Academic literature on the topic '030105 Instrumental Methods (excl. Immunological and Bioassay Methods)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic '030105 Instrumental Methods (excl. Immunological and Bioassay Methods).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "030105 Instrumental Methods (excl. Immunological and Bioassay Methods)"

1

(6833102), Kiran S. Iyer. "Microdroplets: Chemistry, Applications and Manipulation Using Ionization Sources and Mass Spectrometry." Thesis, 2019.

Find full text
Abstract:
There is widespread use of ionization sources (ambient and non-ambient) for a variety of applications. More recently, charged microdroplets generated by electrospray ionization and paper spray have been used to conduct chemistry at faster rates compared to bulk volumes. Uncharged droplets such as those generated by the Leidenfrost technique have also been used to explore chemistry and study the degradation of drugs in an accelerated manner. These microdroplets serve as reaction vessels in which in which some reactions are known to occur at accelerated rates. Such chemistry can be particularly useful in pharmaceutical settings to rapidly synthesize small amounts of materials in relatively short amount of time. Additionally, microdroplets may also be used to perform high throughput screening analysis. While several parameters influencing the rate of reaction in microdroplets have been explored (such as spray distance and reagent concentration), the mechanism of reaction acceleration has not been probed to a significant extent. A major portion of my dissertation describes the use of charged and uncharged microdroplets to perform quick chemistry, guide microfluidic synthesis of drugs such as diazepam, perform scale up of copper catalyzed C-O and C-N coupling reactions and screen reaction conditions for pharmaceutically relevant reactions such as the Suzuki cross-coupling reaction. Additionally, work discussed here also describes development and use of existing techniques such as structured illumination microscopy to measure droplet sizes, explore the role of distances on droplet size, and study the effect of surfactants on the rate of reactions in microdroplets generated by nano-electrospray ionization. A mathematical model to understand the mechanism of increased reaction rates in microdroplets has also been presented. Additionally, this dissertation also describes ways to manipulate ions in air using various designs of 3D-printed electrodes that operate with DC potentials only and which can be easily coupled with nano-electrospray ionization sources to transmit ions over long distances
APA, Harvard, Vancouver, ISO, and other styles
2

(8755572), Casey J. Smith. "Hardware / Algorithm Integration for Pharmaceutical Analysis." Thesis, 2020.

Find full text
Abstract:
New experimental strategies and algorithmic approaches were devised and tested to improve the analysis of pharmaceutically relevant materials. These new methods were developed to address key bottlenecks in the design of amorphous solid dispersions for the delivery of low-solubility active pharmaceutical ingredients in the final dosage forms exhibiting high bioavailability.
APA, Harvard, Vancouver, ISO, and other styles
3

(10711971), Alex M. Sherman. "Dynamic Chemical Imaging And Analysis Within Biologically Active Materials." Thesis, 2021.

Find full text
Abstract:
A thorough understanding of pharmaceutical and therapeutic products and materials is important for an improved quality of life. By probing the complex behaviors and properties of these systems, new insights can allow for a better understanding of current treatments, improved design and synthesis of new drug products, and the development of new treatments for various health conditions. Often, the impact of these new insights are limited by current technology and instrumentation and by the methods in which existing data is processed. Additionally, current standards for characterization of pharmaceuticals and therapeutics are time-consuming and can delay the timeline in which these products become available to the consumer. By addressing the limitations in current instrumentation and data science methods, faster and improved characterization is possible.

Development and improvement in optical instrumentation provides potential solutions to the current limitations of characterization methods by conventional instrumentation. Limitations in speed can be addressed through the use of nonlinear optical (NLO) methods, such as second harmonic generation (SHG) and two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy, or by linear methods such as fluorescence recovery after photobleaching (FRAP). For these methods, a high signal-to-noise ratio (SNR) and a nondestructive nature decrease the overall sample size requirements and collections times of these methods. Furthermore, by combination of these optical techniques with other techniques, such as thermal analysis (e.g. differential scanning calorimetry (DSC)), polarization modulation, or patterned illumination, the collection of more complex and higher quality data is possible while retaining the improved speed of these methods. Thus, this modified instrumentation can allow for improved characterization of properties such as stability, structure, and mobility of pharmaceutical and therapeutic products.

With an increase in data quantity and complexity, improvements to existing methods of analysis, as well as development of new data science methods, is essential. Machine learning (ML) architectures and empirically validated models for the analysis of existing data can provide improved quantification. Using the aforementioned optical instrumentation, auto-calibration of data acquired by SHG microscopy is one such method in which quantification of sample crystallinity is enabled by these ML and empirical models. Additionally, ML approaches utilizing generative adversarial networks (GANs) are able to improve on identification of data tampering in order to retain data security. By use of GANs to tamper with experimentally collected and/or simulated data used in existing spectral classifiers, knowledge of adversarial methods and weakness in spectral classification can be ascertained. Likewise, perturbations in physical illumination can be used to ascertain information on classification of real objects by use of GANs. Use of this knowledge can then be used to prevent further data tampering or by improving identification of data tampering.
APA, Harvard, Vancouver, ISO, and other styles
4

(10725291), Priya Prakash. "Characterizing Microglial Response to Amyloid: From New Tools to New Molecules." Thesis, 2021.

Find full text
Abstract:

Microglia are a population of specialized, tissue-resident immune cells that make up around 10% of total cells in our brain. They actively prune neuronal synapses, engulf cellular debris, and misfolded protein aggregates such as the Alzheimer’s Disease (AD)-associated amyloid-beta (Aβ) by the process of phagocytosis. During AD, microglia are unable to phagocytose Aβ, perhaps due to the several disease-associated changes affecting their normal function. Functional molecules such as lipids and metabolites also influence microglial behavior but have primarily remained uncharacterized to date. The overarching question of this work is, How do microglia become dysfunctional in chronic inflammation? To this end, we developed new chemical tools to better understand and investigate the microglial response to Aβ in vitro and in vivo. Specifically, we introduce three new tools. (1) Recombinant human Aβ was developed via a rapid, refined, and robust method for expressing, purifying, and characterizing the protein. (2) A pH-sensitive fluorophore conjugate of Aβ (called AβpH) was developed to identify and separate Aβ-specific phagocytic and non-phagocytic glial cells ex vivo and in vivo. (3) New lysosomal, mitochondrial, and nuclei-targeting pH-activable fluorescent probes (called LysoShine, MitoShine, and NucShine, respectively) to visualize subcellular organelles in live microglia. Next, we asked, What changes occur to the global lipid and metabolite profiles of microglia in the presence of Aβ in vitro and in vivo? We screened 1500 lipids comprising 10 lipid classes and 700 metabolites in microglia exposed to Aβ. We found significant changes in specific lipid classes with acute and prolonged Aβ exposure. We also identified a lipid-related protein that was differentially regulated due to Aβ in vivo. This new lipid reprogramming mechanism “turned on” in the presence of cellular stress was also present in microglia in the brains of the 5xFAD mouse model, suggesting a generic response to inflammation and toxicity. It is well known that activated microglia induce reactive astrocytes during inflammation. Therefore, we asked, What changes in proteins, lipids, and metabolites occur in astrocytes due to their reactive state? We provide a comprehensive characterization of reactive astrocytes comprising 3660 proteins, 1500 lipids, and 700 metabolites. These microglia and astrocytes datasets will be available to the scientific community as a web application. We propose a final model wherein the molecules secreted by reactive astrocytes may also induce lipid-related changes to the microglial cell state in inflammation. In conclusion, this thesis highlights chemical neuroimmunology as the new frontier of neuroscience propelled by the development of new chemical tools and techniques to characterize glial cell states and function in neurodegeneration.

APA, Harvard, Vancouver, ISO, and other styles
5

(10701216), Ashur Scott Rael. "Advances in gas chromatography, thermolysis, mass spectrometry, and vacuum ultraviolet spectrometry." Thesis, 2021.

Find full text
Abstract:
In the area of forensic chemistry, improved or new analysis methods are continually being investigated. One common and powerful technique used in forensic chemistry is wall-coated open-tubular column (WCOT) gas chromatography with electron ionization single quadrupole mass spectrometry (GC-MS). Improvements to and effectiveness of alternatives to this instrumental platform were explored in an array of parallel inquiries. The areas studied included the column for the chromatographic separation, the universal detection method employed, and the fragmentation method used to enhance molecular identification.

Superfine-micropacked capillary (SFµPC) columns may provide an alternative to commercial packed GC columns and WCOT GC columns that combines the benefits of the larger sample capacity of packed columns and the benefits of the excellent separation capabilities and mass spectrometry (MS) flow rate compatibility of WCOT columns. SFµPC columns suffer from high inlet pressure requirements and prior reported work has required specialized instrumentation for their use. Fabrication of and chromatography with SFµPC GC columns was successfully achieved with typical GC-MS instrumentation and within the flow rate limit of a MS. Additionally, the use of higher viscosity carrier gasses was demonstrated to reduce the required inlet pressure for SFµPC GC columns.

Recently, a new vacuum ultraviolet spectrometer (VUV) universal detector has been commercialized for GC. The ability of VUV detectors to acquire absorbance spectra from 125 nm to 430 nm poses a potential alternative to MS. As such, GC-VUV provides an exciting potential alternative approach to achieving excellent quantitative and qualitative analysis across a wide range of analytes. The performance of VUV and MS detectors for forensic analysis in terms of quantitative and qualitative analysis was compared. Analysis of alkylbenzenes in ignitable liquids was explored, which can be important evidence from suspected arson fires and are difficult to differentiate with MS. The VUV detector was found to have superior specificity and comparable sensitivity to the MS detector in scan mode.

Addition of thermolysis (Th) as an orthogonal fragmentation pathway provides the opportunity to increase the differences between MS fragmentation patterns. Fragmentation has been widely established to aid in identification of molecules with MS by providing characteristic fragments at characteristic relative abundances. However, molecules with very similar structures do not result in sizable spectral differences in all cases with typical MS fragmentation techniques. A series of Th units were fabricated and integrated into GC-Th-MS instruments. Th-MS was conducted with the thermally labile nitrate esters across a range of instrumentation and thermal conditions.
APA, Harvard, Vancouver, ISO, and other styles
6

(8740413), Chen Li. "ADVANCES OF MID-INFRARED PHOTOTHERMAL MICROSCOPY FOR IMPROVED CHEMICAL IMAGING." Thesis, 2020.

Find full text
Abstract:
Vibrational spectroscopic imaging has become an emerging platform for chemical visualization of biomolecules and materials in complex systems. For over a century, both Raman and infrared spectroscopy have demonstrated the capability to recognize molecules of interest by harnessing the characteristic features from molecular fingerprints. With the recent development of hyperspectral vibrational spectroscopy imaging, which records the chemical information without sacrificing the spatial-temporal resolution, numerous discoveries has been achieved in the field of molecular and cellular biology. Despite the ability to provide complimentary chemical information to Raman-based approaches, infrared spectroscopy has not been extensively applied in routine studies due to several fundamental limitations: 1). the poor spatial resolution; 2). inevitable strong water absorption; 3). lack of depth resolution.
Mid-infrared photothermal (MIP) microscopy overcame all the above mentioned problems and for the first time, enabled depth-resolved in vivo infrared imaging of live cells, microorganisms with submicrometer spatial resolution. The development of epi-detected MIP microscopy further extends its application in pharmaceutical and materials sciences. With the deployment of difference frequency generation and other nonlinear optical techniques, the spectral coverage of the MIP microscopy was significantly enhanced to enable chemical differentiation in complex systems across the broad mid-infrared region. In addition to the efforts to directly improve the performance of MIP microscopy, a novel quantitative phase imaging approach based on polarization wavefront shaping via custom-designed micro-retarder arrays was developed to take advantage of the highly sensitive phase measurement in combination with the photothermal effect. Besides, the extended depth-of-field and multifocus imaging enabled by polarization wavefront shaping could both improve the performance of MIP microscopy for volumetric imaging.
APA, Harvard, Vancouver, ISO, and other styles
7

(9708611), Zackery Ray Roberson. "Advances in Gas Chromatography and Vacuum UV Spectroscopy: Applications to Fire Debris Analysis & Drugs of Abuse." Thesis, 2021.

Find full text
Abstract:
In forensic chemistry, a quicker and more accurate analysis of a sample is always being pursued. Speedy analyses allow the analyst to provide quick turn-around times and potentially decrease back-logs that are known to be a problem in the field. Accurate analyses are paramount with the futures and lives of the accused potentially on the line. One of the most common methods of analysis in forensic chemistry laboratories is gas chromatography, chosen for the relative speed and efficiency afforded by this method. Two major routes were attempted to further improve on gas chromatography applications in forensic chemistry.
The first route was to decrease separation times for analysis of ignitable liquid residues by using micro-bore wall coated open-tubular columns. Micro-bore columns are much shorter and have higher separation efficiencies than the standard columns used in forensic chemistry, allowing for faster analysis times while maintaining the expected peak separation. Typical separation times for fire debris samples are between thirty minutes and one hour, the micro-bore columns were able to achieve equivalent performance in three minutes. The reduction in analysis time was demonstrated by analysis of ignitable liquid residues from simulated fire debris exemplars.
The second route looked at a relatively new detector for gas chromatography known as a vacuum ultraviolet (VUV) spectrophotometer. The VUV detector uses traditional UV and far-ultraviolet light to probe the pi and sigma bonds of the gas phase analytes as well as Rydberg traditions to produce spectra that are nearly unique to a compound. Thus far, the only spectra that were not discernable were from enantiomers, otherwise even diastereomers have been differentiated. The specificity attained with the VUV detector has achieved differentiation of compounds that mass spectrometry, the most common detection method for chromatography in forensic chemistry labs, has difficulty distinguishing. This specificity has been demonstrated herein by analyzing various classes of drugs of abuse and applicability to “real world” samples has been demonstrated by analysis of de-identified seized samples.
APA, Harvard, Vancouver, ISO, and other styles
8

(8713962), James Ulcickas. "LIGHT AND CHEMISTRY AT THE INTERFACE OF THEORY AND EXPERIMENT." Thesis, 2020.

Find full text
Abstract:
Optics are a powerful probe of chemical structure that can often be linked to theoretical predictions, providing robustness as a measurement tool. Not only do optical interactions like second harmonic generation (SHG), single and two-photon excited fluorescence (TPEF), and infrared absorption provide chemical specificity at the molecular and macromolecular scale, but the ability to image enables mapping heterogeneous behavior across complex systems such as biological tissue. This thesis will discuss nonlinear and linear optics, leveraging theoretical predictions to provide frameworks for interpreting analytical measurement. In turn, the causal mechanistic understanding provided by these frameworks will enable structurally specific quantitative tools with a special emphasis on application in biological imaging. The thesis will begin with an introduction to 2nd order nonlinear optics and the polarization analysis thereof, covering both the Jones framework for polarization analysis and the design of experiment. Novel experimental architectures aimed at reducing 1/f noise in polarization analysis will be discussed, leveraging both rapid modulation in time through electro-optic modulators (Chapter 2), as well as fixed-optic spatial modulation approaches (Chapter 3). In addition, challenges in polarization-dependent imaging within turbid systems will be addressed with the discussion of a theoretical framework to model SHG occurring from unpolarized light (Chapter 4). The application of this framework to thick tissue imaging for analysis of collagen local structure can provide a method for characterizing changes in tissue morphology associated with some common cancers (Chapter 5). In addition to discussion of nonlinear optical phenomena, a novel mechanism for electric dipole allowed fluorescence-detected circular dichroism will be introduced (Chapter 6). Tackling challenges associated with label-free chemically specific imaging, the construction of a novel infrared hyperspectral microscope for chemical classification in complex mixtures will be presented (Chapter 7). The thesis will conclude with a discussion of the inherent disadvantages in taking the traditional paradigm of modeling and measuring chemistry separately and provide the multi-agent consensus equilibrium (MACE) framework as an alternative to the classic meet-in-the-middle approach (Chapter 8). Spanning topics from pure theoretical descriptions of light-matter interaction to full experimental work, this thesis aims to unify these two fronts.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography