Journal articles on the topic '030204 Main Group Metal Chemistry'

To see the other types of publications on this topic, follow the link: 030204 Main Group Metal Chemistry.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '030204 Main Group Metal Chemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Craig, Peter, and Marcel Gielen. "Editorial: main group metal compounds." Applied Organometallic Chemistry 17, no. 1 (January 2003): 1. http://dx.doi.org/10.1002/aoc.405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Budzelaar, Peter H. M., Jeroen J. Engelberts, and Joop H. van Lenthe. "Trends in Cyclopentadienyl−Main-Group-Metal Bonding†." Organometallics 22, no. 8 (April 2003): 1562–76. http://dx.doi.org/10.1021/om020928v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Himmel, Hans-Joerg. "ChemInform Abstract: Main Group Chemistry: Metal-reinforced Bonding." ChemInform 44, no. 19 (April 18, 2013): no. http://dx.doi.org/10.1002/chin.201319233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gečiauskaitė, Agota A., and Felipe García. "Main group mechanochemistry." Beilstein Journal of Organic Chemistry 13 (October 5, 2017): 2068–77. http://dx.doi.org/10.3762/bjoc.13.204.

Full text
Abstract:
Over the past decade, mechanochemistry has emerged as a powerful methodology in the search for sustainable alternatives to conventional solvent-based synthetic routes. Mechanochemistry has already been successfully applied to the synthesis of active pharmaceutical ingredients (APIs), organic compounds, metal oxides, coordination compounds and organometallic complexes. In the main group arena, examples of synthetic mechanochemical methodologies, whilst still relatively sporadic, are on the rise. This short review provides an overview of recent advances and achievements in this area that further validate mechanochemistry as a credible alternative to solution-based methods for the synthesis of main group compounds and frameworks.
APA, Harvard, Vancouver, ISO, and other styles
5

Silvestru, Cristian, and John E. Drake. "Tetraorganodichalcogenoimidodiphosphorus acids and their main group metal derivatives." Coordination Chemistry Reviews 223, no. 1 (December 2001): 117–216. http://dx.doi.org/10.1016/s0010-8545(01)00387-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chirila, Andrei, Robert Wolf, J. Chris Slootweg, and Koop Lammertsma. "Main group and transition metal-mediated phosphaalkyne oligomerizations." Coordination Chemistry Reviews 270-271 (July 2014): 57–74. http://dx.doi.org/10.1016/j.ccr.2013.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elsen, Holger, Christian Fischer, Christian Knüpfer, Ana Escalona, and Sjoerd Harder. "Early Main Group Metal Catalysts for Imine Hydrosilylation." Chemistry – A European Journal 25, no. 70 (November 18, 2019): 16141–47. http://dx.doi.org/10.1002/chem.201904148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tang, Chuan-Kai, Ya-Zhou Li, Fang Ma, Zexing Cao, and Yirong Mo. "Anti-Electrostatic Main Group Metal–Metal Bonds That Activate CO2." Journal of Physical Chemistry Letters 12, no. 31 (August 4, 2021): 7545–52. http://dx.doi.org/10.1021/acs.jpclett.1c02134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lampland, Nicole L., Aradhana Pindwal, KaKing Yan, Arkady Ellern, and Aaron D. Sadow. "Rare Earth and Main Group Metal Poly(hydrosilyl) Compounds." Organometallics 36, no. 23 (July 24, 2017): 4546–57. http://dx.doi.org/10.1021/acs.organomet.7b00383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kuhn, Norbert, and Martin Speis. "Mg(C7H13N2)2 - a main group metal vinamidine complex." Inorganica Chimica Acta 145, no. 1 (May 1988): 5. http://dx.doi.org/10.1016/s0020-1693(00)81995-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kappes, Manfred M. "Experimental studies of gas-phase main-group metal clusters." Chemical Reviews 88, no. 2 (March 1988): 369–89. http://dx.doi.org/10.1021/cr00084a002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dickie, Diane A., Eric N. Coker, and Richard A. Kemp. "Formation of a Reversible, Intramolecular Main-Group Metal–CO2Adduct." Inorganic Chemistry 50, no. 22 (November 21, 2011): 11288–90. http://dx.doi.org/10.1021/ic201697g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Whitmire, Kenton H. "THE INTERFACE OF MAIN GROUP AND TRANSITION METAL CLUSTER CHEMISTRY." Journal of Coordination Chemistry 17, no. 2 (April 1988): 095–203. http://dx.doi.org/10.1080/00958978808075858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Clegg, William. "Main-Group Metal-Alkyls: Simple Formulae but Complex Structural Chemistry." Angewandte Chemie International Edition 51, no. 6 (January 10, 2012): 1310–11. http://dx.doi.org/10.1002/anie.201107519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gunsalus, Niles Jensen, Anjaneyulu Koppaka, Brian G. Hashiguchi, Michael M. Konnick, Sae Hume Park, Daniel H. Ess, and Roy A. Periana. "SN2 and E2 Branching of Main-Group-Metal Alkyl Intermediates in Alkane CH Oxidation: Mechanistic Investigation Using Isotopically Labeled Main-Group-Metal Alkyls." Organometallics 39, no. 10 (April 24, 2020): 1907–16. http://dx.doi.org/10.1021/acs.organomet.0c00120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wolf, Robert, and Werner Uhl. "Main-Group-Metal Clusters Stabilized by N-Heterocyclic Carbenes." Angewandte Chemie International Edition 48, no. 37 (September 1, 2009): 6774–76. http://dx.doi.org/10.1002/anie.200902287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Carter, Carly C., and Thomas R. Cundari. "Computational Study of Methane C–H Activation by Main Group and Mixed Main Group–Transition Metal Complexes." Molecules 25, no. 12 (June 17, 2020): 2794. http://dx.doi.org/10.3390/molecules25122794.

Full text
Abstract:
In the present density functional theory (DFT) research, nine different molecules, each with different combinations of A (triel) and E (divalent metal) elements, were reacted to effect methane C–H activation. The compounds modeled herein incorporated the triels A = B, Al, or Ga and the divalent metals E = Be, Mg, or Zn. The results show that changes in the divalent metal have a much bigger impact on the thermodynamics and methane activation barriers than changes in the triels. The activating molecules that contained beryllium were most likely to have the potential for activating methane, as their free energies of reaction and free energy barriers were close to reasonable experimental values (i.e., ΔG close to thermoneutral, ΔG‡ ~30 kcal/mol). In contrast, the molecules that contained larger elements such as Zn and Ga had much higher ΔG‡. The addition of various substituents to the A–E complexes did not seem to affect thermodynamics but had some effect on the kinetics when substituted closer to the active site.
APA, Harvard, Vancouver, ISO, and other styles
18

Kang, Hong Seok. "Theoretical Study of Main-Group Metal−Borazine Sandwich Complexes." Journal of Physical Chemistry A 109, no. 7 (February 2005): 1458–67. http://dx.doi.org/10.1021/jp046279d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kang, Lu-Lu, Miao Xue, Yu-Yang Liu, Yi-Hong Yu, Ya-Ru Liu, and Gang Li. "Proton conductive metal–organic frameworks based on main-group metals." Coordination Chemistry Reviews 452 (February 2022): 214301. http://dx.doi.org/10.1016/j.ccr.2021.214301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Corrigan, John F., Martin J. Brown, Marty W. Degroot, Diem T. T. Tran, and Andrew I. Wallbank. "Main Group and Transition Metal-Selenolate Complexes: Rings to Clusters." Phosphorus, Sulfur, and Silicon and the Related Elements 168, no. 1 (January 1, 2001): 99–104. http://dx.doi.org/10.1080/10426500108546537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rees, William S., and Gertrud Kräuter. "New Molecular-Based Routes to Binary Main Group Metal Sulfides." Phosphorus, Sulfur, and Silicon and the Related Elements 87, no. 1-4 (February 1994): 219–28. http://dx.doi.org/10.1080/10426509408037455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Altaf, Yasir, Muhammad Yar, and Muhammad Ali Hashmi. "Main-group metal cyclophane complexes with high coordination numbers." RSC Advances 10, no. 51 (2020): 30796–805. http://dx.doi.org/10.1039/d0ra05303a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Martin, Johannes, Jens Langer, Michael Wiesinger, Holger Elsen, and Sjoerd Harder. "Dibenzotropylidene Substituted Ligands for Early Main Group Metal-Alkene Bonding." European Journal of Inorganic Chemistry 2020, no. 27 (July 6, 2020): 2582–95. http://dx.doi.org/10.1002/ejic.202000524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Maurer, Laura A., Orion M. Pearce, Franklin D. R. Maharaj, Niamh L. Brown, Camille K. Amador, Niels H. Damrauer, and Michael P. Marshak. "Open for Bismuth: Main Group Metal-to-Ligand Charge Transfer." Inorganic Chemistry 60, no. 14 (June 28, 2021): 10137–46. http://dx.doi.org/10.1021/acs.inorgchem.0c03818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhu, Qin-Yu, and Jie Dai. "Main group metal chalcogenidometalates with transition metal complexes of 1,10-phenanthroline and 2,2′-bipyridine." Coordination Chemistry Reviews 330 (January 2017): 95–109. http://dx.doi.org/10.1016/j.ccr.2016.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wang, Ying, Pragya Verma, Xinsheng Jin, Donald G. Truhlar, and Xiao He. "Revised M06 density functional for main-group and transition-metal chemistry." Proceedings of the National Academy of Sciences 115, no. 41 (September 20, 2018): 10257–62. http://dx.doi.org/10.1073/pnas.1810421115.

Full text
Abstract:
We present a hybrid metageneralized-gradient-approximation functional, revM06, which is based on adding Hartree–Fock exchange to the revM06-L functional form. Compared with the original M06 suite of density functionals, the resulting revM06 functional has significantly improved across-the-board accuracy for both main-group and transition-metal chemistry. The revM06 functional improves on the M06-2X functional for main-group and transition-metal bond energies, atomic excitation energies, isomerization energies of large molecules, molecular structures, and both weakly and strongly correlated atomic and molecular data, and it shows a clear improvement over M06 and M06-2X for noncovalent interactions, including smoother potential curves for rare-gas dimers. The revM06 functional also predicts more accurate results than M06 and M06-2X for most of the outside-the-training-set test sets examined in this study. Therefore, the revM06 functional is well-suited for a broad range of chemical applications for both main-group and transition-metal elements.
APA, Harvard, Vancouver, ISO, and other styles
27

Robertson, Stuart D., Marina Uzelac, and Robert E. Mulvey. "Alkali-Metal-Mediated Synergistic Effects in Polar Main Group Organometallic Chemistry." Chemical Reviews 119, no. 14 (March 19, 2019): 8332–405. http://dx.doi.org/10.1021/acs.chemrev.9b00047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Armstrong, David R., William Clegg, Robert P. Davies, Stephen T. Liddle, David J. Linton, Paul R. Raithby, Ronald Snaith, and Andrew E. H. Wheatley. "The First Molecular Main Group Metal Species Containing Interstitial Hydride." Angewandte Chemie International Edition 38, no. 22 (November 15, 1999): 3367–70. http://dx.doi.org/10.1002/(sici)1521-3773(19991115)38:22<3367::aid-anie3367>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Screttas, Constantinos G., and Barry R. Steele. "Mixed main-group metal alkyls and alkoxides in synthesis and catalysis." Applied Organometallic Chemistry 14, no. 10 (2000): 653–59. http://dx.doi.org/10.1002/1099-0739(200010)14:10<653::aid-aoc54>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sokolov, F., V. Brusko, N. Zabirov, and R. Cherkasov. "N-Acylamidophosphinates: Structure, Properties and Complexation Towards Main Group Metal Cations." Current Organic Chemistry 10, no. 1 (January 1, 2006): 27–42. http://dx.doi.org/10.2174/138527206775193031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Whited, Matthew T. "Pincer-supported metal/main-group bonds as platforms for cooperative transformations." Dalton Transactions 50, no. 45 (2021): 16443–50. http://dx.doi.org/10.1039/d1dt02739e.

Full text
Abstract:
Constraining metal/main-group bonds within a pincer framework has allowed the elucidation of new and powerful modes of cooperative reactivity. This Perspective highlights recent findings and areas for further development.
APA, Harvard, Vancouver, ISO, and other styles
32

Casas, J. S., M. S. Garcı́a-Tasende, and J. Sordo. "Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review." Coordination Chemistry Reviews 209, no. 1 (November 2000): 197–261. http://dx.doi.org/10.1016/s0010-8545(00)00363-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lichtenberg, Crispin. "Main‐Group Metal Complexes in Selective Bond Formations Through Radical Pathways." Chemistry – A European Journal 26, no. 44 (March 24, 2020): 9674–87. http://dx.doi.org/10.1002/chem.202000194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Guechtouli, Nabila, Guillaume Lucas, Abdou Boucekkine, Jean-François Halet, Samia Kahlal, Nabila Suad Lokbani-Azzouz, Hacene Meghezzi, and Jean-Yves Saillard. "Skeletal isomerism in mixed transition-metal/main-group closo clusters." Comptes Rendus Chimie 8, no. 11-12 (November 2005): 1863–72. http://dx.doi.org/10.1016/j.crci.2005.02.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Treichel, Megan, Jamie C. Gaitor, Chris Birch, Jessica L. Vinskus, and Kevin J. T. Noonan. "Anion-exchange membranes derived from main group and metal-based cations." Polymer 249 (May 2022): 124811. http://dx.doi.org/10.1016/j.polymer.2022.124811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Strasser, Paul, Uwe Monkowius, and Ian Teasdale. "Main group element and metal-containing polymers as photoresponsive soft materials." Polymer 246 (April 2022): 124737. http://dx.doi.org/10.1016/j.polymer.2022.124737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Braunschweig, Holger, Ivo Krummenacher, Marc-André Légaré, Alexander Matler, Krzysztof Radacki, and Qing Ye. "Main-Group Metallomimetics: Transition Metal-like Photolytic CO Substitution at Boron." Journal of the American Chemical Society 139, no. 5 (January 26, 2017): 1802–5. http://dx.doi.org/10.1021/jacs.6b13047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gade, Lutz H. "Tripodal Amido Complexes: Molecular “Claws” in Main Group and Transition Metal Chemistry." Accounts of Chemical Research 35, no. 7 (July 2002): 575–82. http://dx.doi.org/10.1021/ar010116f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mountford, Philip. "Dibenzotetraaza[14]annulenes: versatile ligands for transition and main group metal chemistry." Chemical Society Reviews 27, no. 2 (1998): 105. http://dx.doi.org/10.1039/a827105z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Inoue, Shigeyoshi, and Eric Rivard. "NHC-stabilization of reactive units in main group and transition metal chemistry." Zeitschrift für anorganische und allgemeine Chemie 642, no. 22 (November 2016): 1231. http://dx.doi.org/10.1002/zaac.201610019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Glootz, Kim, Antoine Barthélemy, and Ingo Krossing. "A Simple Homoleptic Gallium(I) Olefin Complex: Mimicking Transition‐Metal Chemistry at a Main‐Group Metal?" Angewandte Chemie International Edition 60, no. 1 (October 27, 2020): 208–11. http://dx.doi.org/10.1002/anie.202011466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Glootz, Kim, Antoine Barthélemy, and Ingo Krossing. "A Simple Homoleptic Gallium(I) Olefin Complex: Mimicking Transition‐Metal Chemistry at a Main‐Group Metal?" Angewandte Chemie 133, no. 1 (October 26, 2020): 210–13. http://dx.doi.org/10.1002/ange.202011466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ma, Meimei, Lingyi Shen, Huanhuan Wang, Yanxia Zhao, Biao Wu, and Xiao-Juan Yang. "N,N′-Dipp-o-phenylene-diamido Dianion: A Versatile Ligand for Main Group Metal–Metal-Bonded Compounds." Organometallics 39, no. 8 (April 14, 2020): 1440–47. http://dx.doi.org/10.1021/acs.organomet.0c00136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Schwamm, Ryan J., Christopher M. Fitchett, and Martyn P. Coles. "Intramolecular Metal⋅⋅⋅π‐Arene Interactions in Neutral and Cationic Main Group Compounds." Chemistry – An Asian Journal 14, no. 8 (January 16, 2019): 1204–11. http://dx.doi.org/10.1002/asia.201801729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gröer, Thomas, Tobias Palm, and Manfred Scheer. "Novel Main Group-Transition Metal Cluster Compounds Incorporating Antimony, Iron and Cobalt." European Journal of Inorganic Chemistry 2000, no. 12 (December 2000): 2591–95. http://dx.doi.org/10.1002/1099-0682(200012)2000:12<2591::aid-ejic2591>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hounjet, Lindsay J., and Douglas W. Stephan. "Hydrogenation by Frustrated Lewis Pairs: Main Group Alternatives to Transition Metal Catalysts?" Organic Process Research & Development 18, no. 3 (February 12, 2014): 385–91. http://dx.doi.org/10.1021/op400315m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mansaray, Hassanatu B., Michael Kelly, Dragoslav Vidovic, and Simon Aldridge. "Tuning Main Group Redox Chemistry through Steric Loading: Subvalent Group 13 Metal Complexes of Carbazolyl Ligands." Chemistry – A European Journal 17, no. 19 (April 4, 2011): 5381–86. http://dx.doi.org/10.1002/chem.201003440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Anwander, Reiner. "Early Main Group Metal Catalysis: Concepts and Reactions. Edited by Sjoerd Harder." Angewandte Chemie International Edition 60, no. 37 (July 2021): 20092–93. http://dx.doi.org/10.1002/anie.202100536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Boss, Sally R., Martyn P. Coles, Robert Haigh, Peter B. Hitchcock, Ronald Snaith, and Andrew E. H. Wheatley. "Ligand and Metal Effects on the Formation of Main-Group Polyhedral Clusters." Angewandte Chemie International Edition 42, no. 48 (December 15, 2003): 5919. http://dx.doi.org/10.1002/anie.200390632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Boss, Sally R., Martyn P. Coles, Robert Haigh, Peter B. Hitchcock, Ronald Snaith, and Andrew E. H. Wheatley. "Ligand and Metal Effects on the Formation of Main-Group Polyhedral Clusters." Angewandte Chemie International Edition 42, no. 45 (November 24, 2003): 5593–96. http://dx.doi.org/10.1002/anie.200351921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography