Dissertations / Theses on the topic '030204 Main Group Metal Chemistry'

To see the other types of publications on this topic, follow the link: 030204 Main Group Metal Chemistry.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 37 dissertations / theses for your research on the topic '030204 Main Group Metal Chemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Davies, Aaron James. "Aspects of main group metal amido and carbene chemistry." Thesis, Cardiff University, 2004. http://orca.cf.ac.uk/55408/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roe, Stephen Mark. "Structural studies of main group metal carboxylates and dithiocarbamates." Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/56212/.

Full text
Abstract:
The work contained in this thesis describes the crystal structures of a number of tin(IV) and tellurium(IV) carboxylates and dithiocarbamates. The results show the regularity at which these types of compounds form secondary bonds (weak interactions), and the effect of the lone pair of tellurium(IV) on the geometries formed. The area has been studied through the determination of the following crystal structures: i) monocarboxylates: Ph3SnOCOCH2Cl, Ph3SnOCOCHCh, Ph3SnOCOCCh.MeOH. Ph3SnOCOCCh and Ph3TeOCOCCh. ii) dicarboxulates : Ph2Sn(OCOCH3)2, Ph2Sn(OCOCH2CI)2 and Ph2Te(OCOCCI3)2 iii) dithiocarbamates : Ph2Te(S2CNEt2)2, Ph2Te(S2CN(Et)(Ph))2 and Ph2Te(S2CNPh2)2 In addition to these, six hydrolysis products of Ph3SnOCOCCh are reponed. These com- pounds show the varied results that are obtained from the facile dearylation of the organotin com- pound by a strong organic acid in the presence of water. The following structures are reported: Ph2 Sn(OH)(OCOCCh), {[Pb2Sn(OCOCCh)hOh (two isomers), [(PbSn))(Oh(OCOCCh)sh, [PhSn(O)(OCOCCh)]6 and [(Ph 2 Sn)2(OH)(OCOCCh)3h.
APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, Tu Ngoc. "Electrosynthesis and characterization of main group and transition metal oxides." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campbell, Ross. "Alkali metal mediated bimetallic main group and transition organometallic chemistry." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giaquinta, Daniel M. (Daniel Mark). "Synthesis and characterization of new layered main group-transition metal oxides." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/17344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Genge, Anthony Richard John. "Mono- and bi-dentate group 15 and 16 ligand complexes of main group metal halides." Thesis, University of Southampton, 1999. https://eprints.soton.ac.uk/393598/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harris, Neil. "A matrix isolation study of main group and transition metal atom cryochemistry." Thesis, University of Hull, 2001. http://hydra.hull.ac.uk/resources/hull:12359.

Full text
Abstract:
The majority of the work described in this thesis is concerned with the isolation of transition metal and main group atoms in dilute reactive ligand matrices. The previously uncharacterised matrix isolated species were characterised using IR, UV-Vis-NIR and XAFS spectroscopic techniques. Various metal atom sources were investigated for the production and subsequent isolation of atomic species in both inert and reactive ligand matrices. Some 4d and 5d transition metals atoms were produced from a hollow cathode sputtering source (laser ablation was also employed as an atom source in some of the work) and isolated in argon matrices. The isolation of both platinum and palladium atoms in chlorine containing argon matrices has been shown to result in the formation of linear PtCl₂ and PdCl₂ molecules. The isolation of gold atoms has led to the formation of a monomeric chloride, suspected to be either AuCl3 or AuCI₂.The structure of the silver chloride remains undetennined. The pseudo-gas phase structure of these monomeric species is presented for the first time. In addition to this work tellurium atoms have been generated from the photodecomposition of matrix isolated H₂Te. The use of CO containing matrices has led to the isolation and characterisation of carbonyl telluride, OCTe, the structure and composition of which (either in the solid or gas phase) is presented for the first time. In complementary work, an investigation into carbonyl complexes formed on isolation of some 3d transition metal bromides in dilute carbon monoxide / argon matrices is also presented, together with their photochemistry in neat CO matrices.
APA, Harvard, Vancouver, ISO, and other styles
8

Cibuzar, Michael. "Metal Catalyzed Group 14 And 15 Bond Forming Reactions: Heterodehydrocoupling And Hydrophosphination." ScholarWorks @ UVM, 2019. https://scholarworks.uvm.edu/graddis/1023.

Full text
Abstract:
Investigation of catalytic main-group bond forming reactions is the basis of this dissertation. Coupling of group 14 and 15 elements by several different methods has been achieved. The influence of Si–N heterodehydrocoupling on the promotion of α-silylene elimination was realized. Efficient Si–N heterodehydrocoupling by a simple, earth abundant lanthanide catalyst was demonstrated. Significant advances in hydrophosphination by commercially available catalysts was achieved by photo-activation of a precious metal catalyst. Exploration of (N3N)ZrNMe2 (N3N = N(CH2CH2NSiMe3)33–) as a catalyst for the cross-dehydrocoupling or heterodehydrocoupling of silanes and amines suggested silylene reactivity. Further studies of the catalysis and stoichiometric modeling reactions hint at α-silylene elimination as the pivotal mechanistic step, which expands the 3p elements known to engage in this catalysis and provides a new strategy for the catalytic generation of low-valent fragments. In addition, silane dehydrocoupling by group 1 and 2 metal bis(trimethylsilyl)amide complexes was investigated. Catalytic silane redistribution was observed, which was previously unknown for d0 metal catalysts. La[N(SiMe3)2]3THF2 is an effective pre-catalyst for the heterodehydrocoupling of silanes and amines. Coupling of primary and secondary amines with aryl silanes was achieved with a loading of 0.8 mol % of La[N(SiMe3)2]3THF2. With primary amines, generation of tertiary and sometimes quaternary silamines was facile, often requiring only a few hours to reach completion, including new silamines Ph3Si(nPrNH) and Ph3Si(iPrNH). Secondary amines were also available for heterodehydrocoupling, though they generally required longer reaction times and, in some instances, higher reaction temperatures. By utilizing a diamine, dehydropolymerization was achieved. The resulting polymer was studied by MS and TGA. This work expands upon the utility of f-block complexes in heterodehydrocoupling catalysis. Stoichiometric and catalytic P–E bond forming reactions were explored with ruthenium complexes. Hydrophosphination of primary phosphines and activated alkenes was achieved with 0.1 mol % bis(cyclopentadienylruthenium dicarbonyl) dimer, [CpRu(CO)2]2. Photo-activation of [CpRu(CO)2]2 was achieved with a commercially available UV-A 9W lamp. Preliminary results indicate that secondary phosphines as well as internal alkynes may be viable substrates with this catalyst. Attempts to synthesize ruthenium phosphinidene complexes for stoichiometric P–E formation have been met with synthetic challenges. Ongoing efforts to synthesize a ruthenium phosphinidene are discussed. The work in this dissertation has expanded the utility of metal-catalyzed main-group bond forming reactions. A potential avenue for catalytic generation low-valent silicon fragments has been discovered. Rapid Si–N heterodehydrocoupling by an easily obtained catalyst has been demonstrated. Hydrophosphination with primary phosphines has been achieved with a commercially available photocatalyst catalyst, requiring only low intensity UV light.
APA, Harvard, Vancouver, ISO, and other styles
9

Sadler, Mark. "Main group selenium chemistry and a series of hydrophobic bispidone-transition metal complexes." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515118.

Full text
Abstract:
This thesis encompasses two distinct areas of chemistry. The first part involves the synthesis and characterisation of phenylselenium(II) halides and pseudohalides and their further reactions with tertiary phosphines. The molecular structures of phenylselenium(II) chloride and thiocyanide are reported along with a large series of reactions involving phenylselenium(lI) chloride with tertiary phosphines. In addition to an extensive study of the products in solution using multinuclear NMR, suitable crystals were characterised using X-ray crystallography, yielding three novel crystal structures, two of which feature the rare [PhSeCI2] anion. The effect of doubling the starting quantity of phenylselenium(ll) chloride was noted to have the effect of encouraging more compounds containing the [R3PSePh] cation. The second part of the work incorporates the synthesis and characterisation of a series of hydrophobic bispidone - transition metal complexes. This study was the first example of bispidone ligands substituted with long alkyl chains and three novel crystal structures are reported. Their molecular configuration shows that each adopts the expected back-to-back double chair backbone as observed in similar studies by other chemists. Furthermore, the molecular structures of four piperidone precursor molecules were obtained, the first examples of piperidones substituted with hydrophobic alkyl chains. Their structures reveal that these molecules tautomerise in the solid state due to the formation of an intramolecular six-membered ring stabilised by hydrogen bonding.
APA, Harvard, Vancouver, ISO, and other styles
10

Berning, Douglas E. "New developments in main group and transition metal chemistry of water-soluble phospines /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Day, Ben. "Main group metal complexes supported by N,N'-bidentate ligands : synthetic and catalytic investigations." Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/47205/.

Full text
Abstract:
The work presented in this thesis is divided in to six chapters. Chapter 1 introduces the two main classes of ligands utilised in the research presented here and gives a brief account of the Tishchenko reaction. Chapter 2 describes the synthesis and characterisation of several new examples of amidinate, guanidinate and phosphaguanidinate complexes of magnesium. A number of these compounds are then examined for their activity as pre-catalysts for the Tishchenko reaction in Chapter 3. This chapter includes the screening of pre-catalysts for the synthesis of benzyl benzoate from benzaldehyde, preliminary mechanistic studies and examination of the scope of the reaction using examples of primary, secondary, tertiary and quaternary aliphatic aldehydes. Chapter 4 is a deviation from the main theme of this thesis and reports the synthesis of the first true ‘phospha-Grignard' reagent. Preliminary reactivity studies with group 4 metallocenes, MCp2Cl2 (M = Ti, Zr), are also described. Chapter 5 explores the reactivity of the cyclic bis(amino)stannylene Sn{NAriPr}2SiMe2 with platinum-chloride species PtCl2(PPh3)2, PtCl2(COD), [PtCl(μ-Cl)(PEt3)]2 and PtCl2. In addition, one of the resultant Pt-Sn complexes is examined for its activity as a catalyst for the hydroformylation of 1-hexene. Finally, Chapter 6 describes the synthesis of the antimony and bismuth complexes supported by the dianionic bis(amido)silane ligand [Me2Si{NAriPr}2]2-.
APA, Harvard, Vancouver, ISO, and other styles
12

Al-Mukhtar, Mohammad Nazar. "Inorganic fluorine chemistry : low-temperature fluorination of the main group elements and some metal fluorides." Thesis, University of Leicester, 1990. http://hdl.handle.net/2381/35039.

Full text
Abstract:
The U.V. and laser induced photolysis of noble-gas/fluorine mixtures have been studied at -196C. The U.V. photolysis of krypton/fluorine and xenon/fluorine mixtures for 12h gives approximately a 30% yield of KrF2 and XeF2 respectively. Whilst photolysis with an argon ion laser gives comparable yields after only 30 minutes. Two temperature dependent phases of KrF2 were observed. Laser photolysis of oxygen/fluorine mixtures at -196C gives O4F2 and O2F2 and of UF5/F2 mixtures gives UF6. The photolysis of noble-gas /fluorine mixtures with added Lewis acids were also examined. A 1:1:2 mixture of fluorine, krypton and MF5 (M= As, Sb, I), photolysed at -196C using either U.V. or argon ion laser radiation also gives KrF2. There is no evidence of reaction with MF5 at -196C. Warming of the resultant mixtures affords Kr2F3+SbF6, a- and b- KrF+Sb2F11-, a-KrF+AsF6-, KrF+As2F11 and KrF2.nIF5 (n=1-3) at various temperatures which have been identified by Raman Spectroscopy. Investigations of reactions involving fluorine atoms, produced from elemental fluorine by the catalytic method, were made. Reactions involving krypton/fluorine and xenon/fluorine mixtures gave KrF2, XeF2 and XeF4 respectively. Also in this work an attempt was made to prepare a possible (Xe-I) containing species by the reaction between Xe2+Sb2F11- with iodine. Further investigations need to be carried out to clarify the results obtained.
APA, Harvard, Vancouver, ISO, and other styles
13

Apostolico, Leonardo. "The synthesis and characterization of novel precursors for the CVD of main group metal phosphides." Thesis, University of Bath, 2003. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Riddlestone, Ian Martin. "Synthesis and reactivity of transition metal-group 13 complexes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f253a2a5-cc6e-4978-86d9-5f3064dadc1b.

Full text
Abstract:
The synthesis and reactivity of a number of mixed transition metal-aluminium and σ-alane complexes are detailed in this thesis. Chapter III reports on the formation and structural characterisation of N,N'-chelated aluminium dihalide precursors featuring amidinate and guanidinate substituents. These precursors of the type RC(R'N)2AlX2 (R = iPr2N or Ph; R' = Cy or iPr or Dipp; X = hal), readily react with Na[CpFe(CO)2] via salt elimination to form the corresponding mixed iron-aluminium complexes CpFe(CO)2[(X)Al(NR')2CR] which have been characterised both spectroscopically and by X-ray diffraction. The reactivity of the novel mixed aluminium-iron complexes towards halide abstraction agents has been investigated and a propensity for augmented coordination at the aluminium centre observed. Furthermore, complementary syntheses of the methyl substituted complex CpFe(CO)2[(Me)Al(NCy)2CNiPr2] have been developed. This can be achieved either via the reaction between the related chloride complex and MeLi, or from the reaction between iPr2C(CyN)2Al(Me)Cl and Na[CpFe(CO)2]. The research detailed in Chapter IV builds on the previous chapter and is focussed on the use of more sterically demanding substituents at both aluminium and transition metal, as well as more electron rich transition metal fragments. The transition metal anions Na[Cp*Fe(CO)2] and Na[CpSiFe(CO)(PPh3)] react with the aluminium precursors forming related mixed iron-aluminium complexes which have been structurally characterised. The Dipp2NacNacAlCl2 precursor has been shown to undergo reaction with both Na[CpFe(CO)2] and Na[Cp*Fe(CO)2]. The halide abstraction chemistry of the latter utilising both Lewis acid and salt metathesis based abstraction approaches has been investigated. The dehydrohalogenation chemistry of the Dipp2NacNacAlCl2 precursor was investigated and the ligand activated products of reactions with both alkyl lithium and alkyl potassium reagents characterised. Chapter V reports the extension of salt metathesis for the formation of an Al-H-Mn interaction, and the product has been fully characterised. In addition, the coordination of Al-H bonds from a number of alane precursors to in situ generated 16-electron fragments has allowed the structural characterisation of a number of novel σ-alane complexes. The incorporation of the transition metal fragments [Cp'Mn(CO)2] and [W(CO)5] permit comparison to archetypal borane and silane σ-complexes. Quantum chemical calculations suggest that the alane ligand has a binding energy close to that of dihydrogen but significantly less than that of CO, consistent with a predominant σ-donor role of the Al-H bond. The formation and structural characterisation of the κ2-complexes (OC)4M[κ2-H2AlDipp2NacNac] (M = Cr, Mo or W) define an unprecedented binding motif for the alane ligand. In the cases of chromium and molybdenum the κ2-complexes can be prepared either photolytically or via alkene displacement from the corresponding (OC)4M(cod) reagent. In the case of tungsten the alkene displacement route yields the desired product, but only under more forcing conditions. Spectroscopic characterisation of the related κ1-complex (OC)5Cr[κ1-H2AlDipp2NacNac], which readily forms the κ2-complex in solution without photolysis, has enabled the kinetics of chelate ring closure to be investigated. This analysis further characterises the formation of the unprecedented κ2-binding motif for the alane ligand.
APA, Harvard, Vancouver, ISO, and other styles
15

Uiterweerd, Patrick Gerard Herman. "2,6-bis(dimethylamino)phenyl and 1-aza-2-phospha(V)allyl main group metal chemistry." Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gustafson, Samantha Jane. "Computational Studies of Alkane C-H Functionalization by Main-Group Metals." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5992.

Full text
Abstract:
The most efficient homogeneous catalysts for hydroxylation of light alkanes utilize transition metals in superacid solvent and operate by tandem electrophilic C-H activation/metal-alkyl (M-R) functionalization. An emerging alternative strategy to transition metals is the use of high-oxidation state main-group metals (e.g. TlIII, PbIV, IIII) that hydroxylate light alkanes. This dissertation reports density-functional theory calculations that reveal the mechanisms, reactivity, and selectivity of TlIII promoted alkane C-H functionalization in trifluoroacetic acid and TlIII-dialkyl functionalization in water. Calculations reveal that TlIII oxidizes alkanes via a closed-shell C-H activation and M-R functionalization mechanism that is similar to transition-metal C-H functionalization mechanisms. Comparison of TlIII to similar transition metals reveals that while TlIII and transition metals can have similar activation barriers for C-H activation, TlIII M-R functionalization is significantly faster due to a highly polar Tl-C bond and large TlIII/TlI reduction potential. The combination of a moderate C-H activation barrier combined with a low M-R functionalization barrier is critical to the success for TlIII promoted alkane C-H oxidation. The proposed TlIII C-H activation/M-R functionalization mechanism also provides an explanation for ethane conversion to a mixture of ethyl trifluoroacetate and ethane-1,2-diyl bis(2,2,2-trifluoroacetate). The reactivity of TlIII contrasts the lack of alkane oxidation by HgII. The C-H activation transition state and frontier-orbital interactions provide a straightforward explanation for the higher reactivity of TlIII versus HgII. This frontier-orbital model also provides a rationale for why the electron-withdrawing group in EtTFA provides "protection" against overoxidation. Calculations also reveal that TlIII-dialkyl functionalization by inorganic TlIII in water occurs by alkyl group transfer to form a TlIII-monoalkyl complex that is rapidly functionalized.
APA, Harvard, Vancouver, ISO, and other styles
17

Precht, Thea-Luise. "Preparing main group metal clusters from organoaluminium reagents : new possibilities in alkali-activated polymer crosslinking." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/285495.

Full text
Abstract:
The reactions of carboxylic acids with organoaluminium reagents were studied, which led to the formation of novel aluminium compounds. The reactions of orthofunctionalised derivatives of benzoic acid with trivalent aluminium organyls AlR3, led to the formation of different Al-based molecular clusters, depending on the nature of R, the reaction stoichiometry and the character of the benzoic acid derivative. The obtained compounds were characterised in the solid state by X-ray diffraction methods and two main motifs were observed. When the acid and AlR3 reacted in a one-to-two stoichiometry the obtained products, [iBu4Al2(μ-O2CC6H4-2-μ- O)]2, [(Me2Al)2(μ-O2CC6H4-2-μ-NH)]2, [(iBu2Al)2(μ-O2CC6H4-2-μ-NH)]2, [(Me2Al)2(μ- O2CC6H4-2-μ-NMe)]2 and [(iBu2Al)2(μ-O2CC6H4-2-μ-NMe)]2, consisted of a central distorted 12-membered macrocycle, formed by two [Al-O-C-O-Al-X] units (X= O,N) and was found to be dimeric. The reaction between anthranilic acid derivatives and AlR3 could also take place in a one-to-one ratio. For anthranilic acid and Nmethylanthranilic acid the obtained crystals only allowed a qualitative analysis and showed the structure of the products, [MeAl(μ-O2CC6H4-2-μ-NH)]4, [iBuAl(μ-O2CC6H4- 2-μ-NMe)]4 to be tetrameric and each consisting of a distorted 16-membered ring formed by four [O-C-O-Al] units. With the reaction of N-phenylanthranilic acid it was possible to isolate a structural analogous product [iBuAl(μ-O2CC6H4-2-μ-NPh)]4 which could be fully characterised by x-ray crystallography and NMR spectroscopy. Where the quantity and quality of the obtained product was sufficient, the solution behaviour of the compounds was elucidated by multinuclear and multidimensional NMR spectroscopic techniques. The 27Al NMR showed that the aforementioned aggregates are maintained in solution, which for the 12-membered [Al-O-C-O-Al-N] macrocycle of [(iBu2Al)2(μ-O2CC6H4-2-μ-NH)]2 was confirmed by a NOESY spectrum. The second part of this project focused on the preliminary studies towards the application of aluminium compounds in the crosslinking of guar and carboxymethyl hydroxypropyl guar, which are common additives in hydraulic fracturing. Different commercially available aluminium compounds were tested for their general ability to crosslink the aforementioned polysaccharides, yielding promising results for aluminium lactate, aluminium acetylacetonate and aluminium isopropoxide. For the system comprising aluminium lactate in combination with CMHPG, rheological studies were carried out to determine the viscosity, the viscoelasticity, the shear recovery and the stability towards high temperatures. These sought to evaluate the crosslinking properties of the aluminium additive and to optimise the required conditions of the different system components. Finally, it was possible to obtain first proof-of-concept data suggesting that synthetically obtained aluminium compounds such as [Me2Al(μ- O2CPh)]2 and Al[MeC(CH2O)3]2(AlMe2)3 can be employed for the crosslinking of guar and CMHPG.
APA, Harvard, Vancouver, ISO, and other styles
18

Ahmed, Ejaz. "Room-Temperature Synthesis of Transition Metal Clusters and Main Group Polycations from Ionic Liquids." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-80124.

Full text
Abstract:
Main group polycations and transition metal clusters had traditionally been synthesized via high-temperature routes by performing reactions in melts or by CTR, at room-temperature or lower temperature by using so-called superacid solvents, and at room-temperature in benzene–GaX3 media. Considering the major problems associated with higher temperature routes (e.g. long annealing time, risk of product decomposition, and low yield) and taking into account the toxicity of benzene and liquid SO2 in room-temperature or lower temperature synthesis, a soft and sustainable chemical approach has been developed, employing a Lewis-acidic IL [bmim]Cl/AlCl3. This new alternative reaction medium has proven to be an excellent solvent system for the single–step synthesis of main group polycations and transition metal clusters. X-ray diffraction and Raman spectroscopy have been used for the structural characterization of the isolated compounds. Physical properties and quantum chemical calculations of some of the compounds have also been carried out.
APA, Harvard, Vancouver, ISO, and other styles
19

Saleh, Liban Mohamoud Ali. "Rare earth metal boryl and gallyl compounds : synthesis and reactivity." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:b511fe23-8b79-47b5-9ac6-dcfd52c58239.

Full text
Abstract:
This Thesis describes the syntheses, characterisation and reactivity of rare earth metal boryl and gallyl compounds. Experimental and computational studies were performed to investigate the structure and bonding in these compounds. Chapter 1 introduces key metal-boryl and metal-gallyl compounds of the s, p, d and f-blocks via literature review. Chapter 2 describes the syntheses, structures and bonding analyses of rare earth metal boryl compounds. A short introduction to rare earth metal cations is given. Chapter 3 describes the syntheses, structures and bonding analyses of rare earth metal gallyl compounds. The preparation of a new class of rare earth metal cations will also be reported. A short introduction to rare earth metal amidinates is given. Chapter 4 presents reactivity studies of the rare earth metal gallyl compounds described in Chapter 3. To facilitate a direct structure and reactivity comparison, the corresponding boryl compounds were also synthesised. The results of a comprehensive DFT computational study to investigate the structure and bonding in these compounds are also presented. A short introduction to metalelement and metalmetal bond reactivity is given. Chapter 5 presents full experimental procedures and characterising data for the new compounds reported. Appendix CD Appendix contains .cif files for all new crystallographically characterised compounds described.
APA, Harvard, Vancouver, ISO, and other styles
20

Tinnermann, Hendrik. "Design, Synthesis and Applications of new cationic ligands of the 15th main group elements." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2017. http://hdl.handle.net/11858/00-1735-0000-0023-3FA7-F.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Almalki, Nawal. "Investigating the Application of N,N’-Disubstituted-1,8-Diamidonaphthalene as a Ligand in Transition Metal and Main Group Chemistry." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37816.

Full text
Abstract:
This thesis focuses on the design and development of novel versatile diamido ligands for transition metal and main group element chemistry. The central concept of this work deal relied on the design of N, N'-disubstituted-1,8-diaminonaphthalene (H2RR’-DAN) as proligands to dianionic diamido ligand scaffolds. These ligands would then be employed for stabilization of main group element (e.g. Li, B, Al) and transition metal (e.g. Ti, Zn) compounds.
APA, Harvard, Vancouver, ISO, and other styles
22

Krahfuß, Mirjam Julia [Verfasser], and Udo [Gutachter] Radius. "N-Heterocyclic Silylenes as ambiphilic Reagents in Main Group Chemistry and as Ligands in Transition Metal Chemistry / Mirjam Julia Krahfuß ; Gutachter: Udo Radius." Würzburg : Universität Würzburg, 2020. http://d-nb.info/122291056X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Yuwen [Verfasser], Matthias [Akademischer Betreuer] Driess, Matthias [Gutachter] Driess, and Christian [Gutachter] Müller. "Bis(N-heterocyclic silylene)xanthene in transition-metal catalysis and main group chemistry / Yuwen Wang ; Gutachter: Matthias Driess, Christian Müller ; Betreuer: Matthias Driess." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1205804749/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Eveland, Jeffrey Robert. "Synthetic, structural and bonding studies of main group-transition metal carbonyl clusters." Thesis, 1996. http://hdl.handle.net/1911/16925.

Full text
Abstract:
Structural studies on solvated adducts of bismuth (III) chloride have demonstrated the ability of the main group element to form multiple bonding contacts, giving "hypervalent" complexes. Similar interactions are observed in almost all aspects of the chemistry of the heavy main group elements. The reaction of $\rm \lbrack Bi\sb2Co\sb4(CO)11\rbrack\sp{1{-}}$ with $\rm Mo(CO)\sb3(\eta\sp6$-$\rm C\sb6H\sb5Me)$ in tetrahydrofuran yields an unidentified cluster product which, upon slow oxidation with molecular dioxygen or mild metal-organic oxidants yields the two large cluster species, $\rm \lbrack Bi\sb4CO\sb9(CO)\sb8(\mu$-$\rm CO)\sb8\rbrack\sp{2{-}}$ and $\rm \lbrack Bi\sb8Co\sb{14}(CO)\sb{12}(\mu$-$\rm CO)\sb8\rbrack\sp{2{-}}.$ These cluster products contain arrays of metal atoms in the cluster framework which are reminiscent of close-packed solid-state intermetallics. Halogenation of the bismuth-iron cluster $\rm \lbrack Bi\sb4Fe\sb4(CO)\sb{13}\rbrack\sp{2{-}}$ has been performed using the phosphine halide reagent, MePCl$\sb2.$ With the addition of one equivalent of the reagent, two compounds are produced in an approximately 3:1 ratio, respectively: $\rm \lbrack Fe\sb2(CO)\sb6(\mu$-$\rm H)Bi\sb2\{\mu$-$\rm Fe(CO)\sb4\}\rbrack\sp-$ and $\rm \lbrack Bi\sb3Cl\sb4(\mu$-$\rm Cl)\sb4\{\mu\sb3$-$\rm Fe(CO)\sb3\}\rbrack\sp{3{-}}.$ Upon the addition of a second equivalent of reagent, the latter compound apparently decomposes; however the former is converted into the related dichloro-cluster, $\rm \lbrack Fe\sb2CO)\sb6(\mu$-$\rm H)Bi\sb2(\mu$-$\rm Cl)\sb2\rbrack\sp-.$ Addition of yet more reagent results in the formation of the bismuth chloride-iron carbonyl adduct $\rm \lbrack Bi\sb2Cl\sb4(\mu$-$\rm Cl)\sb2\{ \mu$-$\rm Fe(CO)\sb4\}\rbrack\sp{2{-}}$ at the expense of the dichloride cluster. This latter complex may also be produced quantitatively by reaction of $\rm \lbrack Fe(CO)\rbrack\sp{2{-}}$ with two equivalents of BiCl$\sb3$ in MeCN. The reaction of the tellurium-iron cluster $\rm Te\sb2Fe\sb3(CO)\sb9$ with SO$\sb2$Cl$\sb2$ yields a variety of products, depending on the reaction stoichiometry and the solvent employed in the synthesis. In CH$\sb2$Cl$\sb2$ at a ratio of 1:2, respectively, the large dimeric complex $\rm \lbrack Fe\sb2(CO)\sb6(\mu$-$\rm Cl)(\mu$-$\rm TeCl)\sb2\rbrack\sb2\lbrack Te\sb2Cl\sb{10}\rbrack$ is formed, which decomposes in solution to the Zintl-ion complex $\rm \lbrack Fe\sb2(CO)\sb6(\mu$-$\rm TeCl\sb2)(\eta\sp2$-$\mu\sb2$-$\mu\sb2$-Te$\sb4 )\rbrack.$ In MeCN at a ratio of 1:1, the previously reported tetrahedral cluster Te$\sb2$Fe$\sb2$(CO)$\sb6$ is produced, which reacts with additional reagent to yield a complex thought to be $\rm \lbrack Fe\sb2(CO)\sb6(\mu$-$\rm TeCl)\sb2(\mu$-$\rm Cl)\rbrack$ from spectroscopic evidence. This cluster in turn decomposes in solution to $\rm \lbrack Fe\sb2(CO)\sb6(\mu$-$\rm TeCl\sb2)(\eta\sp2$-$\mu\sb2$-$\mu\sb2$-Te$\sb4)\rbrack$ like the first compound. Different products result if the solvent system is again changed to SO$\sb2$/Me$\sb2$CO at $-$30$\sp\circ$C. Although these unstable products have not been structurally characterized, a fair amount of other analytical and spectroscopic data have been obtained. The bromination of Te$\sb2$Fe$\sb3$(CO)$\sb9$ with CBr$\sb4$ has also been performed in MeCN, giving initially Te$\sb2$Fe$\sb2$(CO)$\sb6;$ however, upon reaction with more CBr$\sb4$ over a few weeks time at 0$\sp\circ$C, the novel cubane-like cluster $\rm \lbrack Fe\sb3(CO)\sb9Te\sb4(\mu\sb3$-$\rm CTeBr\sb4)\rbrack$ results in low to moderate yields of 30-65% based on Te. Theoretical calculations by the extended Huckel method have been performed on some model systems, and have provided valuable insight into the underlying bonding arrangements giving rise to the sometimes-unexpected stability and structural features of these products.
APA, Harvard, Vancouver, ISO, and other styles
25

Wetherby, Anthony E. "Reaction of bulky main group metal (II) amides with polyfunctional phenol substrates." 2009. http://digital.library.okstate.edu/etd/Wetherby_okstate_0664D_10473.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jianxiao, Xu. "Thermoelectric properties of transition metal oxides and thallium main group chalcogenides." Thesis, 2008. http://hdl.handle.net/10012/3848.

Full text
Abstract:
Thermoelectric energy (TE) conversion can be used to create electricity from temperature gradients. Hence power can be generated from waste heat using TE materials, e.g. from the exhaust in automotives. This power in turn may lead to a reduction of gas consumption by reducing the alternator load on the engine. Because of the increasing demand and limited availability of energy sources, there is strong and renewed interest in advancing thermoelectric materials. Past research shows that the best TE materials are narrow band gap semiconductors composed of heavy elements, exhibiting a large Seebeck coefficient, S, combined with high electrical conductivity, σ, and low thermal conductivity, κ. Various research projects have been attempted during the past four years of my Ph.D. studies. These include the synthesis, crystal structure studies, electronic structure calculations and thermoelectric properties of transition metal oxides and thallium main group chalcogenides. Because of the good thermal stability, lack of sensitivity to the air, and non-toxicity, transition metal oxides are potential candidates for commercial thermoelectric applications. During the investigation of oxides for thermoelectric application, several interesting features of different transition metal oxides have been discovered: 1. A new quaternary layered transition-metal oxide, Na2Cu2TeO6, has been synthesized under air using stoichiometric mixtures of Na2CO3, CuO and TeO2. Na2Cu2TeO6 crystallizes in a new structure type, monoclinic space group C2/m with a = 5.7059(6) Å, b = 8.6751(9) Å, c = 5.9380(6) Å,  = 113.740(2)°, V = 269.05(5) Å3 and Z = 2, as determined by single crystal X-ray diffraction. The structure is composed of[Cu2TeO6] layers with the Na atoms located in the octahedral voids between the layers. Na2Cu2TeO6 is a green nonmetallic compound, in agreement with the electronic structure calculation and electrical resistance measurement. 2. An n-type narrow band gap semiconductor, LaMo8O14, exhibiting the high Seebeck coefficient of -94 μVK-1 at room temperature has been investigated. 3. Pb0.69Mo4O6 with a new modulated structure and stoichiometry was determined from single-crystal X-ray diffraction data. The compound crystallizes in the tetragonal super space group, P4/mbm(00g)00ss, with a = 9.6112(3) Å, c = 2.8411(1) Å, q = 0.25c*, which is different from the previously reported structure. As for the research of thermoelectric properties of thallium main group chalcogenides, three new ternary thallium selenides, Tl2.35Sb8.65Se14, Tl1.97Sb8.03Se13 and Tl2.04Bi7.96Se13, have been discovered. All three compounds crystallize in the same space group P21/m with different cell parameters, and in part different Wyckoff sites, hence different structure types. The three selenides with similar structures are composed of distorted edge-sharing (Sb,Bi)Se6 octahedra, while the distorted Tl/(Sb, Bi) sites are coordinated by 8 - 9 Se atoms. Electronic structure calculations and physical property measurements reveal they are semiconductors with high Seebeck coefficient but low electrical conductivity, and therefore not good thermoelectrics. On the other hand, our transport property measurements on the unoptimized Tl2SnTe3 sample show interesting thermoelectric properties of this known compound. Advanced thermoelectrics are dominated by antimonides and tellurides so far. The structures of the tellurides are mostly composed of NaCl-related motifs, hence do not contain any Te–Te bonds. All of the antimonide structures containing Sb–Sb bonds of various lengths are much more complex. The Sb atom substructures are Sb24– pairs in β-Zn4Sb3, linear Sb37– units in Yb14MnSb11, planar Sb44– rectangles in the skutterudites, e.g., LaFe3CoSb12, and Sb8 cubes interconnected via short Sb–Sb bonds to a three-dimensional network in Mo3Sb5Te2. The results of electronic structure calculations suggested that these interactions have a significant impact on the band gap size as well as on the effective mass around the Fermi level, which represent vital criteria for advanced thermoelectrics. The crystal structure and electronic structure investigation for the unique T net planar Sb–Sb interactions in Hf5Sb9 will be also presented, although Hf5Sb9 is metallic compound with poor thermoelectric performances.
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Zhensheng. "Oxygen Bridged Metal Systems: Heterometallic Compounds Containing Main Group Metal, Transtion Metal and f-Elements." Doctoral thesis, 2010. http://hdl.handle.net/11858/00-1735-0000-0006-AEC9-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Quinlivan, Patrick. "Main Group and Transition Metal Complexes Supported by Carbon, Sulfur, and Selenium Donor Ligands." Thesis, 2018. https://doi.org/10.7916/D8M91S9N.

Full text
Abstract:
This thesis explores the synthesis, characterization, and reactivity of main group and transition metal complexes that feature ligands with carbon, sulfur, and selenium donor atoms. Specifically, the carbon donor ligands explored include the carbodiphosphorane, (Ph3P)2C, and the analytical reagent, nitron, which behaves like an N-heterocyclic carbene in solution. The sulfur ligands include the amino acids cysteine and glutathione, and the tripodal tris(2-mercapto-1-t-butylimidazolyl)hydroborato ligand, of which the latter provides an [S3] coordination environment. Finally, the selenium donor ligands explored comprise the phenylselenolate, [PhSe]–, and the selenobenzimidazole, H(sebenzimMe). Chapter 1 investigates the chemistry of two-coordinate mercury alkyl complexes supported by sulfur and selenium ligands. The first part of Chapter 1 examines the structure of the amino acid complexes, (Cys)HgMe and (GS)HgMe, which indicate that both complexes possess linear geometries. Additionally, 1H NMR studies confirm the labile nature of the cysteinato ligand in (Cys)HgMe. More specifically, in the presence of excess cysteine, exchange is observed, a result that is of relevance to mercury toxicity and detoxification. The second part of Chapter 1 examines the exchange reactions of the phenylselenolate mercury alkyl complexes, PhSeHgR (R = Me, Et), as well as their propensity to undergo protolytic Hg–C bond cleavage. The results from these experiments indicate that coordination by selenium promotes protolytic cleavage of Hg–C bonds more rapidly than compared to the sulfur analogues. Expanding the metal centers to include the lighter group 12 metals, Chapter 2 investigates ligand exchange between zinc, cadmium, and mercury in a sulfur-rich coordination environment as provided by the [S3] tris(2-mercapto-1-t-butylimidazolyl)hydroborato ligand. Similar to the Schlenk equilibrium, alkyl group exchange between the same metal center is observed as demonstrated by the formation of [TmBut]MMe via treatment of [TmBut]2M with Me2M (M = Zn, Cd). Additionally, alkyl group exchange between different metals centers is also possible. For example, a mixture of [TmBut]ZnMe and Me2Cd form an equilibrium mixture with [TmBut]CdMe and Me2Zn. Furthermore, transfer of the [TmBut] ligand between the metal centers is possible too. This is demonstrated by the transfer of [TmBut] from mercury to zinc in the methyl system, [TmBut]HgMe/Me2Zn. Additionally, transfer of [TmBut] from zinc to mercury is also observed upon treatment of [TmBut]2Zn with HgI2 to afford [TmBut]HgI and [TmBut]ZnI, thereby indicating that the nature of the co-ligand has a profound effect on the thermodynamics of ligand exchange. Chapter 3 explores the coordination chemistry of the selenium donor ligand, H(sebenzimMe). H(sebenzimMe) is able to coordinate metal centers through the selenium atom in a dative fashion, and, depending upon the metal center, up to four H(sebenzimMe) ligands can coordinate the same metal. Additionally, H(sebenzimMe) can be deprotonated to form [sebenzimMe]–, allowing for the potential of an LX coordination mode, which results in bridging complexes for the metal compounds investigated. In regards to the metal centers investigated in Chapter 3, H(sebenzimMe) has been demonstrated to be an effective ligand for Pd, Ni, Zn and Cd. Chapter 4 investigates the various structural polymorphs of the carbodiphosphorane, (Ph3P)2C. More specifically, previous crystal structures of (Ph3P)2C have demonstrated that the P–C–P bond angle is highly bent. This is consistent with simple VSEPR theory, which predicts a bent geometry for compounds possessing a coordination number of two and two lone pairs of electrons. However, Chapter 4 details the characterization of a new linear form of (Ph3P)2C. DFT calculations indicate that the energy required to bend the P–C–P bonds of (Ph3P)2C over the range of 130˚-180˚ is less than 1.0 kcal mol–1. Analysis of the Natural Localized Molecular Orbitals (NLMOs) indicates that upon bending of the P–C–P bond angle, the -type lone pair NLMO on the central carbon atom is stabilized, while the two P–C bonding orbitals NLMOs are destabilized. The differential behavior of the lone-pair and bonding orbitals upon bending is one component that provides a simple rationalization for the flexibility of (Ph3P)2C. In view of the fact that carbodiphosphoranes possess two lone pairs of electrons on the central carbon atom, (Ph3P)2C is an effective ligand for a variety of metals and nonmetals. Chapter 5 investigates the reactivity of (Ph3P)2C towards the main group alkyl metal complexes, Me3E (E = Al, Ga), Me2M (M = Mg, Zn, Cd), and MeHgI, as well as Mg[N(TMS)2]2. Additionally, the reactivity of (Ph3P)2C towards transition metal complexes was also investigated. (Ph3P)2C is capable of coordinating in several different ways, a couple of which include forming a Lewis acid/base adduct, and ortho metalation of one of the phenyl groups. Lastly, Chapter 6 expands the coordination chemistry of nitron. Nitron, which is used as a quantitative analytical reagent, has recently been shown to behave like an NHC in solution. This is attributed to the presence of the carbenic tautomer of nitron when placed in solution. Thus, nitron effectively coordinates metal centers through the central carbon atom. Chapter 6 outlines (i) the synthesis and structural characterization of nickel, palladium, and iridium complexes that feature nitron as a ligand, and (ii) the ability of the corresponding iridium complexes to serve as catalysts for the dehydrogenation of formic acid and the hydrosilylation of aldehydes.
APA, Harvard, Vancouver, ISO, and other styles
29

Krahfuß, Mirjam Julia. "N-Heterocyclic Silylenes as ambiphilic Reagents in Main Group Chemistry and as Ligands in Transition Metal Chemistry." Doctoral thesis, 2020. https://doi.org/10.25972/OPUS-21724.

Full text
Abstract:
This thesis reports on the applications of a particular N-heterocyclic silylene, Dipp2NHSi (1), as an ambiphilic reagent in main group chemistry and as a ligand in transition metal chemistry. One focus of the work lies in the evaluation of the differences in the reactivity of N-heterocyclic silylenes in main group element and transition metal chemistry in comparison with the in these areas nowadays ubiquitous N-heterocyclic carbenes. The first chapter gives an insight into the reactivity of Dipp2NHSi with respect to different types of main group element compounds. Silylene 1 was reacted with group 13 compounds. Adduct formation was observed with AlI3, Al(C6F5)3 and B(C6F5)3 which led to isolation of Dipp2NHSi·AlI3 (2), Dipp2NHSi·Al(C6F5)3 (3) and Dipp2NHSi·B(C6F5)3 (4). Furthermore, the reactivity of Dipp2NHSi (1) with respect to different elementhalide bonds was investigated. The reaction with elemental bromine and iodine leads to the dihalosilanes Dipp2NHSiBr2 (5) and Dipp2NHSiI2 (6). Utilizing methyl iodide, benzyl chloride and benzyl bromide, the insertion products Dipp2NHSi(I)(Me) (10), Dipp2NHSi(Cl)(benzyl) (11) and Dipp2NHSi(Br)(benzyl) (12) are obtained. Thus, insertion is preferred to reductive coupling with formation of RH2C–CH2R (R = H, Ph) and the corresponding dihalosilane. The reaction of 1 with Me3SnCl leads to the diazabutene {(Me3Sn)N(Dipp)CH}2 (9). The reaction of 1 with Ph2SnCl2 gives exclusively Dipp2NHSiCl2 (8) and cyclic polystannanes (Ph2Sn)n. The reactivity of 1 towards selected 1,3-dipolar compounds was also examined and Dipp2NHSi was reacted with azides of different size. The reaction with adamantyl azide led to the formation of the tetrazoline 13. For the reaction with the sterically less demanding trimethylsilyl azide the azido silane Dipp2NHSi(N(SiMe3)2)(N3) (14) and the degradation product 14* was isolated. The cyclosilamine 15 was formed from the reaction of 1 with 2,6-(diphenyl)phenyl azide. The bonding situation and ligation properties of Dipp2NHSi in transition metal complexes was assessed in the second part of the thesis by means of theoretical calculations and experimental investigations. Calculations on the main electronic features of Me2Im/Me2NHSi and Dipp2NHSi/Dipp2Im revealed significant differences in the frontier orbital region of these compounds, which affect the ligation properties of NHSis in general. It was demonstrated that NHSis show significantly different behaviour concerning their coordination chemistry. In particular, one energetically low lying π-acceptor orbital seems to determine the coordination chemistry of these ligands. To provide experimental support for these calculations, the silylene complexes [M(CO)5(Dipp2NHSi)] (M = Cr 16, Mo 17, W 18) were synthesized from Dipp2NHSi and [M(CO)6] (M = Cr, Mo, W) and the tungsten NHSi complex 18 was compared to the NHC complexes [W(CO)5(iPr2Im)] (19), [W(CO)5(iPr2ImMe)] (20) and [W(CO)5(Me2ImMe)] (21). The bonding of Me2Im and Me2NHSi (= L) to transition metal complexes has been assessed with DFT calculations for the model systems [Ni(L)], [Ni(CO)3(L)], and [W(CO)5(L)]. These studies revealed some common features in the difference between M–NHSi and M–NHC bonding which largely affect the bonding situation in transition metal complexes. NHSis show a propensity for bridging two metal atoms which was demonstrated on three different examples. Dipp2NHSi reacts with [Ni(CO)4] to form the dinuclear silylene-bridged complex [{Ni(CO)2(μ-Dipp2NHSi)}2] (22) upon CO elimination. The reduction of [Ni(η5-C5H5)2] with lithium naphthalenide in the presence of Dipp2NHSi yielded the NHSi-bridged Ni(I) dimer [{(η5 C5H5)Ni(µ-Dipp2NHSi)}2] (23). The dimeric half-sandwich complex [{(η5-C5H5)Fe(CO)2}2] led upon reaction with Dipp2NHSi to the formation of the dinuclear, NHSi-bridged complex [{(η5-C5H5)Fe(CO)}2(µ-CO)(µ-Dipp2NHSi)] (24). The insertion of Dipp2NHSi into metal halide bonds was investigated in a series of manganese complexes [Mn(CO)5(X)] (X = Cl, Br, I). The reaction of Dipp2NHSi with [Mn(CO)5(I)] led to substitution of two carbonyl ligands with Dipp2NHSi (1) to afford the tricarbonyl complex [Mn(CO)3(Dipp2NHSi)2(I)] (25). In 25, the iodide ligand is aligned in the {Mn(CO)3} plane, located between both NHSi silicon atoms. Treatment of [Mn(CO)5(Br)] with two equivalents of Dipp2NHSi afforded the complex [Mn(CO)3(Dipp2NHSi)2(Br)] (26), in which the bromide ligand is distorted towards one of the NHSi ligands. The reaction of the silylene ligand with [Mn(CO)5(Cl)] at room temperature afforded a mixture of two products, [Mn(CO)3(Dipp2NHSi)2(Cl)] (27*) and the insertion product [Mn(CO)4(Dipp2NHSi)(Dipp2NHSi-Cl)] (27). Complete transfer of a halide to the silylene was achieved for the reaction of Dipp2NHSi with [(η5-C5H5)Ni(PPh3)(Cl)] to yield [Ni(PPh3)(η5-C5H5)(Dipp2NHSi-Cl)] (28). Similarly, the reaction with [(η5-C5H5)Fe(CO)2(I)] led to the formation of [(η5 C5H5)Fe(CO)2(Dipp2NHSi-I)] (29)
Diese Arbeit beschäftigt sich mit den Anwendungen des N-heterocyclischen Silylens Dipp2NHSi (1) als ambiphiles Reagenz in der Hauptgruppenchemie und als Ligand in der Übergangsmetallchemie. Ein Schwerpunkt dieser Arbeit ist die Beurteilung der Unterschiede in der Reaktivität von N-heterocyclischen Silylenen in der Hauptgruppen- und Übergangsmetallchemie im Vergleich zu den heutzutage allgegenwärtigen N heterocyclischen Carbenen. Im Verlauf dieser Studie wurde Silylen 1 mit Verbindungen der Gruppe 13 umgesetzt und die Addukte Dipp2NHSi·AlI3 (2), Dipp2NHSi·Al(C6F5)3 (3) und Dipp2NHSi·B(C6F5)3 (4) isoliert. Weiterhin wurde die Reaktivität von Dipp2NHSi (1) in Bezug auf ElementHalogen-Bindungen verschiedener Hauptgruppenelement-Verbindungen untersucht. Die Umsetzung mit elementarem Brom und Iod führt zu den Dihalogensilanen Dipp2NHSiBr2 (5) und Dipp2NHSiI2 (6). Unter Verwendung von Methyliodid, Benzylchlorid und Benzylbromid konnten die Insertionsprodukte Dipp2NHSi(I)(Me) (10), Dipp2NHSi(Cl)(benzyl) (11) und Dipp2NHSi(Br)(benzyl) (12) gebildet werden. Die Insertion ist gegenüber der reduktiven Kupplung unter Ausbildung von RH2C–CH2R (R = H, Ph) und dem Dihalosilan bevorzugt. Die Umsetzung von 1 mit dem Zinnchlorid Me3SnCl führt Bildung des Diazabutens {(Me3Sn)N(Dipp)CH}2 (9). Die Reaktion mit Ph2SnCl2 hingegen ergibt das Dichlorsilan Dipp2NHSiCl2 (8) sowie cyclische Polystannane der Form (Ph2Sn)n. Außerdem wurde Dipp2NHSi mit Aziden unterschiedlichen sterischen Anspruchs umgesetzt. Die Reaktion mit Adamantylazid führt zur Bildung des Tetrazolins 13. Das sterisch weniger anspruchsvolle Trimethylsilylazid reagiert mit Dipp2NHSi unter Bildung des Silylazids Dipp2NHSi(N(SiMe3)2)(N3) (14). Das Cyclosilamin 15 wird durch die Reaktion von 1 mit 2,6-(Diphenyl)phenylazid gebildet. Im zweiten Teil der Arbeit wurden die Bindungssituation und die Ligandeneigenschaften von Dipp2NHSi (1) in Übergangsmetallkomplexen mithilfe von theoretischen Rechnungen und experimentellen Untersuchungen beleuchtet. DFT-Rechnungen zu den grundlegenden elektronischen Eigenschaften von Me2Im/Me2NHSi und Dipp2Im/Dipp2NHSi ergaben signifikante Unterschiede im Bereich der Grenzorbitale, welche die Bindungssituation von NHSis im Allgemeinen beeinflussen. Insbesondere ein energetisch tiefliegendes π-Orbital scheint die Koordinationschemie dieser Liganden zu bestimmen. Zur Unterstützung der theoretischen Befunde wurden die Silylen-Komplexe M(CO)5(Dipp2NHSi)] (M = Cr 16, Mo 17, W 18) durch Umsetzung von Dipp2NHSi und [M(CO)6] (M= Cr, Mo, W) dargestellt und der Wolframkomplex 18 mit den NHC-Komplexen [W(CO)5(iPr2Im)] (19), [W(CO)5(iPr2ImMe)] (20) und [W(CO)5(Me2ImMe)] (21) verglichen. Die Bindung von Me2Im und Me2NHSi (= L) und Übergangsmetallkomplexen wurde für die verschiedenen Modellverbindungen [Ni(L)], [Ni(CO)3(L)] und [W(CO)5(L)] mittels DFT Rechnungen untersucht, wobei einige Unterschiede zwischen den M–NHSi und M–NHC Bindungen festgestellt wurden, welche die Bindungssituation in Übergangsmetallkomplexen stark beeinflussen. Im Unterschied zu NHCs zeigen N-heterocyclische Silylene eine Neigung zur Verbrückung zweier Metallzentren und dieses Verhalten konnte anhand dreier Beispielen belegt werden. Dipp2NHSi (1) reagiert mit [Ni(CO)4] zum Silylen-verbrückten Nickelkomplex [{Ni(CO)2(μ-Dipp2NHSi)}2] (22). Die Reduktion von Nickelocen mit Lithiumnaphthalid in der Gegenwart von Dipp2NHSi (1) führt zur Bildung des NHSi verbrückten, Ni(I)-Dimers [(η5-C5H5)Ni(µ-Dipp2NHSi)]2 (23). Ähnlich hierzu reagiert der dimere Komplex {[(η5-C5H5)Fe(CO)2]2} mit Dipp2NHSi zum Silylen-verbrückten dinuklearen Komplex [{(η5 C5H5)Fe(CO)}2(µ-CO)(µ-Dipp2NHSi)] (24). Weiterhin wurde die Insertion von Dipp2NHSi (1) in MetallHalogen-Bindungen anhand einer Reihe von Mangankomplexen der Form [Mn(CO)5(X)] (X = Cl, Br, I) untersucht. Die Reaktion von zwei Äquivalenten des Silylens 1 mit dem Iodokomplex [Mn(CO)5(I)] führt zur Bildung des Tricarbonylkomplexes [Mn(CO)3(Dipp2NHSi)2(I)] (25), in dem der Iodidligand symmetrisch zwischen den beiden Siliciumatomen der Silylenliganden in der {Mn(CO)3}-Ebene liegt. Ähnlich hierzu wird der Bis-Silylenkomplex [Mn(CO)3(Dipp2NHSi)2(Br)] (26) durch Umsetzung von [Mn(CO)5(Br)] mit 1 erhalten, wobei eine Wechselwirkung des Bromidliganden mit einem Silylenliganden beobachtet wird. Die Reaktion von Dipp2NHSi 1 mit [Mn(CO)5(Cl)] bei Raumtemperatur resultiert in der Bildung zweier Reaktionsprodukte, dem Bis-Silylenkomplex [Mn(CO)3(Dipp2NHSi)2(Cl)] (27*) und dem Insertionsprodukt [Mn(CO)4(Dipp2NHSi)(Dipp2NHSi-Cl)] (27). Die vollständige Übertragung des Halogenidoliganden auf das Siliciumatom von 1 kann auch für den Halb-Sandwich-Komplex [(η5-C5H5)Ni(PPh3)(Cl)] beobachtet werden, wobei der Komplex [Ni(PPh3)(η5-C5H5)(Dipp2NHSi-Cl)] (28) isoliert wird. Ähnlich hierzu führt die Reaktion von [(η5-C5H5)Fe(CO)2(I)] mit dem Silylen 1 ebenfalls zur Bildung des Insertionsproduktes [(η5 C5H5)Fe(CO)2(Dipp2NHSi-I)] (29)
APA, Harvard, Vancouver, ISO, and other styles
30

Rauch, Michael S. "Main Group Metal Hydride, Alkyl and Fluoride Complexes: Towards CO2 Functionalization with Earth Abundant Metals." Thesis, 2019. https://doi.org/10.7916/d8-t4qw-ak42.

Full text
Abstract:
As levels of carbon dioxide continue to increase in the atmosphere, it is appealing to consider the prospect of utilizing CO2 as a C1 building block for the synthesis of value-added organic chemicals. Such transformations offer potential to directly counteract environmental concerns, and could also enhance the recyclability of current materials. To meet this challenge, the development of metal catalysts capable of promoting the functionalization of carbon dioxide is necessary. Furthermore, there is great interest in employing main group metals for these transformations, particularly those metals that are earth-abundant, non-toxic and affordable. To address these needs and others, the research herein has been driven by the synthesis and characterization of main group metal hydride, alkyl and fluoride complexes with the ultimate aim of developing catalysts for CO2 functionalization. Chapter 1 investigates the synthesis of magnesium, zinc and calcium complexes supported by the tris[(1-isopropylbenzimidazol-2-yl)dimethylsilyl)]methyl ligand, [TismPriBenz]. Most significantly, the magnesium carbatrane compound, [TismPriBenz]MgH, which possesses a terminal hydride ligand, has been synthesized and structurally characterized. The corresponding magnesium methyl derivative, [TismPriBenz]MgMe, was also prepared, and the reactivity of these compounds with respect to both metathesis and insertion is explored in great detail. The synthesis and characterization of the corresponding zinc hydride complex, [κ3 TismPriBenz]ZnH, is also described, as well as the preparation of a rare example of a monomeric calcium benzyl compound, [TismPriBenz]CaCH2Ph. Some reactivity of the zinc and calcium derivatives is also described. In Chapter 2, the aforementioned magnesium and zinc compounds and their reactivity towards CO2 is described in detail. Systems comprised of [TismPriBenz]MH (M = Mg, Zn) and tris(pentafluorophenyl)borane are highly effective for the room temperature reduction of CO2 with R3SiH to afford sequentially the bis(silyl)acetal, H2C(OSiR3)2, and CH4 (R3SiH = PhSiH3, Et3SiH and Ph3SiH). Notably, the selectivity of the catalytic system may be controlled by the nature of the silane. Catalytic intermediates were isolated and structurally characterized, including an interesting magnesium formatoborate complex, which has helped elucidate an understanding of the mechanism of the catalysis. Most significantly, it was found that H2C(OSiPh3)2 can be prepared on a multi-gram scale as a crystalline solid and can be converted directly into formaldehyde (CH2O), which is an important industrial chemical. Thus, H2C(OSiPh3)2 can serve as a formaldehyde surrogate and its ability to provide a means to incorporate CH and CH2 moieties into organic molecules is described. Isotopologues of H2C(OSiPh3)2, namely D2C(OSiPh3)2, H213C(OSiPh3)2, and D213C(OSiPh3)2, may be synthesized from the appropriate combinations of (12C/13C)O2 and Ph3Si(H/D), thereby providing a direct and convenient means to use carbon dioxide as a source of isotopic labels in complex organic molecules. In Chapter 3, details pertaining to other transformations catalyzed by [TismPriBenz]MgR (R = H, Me) are provided and their mechanisms are discussed. Notably, [TismPriBenz]MgR is a catalyst for hydrosilylation and hydroboration of styrene to afford exclusively the Markovnikov products, Ph(Me)C(H)SiH2Ph and Ph(Me)C(H)Bpin; the magnesium alkyl intermediate in the catalytic process, [TismPriBenz]MgCH(Me)Ph, has been isolated and structurally characterized, providing the first structural evidence for the insertion of an olefin into a magnesium hydride bond. Other catalytic transformations are described, including hydroboration of carbodiimides to form N-boryl formamidines and hydroboration of pyridine to provide N-boryl 1,4- and 1,2-dihydropyridines. Additionally, the ability for the magnesium hydride and methyl complexes to catalyze dehydrocoupling reactions is discussed. Finally, the ability for [TismPriBenz]MgMe to catalyze the isomerization of a terminal alkyne is reported. Chapter 4 outlines the chemistry of magnesium and zinc compounds supported by a different scaffold, namely, the tris(3-tert-butyl-5-methylpyrazolyl)hydroborato, [TpBut,Me], ligand. The magnesium methyl compound, [TpBut,Me]MgMe, was used as a precursor to prepare [TpBut,Me]MgF via metathesis with Me3SnF, and is the first example of a structurally characterized monomeric magnesium fluoride complex. The reactivity of [TpBut,Me]MgF is described, including its ability to serve as a hydrogen bond and halogen bond acceptor, such that it forms adducts with indole and C6F5I. Corresponding zinc chemistry was studied, including interesting reactivity of [TpBut,Me]ZnH and [TpBut,Me]ZnF. Finally, new heterobimetallic compounds containing magnesium or zinc supported by the [TpBut,Me] ligand and tungsten were synthesized and structurally characterized.
APA, Harvard, Vancouver, ISO, and other styles
31

Hari, Krishna Reddy Kurre. "Electronic Structure And Bonding In Metallaboranes And Main Group Compounds." Thesis, 2012. http://hdl.handle.net/2005/2533.

Full text
Abstract:
This thesis entitled “Electronic Structure and Bonding in Metallaboranes and Main Group Compounds” consists of five chapters. Chapter 1 gives an exposition of concepts and techniques used in understanding the electronic structure and bonding in some chemically interesting molecules. Heuristics concepts like isolobal analogy and electron counting rules are used in analyzing and predicting some novel chemical systems. A brief description of computational techniques such as density functional theory (DFT) based methods are used to quantitatively examine the structures and energies of these systems. In chapter 2 we present a critical analysis of bonding in neutral and dianionic stannadiphospholes and compare the potential energy surfaces with the isoelectronic Cp+ and Cp- species. The analysis indicates that Sn can be a better isolobal analogue to P+ than to BH or CH+. In chapter 3 we present new strategy to stabilize B2H4 in planar configuration using transition metal fragments. This requires the metal to donate two electrons into the empty B-B π orbital. Such complexes present a unique case study to the classical DCD model of metal-π complex. In chapter 4 we study the bonding in some recently synthesized metallaboranes which does not follow conventional electron counting rules. The complex and non-canonical nature of these metallaboranes feature some unique bonding patterns which are elucidated using theoretical techniques. In the final chapter we present new approach to build metal coated boron fullerenes. We use electron counting rules to device new structures which show enhanced metal boron bonding.
APA, Harvard, Vancouver, ISO, and other styles
32

Rong, Yi. "Main Group and Transition Metal Complexes Supported by Multidentate Tripodal Ligands that Feature Nitrogen, Oxygen and Sulfur Donors: Synthesis, Structural Characterization and Appliations." Thesis, 2013. https://doi.org/10.7916/D87D2S4D.

Full text
Abstract:
Chapter 1 focuses on the computational study of Zr(CH2Ph)4 and chapter 2 discusses synthesis, characterization and density functional study of 2-imidazolethione. Chapters 3 - 6 describe the synthesis, structural characterization several multidentate tripodal ligands, namely tris(mercaptoimidazolyl)-hydroborato ligand, [TmR], tris(2-pyridylseleno)methyl ligand, [Tpsem], bis(2-pyridonyl)(pyridine-2-yloxy)methyl ligand, [O-poBpom] and allyl-tris(3-t-butylpyrazolyl)borato ligand, [allylTpBut], and their application to main group and transition metals. Chapter 1 describes the analysis of a monoclinic modification of Zr(CH2Ph)4 by single crystal X-ray diffraction, which reveals that the Zr-CH2-Ph bond angles in this compound span a range of 25.1°; that is much larger than previously observed for the orthorhombic form (12.1°;). In accord with this large range, density functional theory calculations demonstrate that little energy is required to perturb the Zr-CH2-Ph bond angles in this compound. Furthermore, density functional theory calculations on Me3ZrCH2Ph indicate that bending of the Zr-CH2-Ph moiety in the monobenzyl compound is also facile, thereby demonstrating that a benzyl ligand attached to zirconium is intrinsically flexible, such that its bending does not require a buffering effect involving another benzyl ligand. Chapter 2 describes the structure of 1-t-butyl-1,3-dihydro-2H-benzimidazole-2-thione which has been determined by X-ray diffraction. The compound exists in the chalcogenone form instead of chalcogenol form, which is similar to its oxo and selone counterparts. Comparison of 2-imidazolone, 2-imidazolethione and 2-imidazoleselone compounds shows that two N-C-E bond angles in the chalcogenone forms are not symmetric. This trend can be reproduced by density functional theory calculations. Additionally, H(mbenzimBut) has intermolecular hydrogen bonding interactions, whereas its selenium counterpart does not. The C-E bond lengths of 2-imidazolone, 2-imidazolethione and 2-imidazoleselone compounds are intermediate between those of formal C-E single and double bonds, which is in accord with the notion that zwitterionic structures that feature single C+-E- dative covalent bonds provide an important contribution in such molecules. Furthermore, NBO analysis of the bonding in H(ximBut) derivatives demonstrates that the doubly bonded C=E resonance structure is most significant for the oxygen derivative, whereas singly bonded C+-E- resonance structures dominate for the tellurium derivative. This result appears to be counterintuitive, based on the fact that it opposes the trend that one would expect on the basis of electronegativity difference, however, studies on XC(E)NH2 derivatives provide solid support for it. In this regard, the C~E bonding in these compounds is significantly different to that in chalcogenoformaldehyde derivatives for which the bonding is well represented by a H2C=E double bonded resonance structure. Chapter 3 describes the computational study on [TmMeBenz] anion and the synthesis and characterization of [TmButBenz]Na, [TmButBenz]Tl and [TmButBenz]Tl. It is worth noting that the two thallium compounds are the first structurally characterized monovalent monomeric [TmR]Tl complexes. Chapter 4 describes the synthesis and characterization of a few [TmR]M (M = Ti, Zr, Hf) complexes, including (i) Cp[TmBut]TiCl2 and Cp[TmBut]ZrCl2, which are analogues of Cp2TiCl2 and Cp2ZrCl2; (ii) [TmBut]Zr(CH2Ph)3 and (iii) [TmBut]Hf(CH2Ph)3 and [TmAd]Hf(CH2Ph)3, which are the first structurally characterized [TmR]Hf complexes. Chapter 5 describes two multidentate, L3X type ligands, which feature [CN3] and [CNO2] donors, namely tris(2 pyridylseleno)methane, [Tpsem]H, and bis(2-pyridonyl)(pyridin-2-yloxy)methane, [O-poBpom]H. They have been synthesized, characterized, and employed in the synthesis of zinc and cadmium complexes. Chapter 6 describes the synthesis and structural characterization of a new [Tp] ligand featuring an allyl substituent on the central boron atom, namely [allylTpBut]Li is reported. The compound reacts steadily with CH3CH2SH under 350 nm UV light via a thiol-ene click reaction. The resulting [CH3CH2S(CH2)3TpBut]Li complex can further react with metal halide. For example, the reaction of [CH3CH2S(CH2)3TpBut]Li with ZnI2 produced [CH3CH2S(CH2)3TpBut]ZnI at room temperature. This study provides a simple model on the immobilization of [Tp] metal complexes to the polymer chains with -SH terminals.
APA, Harvard, Vancouver, ISO, and other styles
33

van, Hal Jaap Willem. "Catalytic applications of cluster compounds: Synthesis, characterization, catalytic activity and solution dynamics of heavy main group-transition metal carbonyl clusters." Thesis, 1997. http://hdl.handle.net/1911/19225.

Full text
Abstract:
Alkylation of the compounds (PPN) $\sb2\lbrack$EFe$\rm\sb3(CO)\sb9\rbrack$ (E = S, Se, Te) was performed using methyl triflate and methyl iodide. The S-cluster yielded the novel compound (PPN) (Fe$\sb3$(CO)$\sb9$SMe), whereas the Se and Te-cluster alkylated at the Fe$\sb3$-base yielding (PPN) (MeFe$\sb3$(CO)$\sb9$E). For comparison, the clusters (PPN) $\sb2\lbrack$HE$\rm\{Fe(CO)\sb4\}\sb3\rbrack$ (E = Sb, As) were alkylated as well. Reaction of the Sb-cluster with MeI yielded (PPN) (MeSb(I)$\rm\{Fe(CO)\sb4\}\rbrack,$ whereas the reaction with EtI yielded (PPN) $\sb2\lbrack$ISb$\rm\{Fe(CO)\sb4\}\sb3\rbrack$ and ethane. The possibility of a radical chain reaction for the latter was ruled out by performing the reaction in the presence of a radical scavenger as well as in the dark. The compounds $\rm\lbrack Cat\rbrack\sb{2-x}\lbrack H\sb{x}M\sb3(CO)\sb9E\rbrack\ (cat=Et\sb4N\sp+,\ PPN\sp+;$ x = 0, 1; M = Fe, Ru; E = S, Se, Te) were shown to mediate the catalytic formation of methyl formate from methanol and CO. The reaction is pseudo first order in catalyst and the initial rate is independent of the pressure. NaAsO$\sb2$ reacts with Mo(CO)$\sb6$ in refluxing methanol or ethanol to form $\rm\lbrack Et\sb4N\rbrack\sb2\lbrack(OC)\sb5MoAsMo\sb3(CO)\sb9(\mu\sb3$-$\rm OR)\sb3Mo(CO)\sb3\rbrack$ (R=Me, Et). The compounds are electron rich, and extended Huckel calculations have shown that the extra electron pair resides in an a$\sb2$ orbital, equally delocalized over three molybdenum atoms. A $\sp{205}$Tl NMR study has been conducted on the following compounds with Tl-transition metal bonds: $\rm Tl\{CO(CO)\sb4\}\sb3,\ \lbrack BnMe\sb3N\rbrack\sb3\lbrack Tl\{Fe(CO)\sb4\}\sb3\rbrack,\ Tl\{M(CO)\sb3Cp\}\sb3$ (M = Cr, Mo, W), TlFp$\sb3,$ Fp = CpFe(CO)$\rm\sb2),\ \lbrack PPN\rbrack\sb2\lbrack Tl\sb2Fe\sb6(CO)\sb{24}\rbrack,\ \lbrack Et\sb4N\rbrack\sb2\lbrack Tl\sb2Fe\sb4(CO)\sb{16}\rbrack,\ \lbrack Et\sb4N\rbrack\lbrack LTl\{Fe(CO)\sb4\}\sb2\rbrack$ (L = bipy, en, phen, tmeda, dien), and $\rm\lbrack Et\sb4N\rbrack\sb4\lbrack Tl\sb4Fe\sb8(CO)\sb{30}\rbrack,$ as well as $\rm TlCo(CO)\sb4.$ The possibility of formation of carbonylate anion adducts was also investigated by $\sp{205}$Tl NMR. This technique was used to probe the dynamic behavior of the Tl-metal cluster complexes in solution, and it was shown that most larger Tl-Fe clusters dissociate into simpler fragments in solution.
APA, Harvard, Vancouver, ISO, and other styles
34

Ramaswamy, Padmini. "Investigations Of Open–framework Structures Based On Main Group, Transition Metal And Actinide Elements." Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1912.

Full text
Abstract:
Open–framework inorganic materials are an important class of compounds because of their many applications in the areas of ion–exchange, separation and catalysis. Ever since the discovery of microporous aluminophosphates by Flanigen and co–workers in the early 80’s, the field of open–framework compounds has witnessed explosive growth. It is now established that the open–framework compounds comprise of almost all the elements of the periodic table. In addition, it has been shown that the inorganic anions in the open–framework compounds can be partially substituted by rigid organic linkers such as the oxalate. The resulting inorganic–organic hybrid structures are interesting due to the variable nature of the binding properties of the organic and inorganic moieties. The present thesis consists of systematic studies on the formation of amine–templated inorganic open–framework structures and inorganic–organic hybrid compounds based on the main group, transition metal and actinide elements. In Chapter 1 of the thesis an overview of inorganic open-framework materials is presented, with an emphasis on the elements that have been employed in the present study. Chapter 2 has two parts (Parts A and B) describing the synthesis and structure of open-framework tin(II) containing compounds. In Part A, the syntheses and structures of amine–templated tin(II) phosphates are presented, and in Part B, the syntheses and structures of a family of tin(II) oxalate compounds are discussed. Weak intermolecular forces such as hydrogen-bond interactions, π•••π interactions, and lone-pair–π interactions have been observed in these compounds, and appear to lend structural stability. As part of this study, efforts have been made to evaluate the energies associated with the π•••π interactions and the lone-pair–π interactions using suitable theoretical models. In Chapter 3, a new family of organically templated hybrid materials based on indium, synthesized by partially substituting the inorganic anion (phosphite/phosphate/suphate) by the oxalate group, is presented. These compounds exhibit a wide range of structures in which the oxalates play a variety of roles. The observation of the first zero-dimensional molecular hybrid structure and the isolation of concomitant polymorphic compounds is noteworthy. The molecular hybrid structure is reactive and undergoes transformation reactions under both acidic and basic conditions. In Chapter 4, the synthesis and structural studies of five new open–framework phosphate and phosphite compounds of gallium are presented. All the compounds have three-dimensional structures, and the formation of a gallium phosphate based on only one type of building unit (spiro–5) is noteworthy. While a large number of organically templated transition metal phosphates have been synthesized, studies on transition metal phosphites are not many. In Chapter 5, the synthesis, structure and magnetic properties of a family of transition metal (cobalt, vanadium, manganese) phosphite structures templated by the organic amines are presented. A previously known vanadyl phosphite has also been isolated and investigated by temperature dependent ESR and magnetic susceptibility studies. All the transition metal compounds exhibit antiferromagnetic behavior. In Chapter 6, the synthesis, structure, and transformation reactions in amine-templated actinide phosphonoacetates are presented. The compounds, which are based on uranium and thorium, are built up from the connectivity between the metal polyhedra and the phosphonoacetate/oxalate units, forming two– and three–dimensional structures. It has been shown that the two–dimensional uranyl phosphonoacetate–oxalate compound can be prepared by two different synthetic approaches: (i) solvent–free solid state reaction at 150˚C and (ii) room temperature mechanochemical (grinding) route. The formation of oxalate hybrids using the phosphonocarboxylate ligand is a new approach in the synthesis of multi-component hybrid compounds.
APA, Harvard, Vancouver, ISO, and other styles
35

Hammond, Matthew James. "Synthetic and Structural Investigations of Main Group and Transition Metal Compounds Supported by a Multidentate [N3C] Donor Ligand." Thesis, 2021. https://doi.org/10.7916/d8-znk9-s857.

Full text
Abstract:
Recently, the Parkin group has synthesized tris[(1-isopropylbenzimidazol-2-yl)dimethylsilyl]methane, [Tismᴾʳⁱᴮᵉⁿᶻ]H, a bulky tetradentate tripodal ligand, which upon deprotonation can coordinate to metal centers via three nitrogen donor atoms and a carbon bridgehead to form metal atrane compounds. The [Tismᴾʳⁱᴮᵉⁿᶻ] ligand has been previously shown to stabilize metal hydride complexes, for example [Tismᴾʳⁱᴮᵉⁿᶻ]MgH [Tismᴾʳⁱᴮᵉⁿᶻ]ZnH. However, no attempts had been previously made to employ this ligand to stabilize heavier Group 12 analogues of these complexes, namely the cadmium and mercury hydride derivatives. In addition, all [Tismᴾʳⁱᴮᵉⁿᶻ] complexes previously reported have employed metals in the first or second oxidation states. In this work, an investigation is undertaken to use the [Tismᴾʳⁱᴮᵉⁿᶻ] ligand to stabilize rare examples of cadmium and mercury hydrides, as well as survey how this ligand binds to Group 13 and transition metals in a variety of oxidation states. In Chapter 1, a series of [Tismᴾʳⁱᴮᵉⁿᶻ] cadmium complexes are reported, including the novel cadmium hydride species [Tismᴾʳᴮᵉⁿᶻ]CdH, which is only the third terminal cadmium hydride species to be structurally characterized by X-ray diffraction. The reactivity of this complex has been probed, revealing the first detailed report of reactivity for a Cd-H bond, as well as the first comparison in relative reactivity between an analogous Cd-H and Zn-H bond. This reactivity of [Tismᴾʳⁱᴮᵉⁿᶻ]CdH includes the ability to insert CO₂ and CS₂, and the resulting cadmium formate and dithioformate complexes have been characterized and discussed, with the latter being the first structurally characterized example of a cadmium dithioformate complex. In addition, [Tismᴾʳⁱᴮᵉⁿᶻ]CdH can undergo hydride extraction to yield the ion pair {[Tismᴾʳⁱᴮᵉⁿᶻ]Cd}[HB(C6F5)₃], a rare example of trigonal monopyramidal cadmium complex. Finally, [Tismᴾʳⁱᴮᵉⁿᶻ]CdMe was synthesized, revealing a different coordination mode of the [Tismᴾʳⁱᴮᵉⁿᶻ] ligand than in the analogous [Tismᴾʳⁱᴮᵉⁿᶻ]ZnMe. In Chapter 2, a series of [Tismᴾʳⁱᴮᵉⁿᶻ] mercury complexes are reported and compared with their cadmium analogues. This comparison revealed several notable differences between [Tismᴾʳⁱᴮᵉⁿᶻ] mercury and cadmium complexes, most notably that the M-O-Si bond angle in [Tismᴾʳⁱᴮᵉⁿᶻ]HgOSiPh₃ is bent, as opposed to the linear [Tismᴾʳⁱᴮᵉⁿᶻ]CdOPh₃ derivative. The synthesis and characterization of [Tismᴾʳⁱᴮᵉⁿᶻ]HgH, the first mercury hydride complex to be structurally characterized by X-ray diffraction, is also reported. This complex has been crystallized in both the κ⁴ and κ³-coordination mode of the [Tismᴾʳⁱᴮᵉⁿᶻ] ligand, representing the first example of a [Tismᴾʳⁱᴮᵉⁿᶻ] compound to be structurally characterized in two coordination modes. In Chapter 3, the synthesis of Group 13 and transition metal [Tismᴾʳⁱᴮᵉⁿᶻ] complexes are reported. These compounds include the first examples of [Tismᴾʳⁱᴮᵉⁿᶻ]M(III) complexes, which reveal that trivalent Group 13 [Tismᴾʳⁱᴮᵉⁿᶻ]M halide compounds form charged ion pairs, whereas trivalent transition metal chloride compounds form six-coordinate octahedral complexes. The investigation into Group 13 [Tismᴾʳᴮᵉⁿᶻ] complexes also led to the structural characterization of [Tismᴾʳⁱᴮᵉⁿᶻ]In→InI₃, the first example of a [Tismᴾʳⁱᴮᵉⁿᶻ] compound with a metal-metal bond. A series of [Tismᴾʳⁱᴮᵉⁿᶻ]MCl (M = Mn, Fe, Co, Cu) complexes are reported and their metrical data compared, along with an investigation into the reactivity of [Tismᴾʳⁱᴮᵉⁿᶻ]NiBr, which led to spectroscopic evidence for a [Tismᴾʳⁱᴮᵉⁿᶻ]NiH complex. Finally, the gold complex [κ1-Tismᴾʳⁱᴮᵉⁿᶻ]AuPPh₃ is reported, which adopts a novel κ1-coordination of the [Tismᴾʳⁱᴮᵉⁿᶻ] ligand.
APA, Harvard, Vancouver, ISO, and other styles
36

Chakrabarti, Neena. "A Journey Across the Periodic Table: The Synthesis and Characterization of Main Group Metals Supported by Nitrogen- or Sulfur-Rich Ligands." Thesis, 2014. https://doi.org/10.7916/D8PN93SR.

Full text
Abstract:
In Chapter 1, I discuss the synthesis and characterization of lithium tris(pyrazolyl)hydroborato complexes, [TpR1,R2]Li. Group 1 [TpR1,R2]M complexes serve as key starting points to access many other main group and transition metal complexes; however, the synthesis and crystal structures of [Tp R1,R2]Li has not been reported. Molecular structures of [TpBut]Li and [TpBut,Me]Li show these complexes are trigonal pyramidal, an unusual geometry for lithium. These complexes are also able to bind small molecules to form four-coordinate pseudo-tetrahedral complexes, [Tp]Li-L (L = MeCN, pzButH, and H2O). The binding constants for the association of acetonitrile to [TpBut]Li and [TpBut,Me]Li are 0.84M-1 and 0.96M-1, respectively, indicating that the dissociation of MeCN is facile in solution. In addition, [TpBut,Me]Li serves as transmetallating agent to yield the cadmium halide complexes, [TpBut,Me]CdX (X = Cl, Br, I). In Chapter 2, I discuss the synthesis and characterization of organometallic cadmium complexes supported by the nitrogen-rich multidentate ligands, tris(pyridylthio)methane, [Tptm]H; tris(1-methyl-imidazolylthio)methane, [TitmMe]H; and tris(1-methyl-benzimidazolylthio)methane, [TitmiPrBenz]H. These ligands are in the nascent stages of development and there are only a few metal [Tptm] and [TitmMe] complexes in the literature. An investigation of the reactivity of [L]CdN(SiMe3)2, [L]CdOSiMe3, and [L]CdOSiPh3 ([L] = [Tptm], [TitmMe], [TitmiPrBenz]) shows these complexes provide access to a variety of organometallic cadmium complexes, [L]CdX, (X = OAc, Cl, Br, O2CH, NCO). The characterization of cadmium acetate and formate complexes is significant due to their structural similarity with the metal bicarbonate intermediate formed by zinc and cadmium-substituted carbonic anhydrase. In addition, the synthesis and characterization of cadmium methyl complexes, [L]CdMe, is discussed. The application of heat to a mixture of [TitmiPrBenz]H and CdMe2 results in isomerization of the ligand to [S3-TitmiPrBenz]CdMe. This sulfur-rich [S3-TitmiPrBenz] ligand is not reported in the literature and is ripe for further investigation. The solid state structures of these compounds provide a comparison with biologically relevant [Tp] or [Tm] cadmium methyl complexes in the literature. In Chapter 3, I describe the synthesis and structural characterization of [BmButBenz]M (M = Na, K) and [BmRBenz]Ca(THF)2 (R = Me, But) are discussed. The sulfur-rich tripodal ligand tris(imidazolylthio)hydroborato, [Tm], was previously designed to serve as a softer version of the [Tp] ligand. Metal [Tm] complexes are prevalent in the literature and have often been used as molecular mimics of sulfur-rich enzyme active sites. Recently, the benzannulated [TmRBenz]M complexes were reported and were found to promote k3 coordination toward the metal center. To allow for an in-depth investigation of the newly synthesized [BmRBenz] class of ligand, the [BmButBenz]M (M = Na, K, Ca) complexes were synthesized and compared to previously reported metal [BmMeBenz]M complexes. Additionally, the [BmMeBenz]2Ca(THF)2 was synthesized and characterized via X-ray diffraction. The molecular structure of [BmMeBenz]2Ca(THF)2 shows the complex is monometallic with an uncommon eight-coordinate dodecahedral calcium center. [BmMeBenz]2Ca(THF)2 is the first molecular structure of calcium coordinated to the [Tm] or [Bm] ligand class. In Chapter 4, I discuss the synthesis and characterization of mercury alkyl complexes supported by the [TmMe], [BmR], [TmRBenz] and [BmRBenz] ligands (R = Me or But). As previously mentioned, [Tm]M complexes are considered biologically relevant molecular models of enzyme active sites. With this in mind, [TmBut]HgR (R = Me,Et) complexes have served as mimics for the mercury detoxification enzyme MerB. A previous study by our group showed that the adoption of multiple coordination modes of the ligand in [TmBut]HgR plays a significant role in the activation of the Hg-C bond toward protonolysis. The molecular structures of the [TmR], [BmR], [TmRBenz], and [BmRBenz] mercury alkyl complexes show that they adopt various coordination modes, ranging from k1 to k3. Preliminary competition experiments in which benzenethiol was added to [TmR]HgEt and [TmRBenz]HgEt indicate that the Hg-C bond in [TmMeBenz]HgEt was cleaved faster than that in [TmMe]HgEt. Conversely, the Hg-C bond in [TmBut]HgEt was cleaved faster than that in [TmButBenz]HgEt, indicating that benzannulation and the size of the R-group on the [Tm] ligand play important roles in Hg-C bond cleavage.
APA, Harvard, Vancouver, ISO, and other styles
37

Liu, Po-Chun, and 劉柏均. "Development of New Multicoeffient Density Functional Theory for Main-Group and Transition Metal Chemistry ; Reaction Dynamics Study of Noble-Gas Exchange Reactions." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/87548192189876943260.

Full text
Abstract:
碩士
國立中正大學
化學暨生物化學研究所
102
This thesis consists of three chapters. In chapter 1, we applied the multi-coefficient density functional theory (MC-DFT) to a few recent Minnesota functionals. In chapter 2, we have developed a new method using mixed functionals and we tested it on 70 bond energies of 3d transition-metal-containing molecules. In chapter 3, we investigated the kinetic isotope effects and tunneling effects of noble-gas exchange reactions.      In chapter 1, we have applied MC-DFT method to four recent Minnesota functionals, including M06-2X, M08-HX, M11, and MN12-SX on the performance of thermochemical kinetics. The results indicated that the accuracy can be improved significantly by using two or three basis sets. We further included the SCS-MP2 energies into MC-DFT, and the resulting mean unsigned errors (MUE) decreased by ~0.3 kcal/mol for the most accurate basis set combinations. The M06-2X functional with the simple [6-311+G(d,p)/6-311+G(2d,2p)] combination gave the best performance/cost ratios for the MC-DFT and MC-SCS-MP2 | MC-DFT methods with MUE of 1.58 and 1.22 kcal/mol, respectively.      In chapter 2, we have developed a new method using mixed functionals for transition metals. This method was tested against a database including 70 bond energies of 3d transition-metal-containing molecules with small experimental uncertainties. The best mixed functional method was the τ-HCTHhyb/mPW2-PLYP combination, and it yielded an MUE of 5.49 kcal/mol. In comparison, the single τ-HCTHhyb and mPW2-PLYP functional gave MUEs of 6.14 and 12.88 kcal/mol, respectively. We also applied the MC-DFT approach into the mixed functional and it yielded an MUE of 4.94 kcal/mol. We further added the MP2 and CCSD energies into the new method, and obtained MUE of 4.75 kcal/mol and 4.51 kcal/mol, respectively.      In chapter 3, we used VTST/MT method to investigate four noble-gas exchange reactions: Ng’ + HNBNg+ (Ng, Ng’ = He, Ne, and Ar). The barrier heights of these four reactions were predicted to be 5-9 kcal/mol. The calculated results showed significant tunneling effects even at room temperature, especially for the He + HNBHe+ reaction. All reactions showed very significant tunneling effects at low temperature. For helium exchange reactions, the internal helium atom (in the cation) contributed more in the tunneling effects than the external helium atom (the neutral reactant) at low temperature.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!