." Australian Journal of Chemistry 61, no. 3 (2008): 168. http://dx.doi.org/10.1071/ch08008.

Full text
Abstract:
1,1,3,3-Tetraalkylisoindolines are important intermediates in the preparation of stable nitroxides, such as 1,1,3,3-tetramethylisoindolin-2-oxyl, 1, and 1,1,3,3-tetraethylisoindolin-2-oxyl, 2. The limiting step in their preparation is the Grignard reaction between N-benzylphthalimide and the appropriate alkyl magnesium bromide, which typically proceeds in yields of ~28–40%. A microwave-assisted variation of this reaction has been optimized to give improved yields and reduced reaction times (45–60% and 2 h, respectively).
APA, Harvard, Vancouver, ISO, and other styles
9

Kaupang, Åsmund, Carl Henrik Görbitz, and Tore Bonge-Hansen. "A solid-state oxidation of 1,1,3,3-tetramethylguanidinium 4-methylbenzenesulfinate to 1,1,3,3-tetramethylguanidinium 4-methylbenzenesulfonate." Acta Crystallographica Section C Crystal Structure Communications 69, no. 7 (June 8, 2013): 778–80. http://dx.doi.org/10.1107/s0108270113015011.

Full text
Abstract:
The organic acid–base complex 1,1,3,3-tetramethylguanidinium 4-methylbenzenesulfonate, C5H14N3+·C7H7O3S−, was obtained from the corresponding 1,1,3,3-tetramethylguanidinium 4-methylbenzenesulfinate complex, C5H14N3+·C7H7O2S−, by solid-state oxidation in air. Comparison of the two crystal structures reveals similar packing arrangements in the monoclinic space groupP21/c, with centrosymmetric 2:2 tetramers being connected by four strong N—H...O=S hydrogen bonds between the imine N atoms of two 1,1,3,3-tetramethylguanidinium bases and the O atoms of two acid molecules.
APA, Harvard, Vancouver, ISO, and other styles
10

Criado, A., M. J. Diánez, S. Pérez-Garrido, I. M. L. Fernandes, M. Belsley, and E. de Matos Gomes. "1,1,3,3-Tetramethylguanidinium dihydrogenorthophosphate." Acta Crystallographica Section C Crystal Structure Communications 56, no. 7 (July 1, 2000): 888–89. http://dx.doi.org/10.1107/s0108270100005187.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "1,1,3,3-tetraorganodisiloxanes"

1

Weigand, Brandi L. "1,1,3,3-Tetramethylguanidine Solvated Lanthanide Aryloxides: Pre-Catalysts For The Tishchenko Reaction." Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1350134597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ZUNDEL, THOMAS. "Polymerisation anionique du 1,1,3,3-tetramethyl-1,3-disilacyclobutane et de cyclosiloxanes amorcee par le trimethylsilylmethyllithium en presence de cryptand." Paris 6, 1993. http://www.theses.fr/1993PA066285.

Full text
Abstract:
Au cours de ce travail, nous avons tout d'abord mis au point une methode d'electrosynthese du 1-chloromethyl-1,1,3-3-tetramethyl-3-chloro-1,1,3,3-disilabutane: compose qui donne le 1,1,3,3-tetramethyl-1,3-disilacyclobutane (tmdscb). Nous avons montre que la polymerisation anionique du tmdscb amorcee par des organolithiens, la potasse ou le trimethylsilanolate de potassium a lieu en presence du cryptand approprie, dans le toluene ou en masse. Toutefois, les masses molaires des polycarbosilanes et les rendements sont faibles (300mn14000 et 10%rdt50%). Des reactions de transfert au solvant, au monomere et au polymere expliquent l'obtention de ces oligomeres ainsi que les faibles rendements par suite de la formation de carbanions peu reactifs. Le trimethylsilylmethyllithium a ete utilise pour amorcer les polymerisations des cyclosiloxanes d#3,d#4 et d#4#v#i. L'analyse des milieux reactionnels par rmn du #7li a permis de mettre en evidence l'influence du mode de preparation des silanolates de lithium sur l'efficacite de la complexation des cations li#+ par le cryptand 211. Ainsi, lorsque les silanolates de lithium sont prepares in situ (reactions d'amorcage de la polymerisation des cyclosiloxanes), l'introduction d'un exces de 211 par rapport aux cations permet de les crypter en totalite. La formation quantitative d'especes cryptees dans ce cas confirme l'interpretation des resultats cinetiques obtenus par dilatometrie (d#3) ou par cpv (d#4): l'ordre 1 par rapport a la concentration initiale en amorceur s'interprete par la presence d'un seul type d'especes actives: les paires d'ions a cations cryptes
APA, Harvard, Vancouver, ISO, and other styles
3

Laval, Stéphane. "Nouveaux systèmes réducteurs utilisant des hydrosiloxanes comme substituts des hydrures d’aluminium et de bore : application à la réduction des fonctions amides et nitriles." Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10193/document.

Full text
Abstract:
Ces dernières années, les recherches industrielles et académiques ont connu des bouleversements sans précédents liés à la notion de Développement Durable. Les exigences en matière de santé et d’environnement ont poussé les chimistes à concevoir des produits et procédés chimiques qui permettent de réduire ou d’éliminer les substances dangereuses. Les travaux de recherche décrits dans cette thèse s’inscrivent dans ce contexte et concernent la mise au point de nouveaux systèmes réducteurs utilisant des hydrosiloxanes comme substituts des hydrures d’aluminium et de bore. Dans cet objectif, des systèmes associant le 1,1,3,3-tétraméthyldisiloxane (TMDS) ou le polyméthylhydrosiloxane (PMHS) avec des complexes de titane ou de vanadium ont été développés pour la réduction des fonctions amides et nitriles. La nature de l’association hydrosiloxane – métal et du substrat étudié a joué un rôle important sur la performance et la sélectivité des réactions misent en oeuvre. D’une part, les réductions sélectives d’amides (tertiaires et secondaires) et de nitriles en aldéhydes ont été réalisées respectivement en présence du tétraisopropylate de titane(IV) et du triisopropylate d’oxyde de vanadium(V). D’autre part, les réductions d’amides primaires et de nitriles ont conduit aux amines primaires en présence de tétraisopropylate de titane(IV). Enfin, ces systèmes réducteurs ont été utilisés pour la synthèse d’hétérocycles azotés saturés. La réduction de composés dinitriles donne lieu à une réaction d’alkylation réductrice intramoléculaire qui conduit à la formation de dérivés de la pipéridine, de la pyrrolidine et de l’azétidine en une étape
In recent years, industrial and academic researches have experienced unprecedented changes related to the concept of sustainable development. Health and environment new requirements have prompted chemists to develop chemical products and processes that reduce or eliminate hazardous substances. The research work described in this thesis is focused on the development of new reducing systems using hydrosiloxanes as substitutes for aluminum and boron hydrides. In order to achieve this goal, reducing systems combining 1,1,3,3-tetramethyldisiloxane (TMDS) or polymethylhydrosiloxane (PMHS) with titanium or vanadium complexes have been developed for the reduction of amides and nitriles. The nature of both the association “hydrosiloxane – metal” as well as the studied substrate played an important role on the performance and the selectivity of the reaction. On the one hand, selective reductions of amides (tertiary and secondary) and nitriles to aldehydes were carried out respectively in the presence of titanium(IV) tetraisopropoxide and vanadium(V) triisopropoxide oxide. On the other hand, reductions of amides (primary) and nitriles afforded the corresponding primary amines in the presence of titanium(IV) tetraisopropoxide. Finally, these systems have been applied for the synthesis of saturated N-heterocycles. Reduction of dinitrile compounds led, in one step, to piperidine, pyrrolidine and azetidine derivatives through an intramolecular reductive alkylation reaction
APA, Harvard, Vancouver, ISO, and other styles
4

Ciceron, Philippe. "Etude du (tétraméthyl-1,1,3,3) butyl-4 phénol, de ses dérivés hydroxyméthylés et de ses produits de condensation avec le formaldéhyde pour la vulcanisation du caoutchouc butyle." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37612663m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ciceron, Philippe. "Etude du (tétraméthyl-1,1,3,3)butyl-4 phénol, et de ses dérivés hydroxyméthyles et de ses produits de condensation avec le formaldéhyde pour la vulcanisation du caoutchouc butyle." Lyon 1, 1988. http://www.theses.fr/1988LYO10055.

Full text
Abstract:
Etude par ir, uv et calculs theoriques de la structure electronique du tetramethyl butyl-4 phenol (ptop) et du p-t-butyl phenol (ptosp) ou relation avec leur reactivite vis-a-vis du formaldehyde. Etude des reactions d'hydroxymethylation du ptop par le formol. Synthese des calixarenes montrant qu'ils sont absents des novolaques et des resols. Preparation du dihydroxy-2,6 ptop et optimisation et realisation d'un essai pilote. Preparation par une methode originale d'une resine de structure particuliere
APA, Harvard, Vancouver, ISO, and other styles
6

Kai-Chi, Chan, and 詹凱淇. "Synthesis and antimicrobial activity of 1,1,3,3-tetramethylguanidinium aliphatate." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/54118262375689659950.

Full text
Abstract:
碩士
嘉南藥理科技大學
化粧品應用與管理系暨化粧品科技研究所
101
Fatty acid is a carboxylic acid with a long saturated or unsaturated aliphatic chain. It is a main ingredient used in cosmetic products. Part of fatty acids show the antimicrobial efficacy of microorganisms such as bacteria or fungi, but the problem of solubility leads to use of inconvenience. This study utilized 1,1,3,3-tetramethylguanidine to react with different carbon chain length of fatty acid, producing nine 1,1,3,3-tetramethylguanidium aliphatate (TGA). Antimicrobial activity of the TGA was evaluated with (a) disc diffusion assay; (b)minimum inhibitory concentration, (MIC); (c)minimum microbicidal concentration, (MMC) to evaluate the antibacterial capacity. This study showed that the different types of TGA should be dissolved in water. According to our experimental results revealed that the antibacterial activity had not obvious effect in C8~C12 carbon chains of TGA. For example, 1,1,3,3-tetramethylguanidium dodecanoate at 20 mg/mL could inhibit the Staphylococcu aureus and Baccillus Subtilis growth to 23 mm and 22.3 mm of inhibition zones (MIC, 142.6 µg/mL and 189.0 µg/mL ; MMC, 227.3 µg/mL and 254.0 µg/mL, respectively), the inhibition zones of Escherichia coli and Pseudomonas aeruginosa were about 12 mm (MIC >1000 µg/mL, MMC >1000 µg/mL, respectively), the growth inhibition zones was about 11 mm (MIC 325.3 µg/mL and MMC 489.6 µg/mL, respectively) in Candida albicans.
APA, Harvard, Vancouver, ISO, and other styles
7

Nuss, John Mark. "Photochemical 1,4 aryl migrations ; Photochemistry of 1,1,3,3-tetraarylpropene derivatives." 1986. http://catalog.hathitrust.org/api/volumes/oclc/14367499.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bailén, Latorre Miguel Ángel. "Nuevos reactivos de acoplamiento peptídico amínicos derivados de 1-óxido de 2-mercaptopiridina, 1,1,3,3-tetrametilurea y 1,3-dimetilpropilenurea." Doctoral thesis, 2001. http://hdl.handle.net/10045/3224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lin, Yueh-Yun, and 林玥妘. "Measurement of Thermodynamics and Kinetics of Carbon Dioxide Hydrate in the Presence of 2-Methoxyethyl ether, Tetrabutylammonium hydroxide and 1,1,3,3-Tetramethylguanidine." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/73476799806818945891.

Full text
Abstract:
碩士
國立臺灣大學
化學工程學研究所
104
In this study, phase equilibrium conditions for carbon dioxide hydrates in the presence of 2-methoxyethyl ether, tetrabutylammonium hydroxide and 1,1,3,3-tetramethylguanidine were experimentally measured. The three-phase (H-Lw-V) equilibrium pressures and temperatures were determined by isochoric method in the pressure range from 1.68 to 3.44 MPa with various concentrations of the additives. Also, the kinetic behaviors were investigated in the presence of 2-methoxyethyl ether at 0.2 and 0.3 mass fraction. Compared with pure water system, addition of 2-methoxyethyl ether and 1,1,3,3-tetramethylguanidine in the system cause inhibition effect on carbon dioxide hydrate formation and the maximum decrease of dissociation temperature is about 5.7 K and 11.1 K, respectively. On the other hand, addition of tetrabutylammonium hydroxide in the system gives rise to promotion effect on carbon dioxide hydrate formation and the maximum increase temperature is about 11 K, compared with pure water system. To simulate the seawater environment, this study also measured the additives in brine system with 0.035 mass fraction of NaCl. Moreover, the structure and dissociation enthalpy of hydrates are estimated by using Clausius-Clapeyron equation. The structures of carbon dioxide hydrates with addition of 2-methoxyethyl ether and 1,1,3,3-tetramethylguanidine are both classified as structure I, whereas those with addition of tetrabutylammonium hydroxide are classified as structure TS-I. In this study, the kinetics of carbon dioxide hydrate with 2-methoxyethyl ether as the additive at 0.2 and 0.3 mass fraction were also investgated. With an increase in initial operating pressure, the driving force increased. That is due to the fact that higher initial pressure created higher supersaturation, which induced stronger driving force. At 0.3 mass fraction of 2-methoxyethyl ether in the system, the induction time was shortened as the driving force increased. In addition, the carbon dioxide consumption was increased almost linearly with increasing the driving force. However, the average hydrate formation rate stayed almost constant with the increased driving force. Also, addition of 2-methoxyethyl ether at 0.2 mass fraction in the system was studied. The results showed the induction time was shortened in comparison to that of 0.3 mass fraction. However, the average hydrate formation rate and carbon dioxide consumption were not effectively influenced.
APA, Harvard, Vancouver, ISO, and other styles
10

Imran, Muhammad [Verfasser]. "Synthesis of functionalized diaryl sulfides by cyclocondensation of 3-arylthio-1-silyloxy-1,3-butadienes with 1,1,3,3-tetramethoxypropane, dimethyl allene-1,3-dicarboxylate, 1,1-bis(methylthio)-1-en-3-ones and 3-oxo-orthoesters / vorgelegt von Muhammad Imran." 2009. http://d-nb.info/995965218/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "1,1,3,3-tetraorganodisiloxanes"

1

Early, Rosemary. The vibrational and electronic spectroscopic investigation of various metal salts of 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "1,1,3,3-tetraorganodisiloxanes"

1

Gooch, Jan W. "1,1,3,3-Tetramethylbutyl Peroxy-2-Ethylhexanoate." In Encyclopedic Dictionary of Polymers, 738. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wohlfarth, Christian. "Refractive index of 1,1,3,3-tetramethyldisiloxane." In Optical Constants, 14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49236-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wohlfarth, Christian. "Refractive index of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane." In Optical Constants, 32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49236-9_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wohlfarth, Christian. "Refractive index of 1,3-dichloro-1,1,3,3-tetramethyldisiloxane." In Optical Constants, 9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49236-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wohlfarth, Christian. "Refractive index of 1,1,3,3-tetramethyldisiloxane-1,3-diol." In Optical Constants, 15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49236-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hirota, E., K. Kuchitsu, T. Steimle, J. Vogt, and N. Vogt. "34 B8F12 1,1,3,3-Tetrakis(difluoroboryl)-2,2,4,4-tetrafluorotetraborane(8)." In Molecules Containing No Carbon Atoms and Molecules Containing One or Two Carbon Atoms, 64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-540-70614-4_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Drake, John E., Boris M. Glavinčvski, Raymond T. Hemmings, H. Ernest Henderson, Charles H. Van Dyke, and N. Viswanathan. "Digermoxane and 1,3-Dimethyl-, 1,1,3,3-Tetramethyl-, and Hexamethyldigermoxane." In Inorganic Syntheses, 176–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132517.ch39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Winkelmann, Jochen. "Diffusion coefficient of dideuterium oxide in 1,1,3,3-tetramethyl-urea." In Diffusion in Gases, Liquids and Electrolytes, 1721. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54089-3_1209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wohlfarth, Ch. "Dielectric constant of the mixture (1) water; (2) 1,1,3,3-tetramethylurea." In Supplement to IV/6, 634. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75506-7_363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wohlfarth, Ch. "Second virial coefficient of poly[4-(1,1,3,3-tetramethylbutyl)phenyl methacrylate]." In Polymer Solutions, 1151. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02890-8_713.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "1,1,3,3-tetraorganodisiloxanes"

1

Sotelo, Eddy, PierFrancesco Biagini, Abel Crespo, and Alberto Coelho. "Synthetic Applications of Polystyrene-Supported 1,1,3,3-Tetramethylguanidine." In The 11th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2007. http://dx.doi.org/10.3390/ecsoc-11-01335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography