Journal articles on the topic '020503 Nonlinear Optics and Spectroscopy'

To see the other types of publications on this topic, follow the link: 020503 Nonlinear Optics and Spectroscopy.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '020503 Nonlinear Optics and Spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Budker, Dmitry, Donald J. Orlando, and Valeriy Yashchuk. "Nonlinear laser spectroscopy and magneto-optics." American Journal of Physics 67, no. 7 (July 1999): 584–92. http://dx.doi.org/10.1119/1.19328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hebling, JÁnos, Ka-Lo Yeh, Matthias C. Hoffmann, and Keith A. Nelson. "High-Power THz Generation, THz Nonlinear Optics, and THz Nonlinear Spectroscopy." IEEE Journal of Selected Topics in Quantum Electronics 14, no. 2 (2008): 345–53. http://dx.doi.org/10.1109/jstqe.2007.914602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SHAN, JIE, AJAY NAHATA, and TONY F. HEINZ. "TERAHERTZ TIME-DOMAIN SPECTROSCOPY BASED ON NONLINEAR OPTICS." Journal of Nonlinear Optical Physics & Materials 11, no. 01 (March 2002): 31–48. http://dx.doi.org/10.1142/s0218863502000845.

Full text
Abstract:
We present a brief review of the use of nonlinear optics for broadband terahertz (THz) time-domain spectroscopy with femtosecond laser pulses. The generation of THz pulses is accomplished by optical rectification and coherent detection by electro-optic sampling or field-induced second-harmonic generation. The approach permits exceptional time response, as well as the possibility for multichannel detection schemes.
APA, Harvard, Vancouver, ISO, and other styles
4

FAINBERG, B. D., B. ZOLOTOV, and D. HUPPERT. "NONLINEAR LASER SPECTROSCOPY OF NONLINEAR SOLVATION." Journal of Nonlinear Optical Physics & Materials 05, no. 04 (October 1996): 789–807. http://dx.doi.org/10.1142/s0218863596000568.

Full text
Abstract:
In this study we show that the transient four-photon spectroscopy with pulses longer than the electronic transition dephasing can be used for nonlinear solvation study, i.e., when the linear response for the solvation dynamics breaks down. We have obtained new formulae describing the time evolution of the moments of the nonlinear optical spectra and, in particular, the time resolved fluorescence in the case of nonlinear solvation.
APA, Harvard, Vancouver, ISO, and other styles
5

Leute, St, Th Lottermoser, and D. Fröhlich. "Nonlinear spatially resolved phase spectroscopy." Optics Letters 24, no. 21 (November 1, 1999): 1520. http://dx.doi.org/10.1364/ol.24.001520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stacey, D. "Introduction to Nonlinear Laser Spectroscopy." Journal of Modern Optics 36, no. 10 (October 1989): 1402–3. http://dx.doi.org/10.1080/09500348914551461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lu Minjian, 卢敏健, 武韬 Wu Tao, 李岩 Li Yan, and 尉昊赟 Wei Haoyun. "Dual-Comb Nonlinear Spectroscopy." Laser & Optoelectronics Progress 58, no. 1 (2021): 0100001. http://dx.doi.org/10.3788/lop202158.0100001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, H. W. H., and R. S. Hughes. "Antiresonant ring interferometric nonlinear spectroscopy for nonlinear-optical measurements." Optics Letters 19, no. 21 (November 1, 1994): 1708. http://dx.doi.org/10.1364/ol.19.001708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tollerud, Jonathan Owen, Giorgia Sparapassi, Angela Montanaro, Shahaf Asban, Filippo Glerean, Francesca Giusti, Alexandre Marciniak, et al. "Femtosecond covariance spectroscopy." Proceedings of the National Academy of Sciences 116, no. 12 (February 28, 2019): 5383–86. http://dx.doi.org/10.1073/pnas.1821048116.

Full text
Abstract:
The success of nonlinear optics relies largely on pulse-to-pulse consistency. In contrast, covariance-based techniques used in photoionization electron spectroscopy and mass spectrometry have shown that a wealth of information can be extracted from noise that is lost when averaging multiple measurements. Here, we apply covariance-based detection to nonlinear optical spectroscopy, and show that noise in a femtosecond laser is not necessarily a liability to be mitigated, but can act as a unique and powerful asset. As a proof of principle we apply this approach to the process of stimulated Raman scattering in α-quartz. Our results demonstrate how nonlinear processes in the sample can encode correlations between the spectral components of ultrashort pulses with uncorrelated stochastic fluctuations. This in turn provides richer information compared with the standard nonlinear optics techniques that are based on averages over many repetitions with well-behaved laser pulses. These proof-of-principle results suggest that covariance-based nonlinear spectroscopy will improve the applicability of fs nonlinear spectroscopy in wavelength ranges where stable, transform-limited pulses are not available, such as X-ray free-electron lasers which naturally have spectrally noisy pulses ideally suited for this approach.
APA, Harvard, Vancouver, ISO, and other styles
10

LEPETIT, L., G. CHÉRIAUX, and M. JOFFRE. "TWO-DIMENSIONAL NONLINEAR OPTICS SPECTROSCOPY: SIMULATIONS AND EXPERIMENTAL DEMONSTRATION." Journal of Nonlinear Optical Physics & Materials 05, no. 03 (July 1996): 465–76. http://dx.doi.org/10.1142/s0218863596000313.

Full text
Abstract:
We propose a new technique, using femtosecond Fourier-transform spectral interferometry, to measure the second-order nonlinear response of a material in two dimensions of frequency. We show numerically the specific and unique information obtained from such a two-dimensional measurement. The technique is demonstrated by measuring the second-order phase-matching map of two non-resonant nonlinear crystals.
APA, Harvard, Vancouver, ISO, and other styles
11

Suchchinskii, M. M. "Nonlinear spectroscopy of raman scattering." Journal of Russian Laser Research 18, no. 4 (July 1997): 343–97. http://dx.doi.org/10.1007/bf02559706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Shirshin, E. A., B. P. Yakimov, G. S. Budylin, K. E. Buyankin, A. G. Armaganov, V. V. Fadeev, and A. A. Kamalov. "Melanin diagnostics with nonlinear optics: a mini-review." Quantum Electronics 52, no. 1 (January 1, 2022): 28–35. http://dx.doi.org/10.1070/qel17963.

Full text
Abstract:
Abstract Optical methods are widely used to perform fundamental studies of living systems and solve problems of biomedical diagnostics. Along with the classical spectroscopy, methods of nonlinear optics (e.g., multiphoton microscopy) are also applied in biophotonics. The potential of nonlinear optical methods for visualisation and analysis of the properties of endogenous chromophore molecules are considered in this minireview. Melanin – a pigment with specific spectral features of photophysical properties in the visible and near-IR ranges – is taken as an example. It is discussed what information about its localisation in tissues and structural organisation can be obtained by nonlinear optical methods: multiphoton fluorescence microscopy (including fluorescence lifetime imaging), third harmonic generation, pump – probe spectroscopy, and coherent anti-Stokes Raman spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
13

Robles, Francisco E., Prathyush Samineni, Jesse W. Wilson, and Warren S. Warren. "Pump-probe nonlinear phase dispersion spectroscopy." Optics Express 21, no. 8 (April 9, 2013): 9353. http://dx.doi.org/10.1364/oe.21.009353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gel'Medova, L. A., and D. A. Shapiro. "The Dicke Effect in Nonlinear Spectroscopy." Journal of Modern Optics 38, no. 3 (March 1991): 573–78. http://dx.doi.org/10.1080/09500349114552801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

de Araujo, Cid B., A. S. L. Gomes, H. Ma, and L. H. Acioli. "Nonlinear Polarization Beats Spectroscopy." Optics and Photonics News 3, no. 12 (December 1, 1992): 9. http://dx.doi.org/10.1364/opn.3.12.000009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

de Araujo, Cid B., A. S. L. Gomes, H. Ma, and L. H. Acioli. "Nonlinear Polarization Beats Spectroscopy." Optics and Photonics News 3, no. 12 (December 1, 1992): 9_1. http://dx.doi.org/10.1364/opn.3.12.0009_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

EVANS, M. W. "QUANTUM OPTICS IN NMR SPECTROSCOPY." Modern Physics Letters B 06, no. 20 (August 30, 1992): 1237–44. http://dx.doi.org/10.1142/s0217984992000922.

Full text
Abstract:
A circularly polarised laser is shown to produce a static magnetic field, Bπ, in its axis of propagation. The field Bπ is expressed in quantum optical form and is shown to interact with a nuclear dipole moment to produce a real interaction energy which produces a frequency shift in a standard NMR spectrum. The observed shift is two orders of magnitude smaller than that predicted with a classical Bπ. This is explained qualitatively using the fact that the classical Bπ produces an interaction energy which is the upper bound of the energy produced by the quantised [Formula: see text]. The quantum field in NMR appears to behave quite differently, therefore, from its classical counterpart.
APA, Harvard, Vancouver, ISO, and other styles
18

Sheka, E. F., B. S. Razbirin, and D. K. Nelson. "Fullerene nanoclusters as enhancers in linear spectroscopy and nonlinear optics." High Energy Chemistry 43, no. 7 (December 2009): 628–33. http://dx.doi.org/10.1134/s0018143909070236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Daum, W., H.-J. Krause, U. Reichel, and H. Ibach. "Nonlinear optical spectroscopy at silicon interfaces." Physica Scripta T49B (January 1, 1993): 513–18. http://dx.doi.org/10.1088/0031-8949/1993/t49b/024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tominaga, Keisuke. "Recent Development of Nonlinear Spectroscopy in Liquids." Laser Chemistry 19, no. 1-4 (January 1, 1999): 117–22. http://dx.doi.org/10.1155/1999/73242.

Full text
Abstract:
Recent developments of nonlinear spectroscopy in liquids are reviewed. Especially, off-resonant fifth and seventh order nonlinear techniques are discussed in light of their application to the studies of microscopic dynamics. Vibrational echo experiments and overtone vibrational dephasing spectroscopy are examples of the higher order nonlinear spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
21

McGilp, John F. "Probing semiconductor interfaces using nonlinear optical spectroscopy." Optical Engineering 33, no. 12 (December 1, 1994): 3895. http://dx.doi.org/10.1117/12.186373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Brunel, Ch, Ph Tamarat, B. Lounis, and M. Orrit. "Optical spectroscopy of single molecules: application to nonlinear and quantum optics." Journal of Luminescence 87-89 (May 2000): 105–8. http://dx.doi.org/10.1016/s0022-2313(99)00239-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Miller, R. J. Dwayne, Alexander Paarmann, and Valentyn I. Prokhorenko. "Diffractive Optics Based Four-Wave, Six-Wave, ..., ν-Wave Nonlinear Spectroscopy." Accounts of Chemical Research 42, no. 9 (September 15, 2009): 1442–51. http://dx.doi.org/10.1021/ar900040f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Okubo, Tsuneo, Akira Tsuchida, Shinji Okada, and Shinnen Kobata. "Nonlinear Electro-Optics of Colloidal Crystals as Studied by Reflection Spectroscopy." Journal of Colloid and Interface Science 199, no. 1 (March 1998): 83–91. http://dx.doi.org/10.1006/jcis.1997.5330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sudharsanam, Ramanathan, Srinivasan Chandrasekaran, and PuspenduKumar Das. "Oxygen bridged nitroanilines for quadratic nonlinear optics." Journal of Molecular Structure 645, no. 1 (January 2003): 51–59. http://dx.doi.org/10.1016/s0022-2860(02)00538-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zyss, J., and S. Brasselet. "Multipolar Symmetry Patterns in Molecular Nonlinear Optics." Journal of Nonlinear Optical Physics & Materials 07, no. 03 (September 1998): 397–439. http://dx.doi.org/10.1142/s0218863598000302.

Full text
Abstract:
Organic materials for quadratic nonlinear optics generally follow the basic pattern of strongly dipolar quasi one-dimensional intramolecular charge transfer molecules organized in macroscopic crystalline or statistical polar lattices. This restriction has been lifted by the introduction of the much broader class of multipolar materials whereby efficient two- and three-dimensional molecules can be fruitfully exploited in self assembled or externally engineered multipolar macroscopic structures. At the molecular level, polarized harmonic scattering permits to evaluate the invariant irreducible components of the molecular quadratic tensor. Its anisotropy and dispersion can be accounted for by a three-quantum model in agreement with linear spectroscopy on poled samples, whereas the validity of the two-level model is restricted to one-dimensional systems. Permanent macroscopic multipolar organization can be implemented by purely optical photoinduced processes. Adequate choice of the polarization of "write" beams permits to imprint any desired symmetry pattern onto the (non)linear material. Photonic engineering thus complements and considerably broadens the more traditional scope of molecular engineering.
APA, Harvard, Vancouver, ISO, and other styles
27

Rasekh, Payman, Akbar Safari, Murat Yildirim, Ravi Bhardwaj, Jean-Michel Ménard, Ksenia Dolgaleva, and Robert W. Boyd. "Terahertz Nonlinear Spectroscopy of Water Vapor." ACS Photonics 8, no. 6 (May 25, 2021): 1683–88. http://dx.doi.org/10.1021/acsphotonics.1c00056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Olenick, Laura L., Hilary M. Chase, Li Fu, Yun Zhang, Alicia C. McGeachy, Merve Dogangun, Stephanie R. Walter, Hong-fei Wang, and Franz M. Geiger. "Single-component supported lipid bilayers probed using broadband nonlinear optics." Physical Chemistry Chemical Physics 20, no. 5 (2018): 3063–72. http://dx.doi.org/10.1039/c7cp02549a.

Full text
Abstract:
Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups.
APA, Harvard, Vancouver, ISO, and other styles
29

Dai, Jinghang, Tao Yu, Lijun Xu, and Weiwei Cai. "On the regularization for nonlinear tomographic absorption spectroscopy." Journal of Quantitative Spectroscopy and Radiative Transfer 206 (February 2018): 233–41. http://dx.doi.org/10.1016/j.jqsrt.2017.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Hui, Yaying Zhao, Ying Li, and Wei-Tao Liu. "Narrowband nonlinear optical spectroscopy with spatially chirped broadband pulses." Optics Letters 46, no. 1 (December 23, 2020): 54. http://dx.doi.org/10.1364/ol.410335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Wen-Zhuo, Hua-Dong Cheng, Ling Xiao, Liang Liu, and Yu-Zhu Wang. "Nonlinear spectroscopy of cold atoms in diffuse laser light." Optics Express 17, no. 4 (February 11, 2009): 2892. http://dx.doi.org/10.1364/oe.17.002892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yamaguchi, S., and T. Tahara. "Novel interface-selective even-order nonlinear spectroscopy." Laser & Photonics Review 2, no. 1-2 (April 25, 2008): 74–82. http://dx.doi.org/10.1002/lpor.200710027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lepkowicz, Richard S., Claudiu M. Cirloganu, Jie Fu, Olga V. Przhonska, David J. Hagan, Eric W. Van Stryland, Mikhail V. Bondar, Yuriy L. Slominsky, and Alexei D. Kachkovski. "Femtosecond-to-nanosecond nonlinear spectroscopy of polymethine molecules." Journal of the Optical Society of America B 22, no. 12 (December 1, 2005): 2664. http://dx.doi.org/10.1364/josab.22.002664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kisand, V., R. Kink, M. Kink, J. Maksimov, M. Kirm, and I. Martinson. "Low temperature optical spectroscopy of nonlinear BBO crystals." Physica Scripta 54, no. 5 (November 1, 1996): 542–44. http://dx.doi.org/10.1088/0031-8949/54/5/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Rompotis, Dimitrios, Arne Baumann, Oliver Schepp, Theophilos Maltezopoulos, Marek Wieland, and Markus Drescher. "Single-shot nonlinear spectroscopy in the vacuum-ultraviolet." Optica 4, no. 8 (July 26, 2017): 871. http://dx.doi.org/10.1364/optica.4.000871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kajzar, Francois. "M-line spectroscopy for nonlinear characterization of polymeric waveguides." Optical Engineering 34, no. 12 (December 1, 1995): 3418. http://dx.doi.org/10.1117/12.213240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Koroteev, N. I. "Nonlinear Spectroscopy of Highly-excited Molecules and Condensed Media." Laser Chemistry 6, no. 3 (January 1, 1986): 203–18. http://dx.doi.org/10.1155/lc.6.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lima, S. M., H. Jiao, L. A. O. Nunes, and T. Catunda. "Nonlinear refraction spectroscopy in resonance with laser lines in solids." Optics Letters 27, no. 10 (May 15, 2002): 845. http://dx.doi.org/10.1364/ol.27.000845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Guelachvili, Guy. "Distortion free interferograms in Fourier transform spectroscopy with nonlinear detectors." Applied Optics 25, no. 24 (December 15, 1986): 4644. http://dx.doi.org/10.1364/ao.25.004644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Thompson, R. J., Q. A. Turchette, O. Carnal, and H. J. Kimble. "Nonlinear spectroscopy in the strong-coupling regime of cavity QED." Physical Review A 57, no. 4 (April 1, 1998): 3084–104. http://dx.doi.org/10.1103/physreva.57.3084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ayoub, Mousa, Philip Roedig, Kaloian Koynov, Jörg Imbrock, and Cornelia Denz. "Čerenkov-type second-harmonic spectroscopy in random nonlinear photonic structures." Optics Express 21, no. 7 (March 28, 2013): 8220. http://dx.doi.org/10.1364/oe.21.008220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Yuan, Matthew D. King, Haohua Tu, Youbo Zhao, and Stephen A. Boppart. "Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum." Optics Express 21, no. 7 (March 28, 2013): 8269. http://dx.doi.org/10.1364/oe.21.008269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cerullo, G., G. Lanzani, M. Nisoli, E. Priori, S. Stagira, M. Zavelani-Rossi, O. Svelto, et al. "Ultra-fast spectroscopy and extreme nonlinear optics by few-optical-cycle laser pulses." Applied Physics B 71, no. 6 (December 2000): 779–86. http://dx.doi.org/10.1007/s003400000465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Biagioni, P., M. Celebrano, D. Polli, M. Labardi, M. Zavelani-Rossi, G. Cerullo, M. Finazzi, and L. Duò. "Nonlinear optics and spectroscopy at the nanoscale with a hollow-pyramid aperture SNOM." Journal of Physics: Conference Series 61 (March 1, 2007): 125–29. http://dx.doi.org/10.1088/1742-6596/61/1/026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Isobe, Keisuke, Akira Suda, Masahiro Tanaka, Hiroshi Hashimoto, Fumihiko Kannari, Hiroyuki Kawano, Hideaki Mizuno, Atsushi Miyawaki, and Katsumi Midorikawa. "Nonlinear Optical Microscopy and Spectroscopy Employing Octave Spanning Pulses." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 4 (July 2010): 767–80. http://dx.doi.org/10.1109/jstqe.2009.2037439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

JAHJA, MOHAMAD, and CHRISTOPH BUBECK. "NONLINEAR OPTICAL WAVEGUIDE SPECTROSCOPY OF POLY(3-BUTYLTHIOPHENE)." Journal of Nonlinear Optical Physics & Materials 19, no. 02 (June 2010): 269–80. http://dx.doi.org/10.1142/s0218863510005200.

Full text
Abstract:
We prepared thin films of the conjugated polymer poly(3-butylthiophene) by spin-coating and performed transmission and reflection spectroscopy to characterize the dispersion of linear refractive index and absorption coefficient at in-plane polarization. Slab waveguides of this regiorandom polythiophene derivative have mode propagation losses smaller than 1 dB/cm at wavelengths larger than 1000 nm. We determined the nonlinear refractive index and two-photon absorption of slab waveguides by means of intensity-dependent prism coupling using picosecond laser pulses in the range 700–1300 nm. These data yield the dispersion of the figures of merit, which appear promising for all-optical waveguide switching at wavelengths larger than 1200 nm.
APA, Harvard, Vancouver, ISO, and other styles
47

Liebel, Matz, Costanza Toninelli, and Niek F. van Hulst. "Room-temperature ultrafast nonlinear spectroscopy of a single molecule." Nature Photonics 12, no. 1 (December 4, 2017): 45–49. http://dx.doi.org/10.1038/s41566-017-0056-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Skljarow, Artur, Nico Gruhler, Wolfram Pernice, Harald Kübler, Tilman Pfau, Robert Löw, and Hadiseh Alaeian. "Integrating two-photon nonlinear spectroscopy of rubidium atoms with silicon photonics." Optics Express 28, no. 13 (June 19, 2020): 19593. http://dx.doi.org/10.1364/oe.389644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Langbein, Wolfgang, and Brian Patton. "Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems." Optics Letters 31, no. 8 (April 15, 2006): 1151. http://dx.doi.org/10.1364/ol.31.001151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Oliva, María Moreno, Juan Casado, Juan T López Navarrete, Gunther Hennrich, Stijn van Cleuvenbergen, Inge Asselberghs, Koen Clays, et al. "Synthesis, Spectroscopy, Nonlinear Optics, and Theoretical Investigations of Thienylethynyl Octopoles with a Tunable Core." Chemistry - A European Journal 15, no. 33 (August 17, 2009): 8223–34. http://dx.doi.org/10.1002/chem.200900702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography