Journal articles on the topic '020406 Surfaces and Structural Properties of Condensed Matter'

To see the other types of publications on this topic, follow the link: 020406 Surfaces and Structural Properties of Condensed Matter.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '020406 Surfaces and Structural Properties of Condensed Matter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fritz, Torsten, Michael Hoffmann, Thomas Schmitz-hübsch, and Karl Leo. "Heteroepitaxially Grown Overlayers of PTCDA on Au(111) Surfaces: Structural and Fluorescence Properties." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 314, no. 1 (May 1998): 279–84. http://dx.doi.org/10.1080/10587259808042488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Proietti, M. G., J. Garcia, J. Chaboy, F. Morier-Genoud, and D. Martin. "Structural properties of GaAs oxide layers grown on polished (100) surfaces." Journal of Physics: Condensed Matter 5, no. 9 (March 1, 1993): 1229–38. http://dx.doi.org/10.1088/0953-8984/5/9/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Z., M. J. Walock, P. R. LeClair, G. J. Mankey, P. Mani, D. Lott, F. Klose, et al. "Structural and magnetic properties of epitaxial Fe25Pt75." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 27, no. 4 (July 2009): 770–75. http://dx.doi.org/10.1116/1.3143668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sensoy, Mehmet Gokhan, Daniele Toffoli, and Hande Ustunel. "Structural and electronic properties of bulk and low-index surfaces of zincblende PtC." Journal of Physics: Condensed Matter 29, no. 12 (February 8, 2017): 125002. http://dx.doi.org/10.1088/1361-648x/aa57e3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

El Helou, M., E. Lietke, J. Helzel, W. Heimbrodt, and G. Witte. "Structural and optical properties of pentacene films grown on differently oriented ZnO surfaces." Journal of Physics: Condensed Matter 24, no. 44 (October 10, 2012): 445012. http://dx.doi.org/10.1088/0953-8984/24/44/445012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gunnella, R., J. Y. Veuillen, A. Berthet, and T. A. Nguyen Tan. "Electronic and Structural Properties of the 6H–SiC(0001) Surfaces." Surface Review and Letters 05, no. 01 (February 1998): 187–91. http://dx.doi.org/10.1142/s0218625x98000359.

Full text
Abstract:
The atomic and electronic structures of clean 6H–SiC(0001) surfaces have been investigated by means of LEED and photoelectron spectroscopies (XPS, XAES and UPS). First a clean surface having the (3 × 3) structure has been obtained by heating the sample at 800°C under a low Si flux. Successive annealings in UHV have produced two other stable reconstructions, namely the [Formula: see text] and the [Formula: see text]. The various surface structures show distinctive core-level and Auger line shapes, which are characteristic of the composition of the surface layer, as checked by the XPS intensities by two different excitation sources (Mg Kα and Zr Mζ), while UPS spectra show sizeable differences in the character of the valence bands. The evaluation of the atomic composition is able to sort between different models proposed in the literature.
APA, Harvard, Vancouver, ISO, and other styles
7

Rutter, G. M., J. N. Crain, N. P. Guisinger, P. N. First, and J. A. Stroscio. "Structural and electronic properties of bilayer epitaxial graphene." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 26, no. 4 (July 2008): 938–43. http://dx.doi.org/10.1116/1.2944257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wiegart, Lutz, Bernd Struth, Metin Tolan, and Pierre Terech. "Thermodynamic and Structural Properties of Phospholipid Langmuir Monolayers on Hydrosol Surfaces." Langmuir 21, no. 16 (August 2005): 7349–57. http://dx.doi.org/10.1021/la050478m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Han, Dong, Mohamed Bouras, Claude Botella, Aziz Benamrouche, Bruno Canut, Geneviève Grenet, Guillaume Saint-Girons, and Romain Bachelet. "Structural properties of strained epitaxial La1+δCrO3 thin films." Journal of Vacuum Science & Technology A 37, no. 2 (March 2019): 021512. http://dx.doi.org/10.1116/1.5082185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Fengting T., Sean M. Thaler, and John A. Barnard. "Structural and mechanical properties of dendrimer-mediated thin films." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23, no. 4 (July 2005): 1234–37. http://dx.doi.org/10.1116/1.1861934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yang, Bo, A.-Gen Xia, Jin-Sheng Jin, Quan-Lin Ye, Yan-Feng Lao, Zheng-Kuan Jiao, and Gao-Xiang Ye. "Structural and electrical properties of an Au film system deposited on silicone oil surfaces." Journal of Physics: Condensed Matter 14, no. 43 (October 18, 2002): 10051–62. http://dx.doi.org/10.1088/0953-8984/14/43/304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jafari Mohammadi, S. A., S. H. Mousavi, R. Karos, and P. W. de Oliveira. "Structural and optical properties of TZO thin films." Vacuum 107 (September 2014): 231–35. http://dx.doi.org/10.1016/j.vacuum.2014.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Di Napoli, Solange, and Zulema Gamba. "Structural and dynamical properties of water confined between two hydrophilic surfaces." Physica B: Condensed Matter 404, no. 18 (October 2009): 2883–86. http://dx.doi.org/10.1016/j.physb.2009.06.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Borsa, D. M., and D. O. Boerma. "Growth, structural and optical properties of Cu3N films." Surface Science 548, no. 1-3 (January 2004): 95–105. http://dx.doi.org/10.1016/j.susc.2003.10.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ahola-Tuomi, M., P. Laukkanen, R. E. Perälä, M. Kuzmin, J. Pakarinen, I. J. Väyrynen, and M. Adell. "Structural properties of Bi-terminated GaAs(001) surface." Surface Science 600, no. 11 (June 2006): 2349–54. http://dx.doi.org/10.1016/j.susc.2006.03.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dai, Xian-Qi, Jian-Li Wang, Hui-Juan Yan, Xin-Hua Wu, and M. H. Xie. "Structural properties of oxygen on InN(0001) surface." Surface Science 601, no. 10 (May 2007): 2161–65. http://dx.doi.org/10.1016/j.susc.2007.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hamad, B. A. "Structural and dynamical properties of Ru(0001) surface." Surface Science 602, no. 24 (December 2008): 3654–59. http://dx.doi.org/10.1016/j.susc.2008.09.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Peng, R. W., X. Q. Huang, F. Qiu, Y. M. Liu, A. Hu, and S. S. Jiang. "Structural Symmetry and Optical Properties of Dielectric Multilayers." Surface Review and Letters 10, no. 02n03 (April 2003): 311–15. http://dx.doi.org/10.1142/s0218625x03004950.

Full text
Abstract:
We have investigated the structural symmetry and optical properties of the dielectric multilayers. By using the transfer-matrix method, the propagation of electromagnetic wave in the dielectric multilayer film is obtained. It is shown that if a mirror symmetry is induced to the structure, perfect transmissions will definitely happen. And the perfect transmission can be controlled at certain wavelengths if the special structure with symmetry is achieved. Experimental observations are in good agreement with the theoretical predictions. This finding will have potential applications to optoelectric devices, such as the wavelength division multiplexing (WDM) system.
APA, Harvard, Vancouver, ISO, and other styles
19

Kuo, Shou-Yi, and Wen-Feng Hsieh. "Structural and optical properties of erbium-doped Ba0.7Sr0.3TiO3 thin films." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23, no. 4 (July 2005): 768–72. http://dx.doi.org/10.1116/1.1938979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Terra, F. S., G. M. Mahmoud, Mahmoud Nasr, and M. M. El Okr. "Preparation and structural properties of PbSe nanomaterial." Surface and Interface Analysis 42, no. 6-7 (May 19, 2010): 1239–43. http://dx.doi.org/10.1002/sia.3464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ležaić, M., I. Galanakis, G. Bihlmayer, and S. Blügel. "Structural and magnetic properties of the (001) and (111) surfaces of the half-metal NiMnSb." Journal of Physics: Condensed Matter 17, no. 21 (May 13, 2005): 3121–36. http://dx.doi.org/10.1088/0953-8984/17/21/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wenmackers, Sylvia, Simona D. Pop, Katy Roodenko, Veronique Vermeeren, Oliver A. Williams, Michael Daenen, Olivier Douhéret, et al. "Structural and Optical Properties of DNA Layers Covalently Attached to Diamond Surfaces." Langmuir 24, no. 14 (July 2008): 7269–77. http://dx.doi.org/10.1021/la800464p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

ZUBOV, V. I., and J. N. TEIXEIRA RABELO. "ON A QUASI-CLASSICAL THEORY OF ATOMIC PROPERTIES OF SOLID SURFACES." International Journal of Modern Physics B 07, no. 04 (February 14, 1993): 1115–29. http://dx.doi.org/10.1142/s0217979293002250.

Full text
Abstract:
Equations derived by one of the authors in a preceding paper (Ref. 26) are used to study structural and dynamical surface properties of anharmonic crystals taking into account the first quantum corrections. Anharmonic terms up to the fifth order are included. The lattice relaxation and dynamics near the singular surfaces of a two-dimensional model with square lattice are calculated. Quantum effects on the interplanar thermal expansivity and on the mean-square displacements of atoms are discussed.
APA, Harvard, Vancouver, ISO, and other styles
24

Ibrahim, A. A., N. Z. El-Sayed, M. A. Kaid, and A. Ashour. "Structural and electrical properties of evaporated ZnTe thin films." Vacuum 75, no. 3 (July 2004): 189–94. http://dx.doi.org/10.1016/j.vacuum.2004.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ameer, Shaan, Kajal Jindal, Savita Sharma, Pradip K. Jha, Monika Tomar, and Vinay Gupta. "Structural, morphological and optical properties of BiFe0.99Cr0.01O3 thin films." Vacuum 158 (December 2018): 166–71. http://dx.doi.org/10.1016/j.vacuum.2018.09.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Alves, E., N. Franco, N. P. Barradas, F. Munnik, T. Monteiro, M. Peres, J. Wang, R. Martins, and E. Fortunato. "Structural and optical properties of nitrogen doped ZnO films." Vacuum 83, no. 10 (June 2009): 1274–78. http://dx.doi.org/10.1016/j.vacuum.2009.03.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Thielsch, R., W. Meiling, and E. Göring. "Structural, optical and electronical properties of mixed dielectric films." Vacuum 41, no. 4-6 (January 1990): 1147–50. http://dx.doi.org/10.1016/0042-207x(90)93894-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Santucci, A., S. Beretta, G. Reverberi, M. Bellotto, and F. Parmigiani. "Optical and structural properties of e-beam evaporated films." Vacuum 41, no. 4-6 (January 1990): 1479–80. http://dx.doi.org/10.1016/0042-207x(90)93998-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Matunová, Petra, Vít Jirásek, and Bohuslav Rezek. "Structural and Electronic Properties of Oxidized and Amorphous Nanodiamond Surfaces with Covalently Grafted Polypyrrole." physica status solidi (b) 256, no. 11 (June 18, 2019): 1900176. http://dx.doi.org/10.1002/pssb.201900176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Choudhary, R. K., P. Mishra, A. Biswas, A. K. Debnath, and V. Kain. "Structural and optical properties of anodic orthorhombic zirconia films." Surface Engineering 34, no. 9 (May 3, 2017): 655–59. http://dx.doi.org/10.1080/02670844.2017.1320033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

MEYDANERI TEZEL, F., B. SAATÇI, M. ARI, S. DURMUŞ ACER, and E. ALTUNER. "STRUCTURAL, SURFACE AND TRANSPORT PROPERTIES OF Sn–Ag ALLOYS." Surface Review and Letters 24, no. 03 (March 30, 2017): 1750033. http://dx.doi.org/10.1142/s0218625x17500330.

Full text
Abstract:
The structural, surface and transport properties of Sn–Ag alloys were investigated by X-ray diffraction (XRD), radial heat flow, energy-dispersive X-ray (EDX) analysis, scanning electron microscopy (SEM) and four-point probe techniques. We observed that the samples had tetragonal crystal symmetry except for the pure Ag sample which had cubic crystal symmetry, and with the addition of Ag the cell parameters increased slightly. Smooth surfaces with a clear grain boundary for the samples were shown on the SEM micrographs. The grain sizes of pure Ag, [Formula: see text]-Sn and the formed Ag3Sn intermetallic compound phase for Sn–[Formula: see text] wt.% Ag [[Formula: see text], 3.5] binary alloys were determined to be 316[Formula: see text]nm, between 92[Formula: see text]nm and 80[Formula: see text]nm and between 36[Formula: see text]nm and 34[Formula: see text]nm, respectively. The values of electrical resistivity for pure Sn, pure Ag and Sn–[Formula: see text] wt.% Ag [[Formula: see text], 3.5] were obtained to be [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text][Formula: see text][Formula: see text]m at the temperature range of 300–450[Formula: see text]K, respectively. Thermal conductivity values of pure Sn and Sn–[Formula: see text] wt.% Ag [[Formula: see text], 3.5] binary alloys were found to be 60.60[Formula: see text]3.75, 69.00[Formula: see text]4.27 and 84.60[Formula: see text]5.24[Formula: see text]W/Km. These values slightly decreased with increasing temperature and increase with increasing of the Ag composition. Additionally, the temperature coefficients of thermal conductivity and electrical resistivity and the Lorenz numbers were calculated.
APA, Harvard, Vancouver, ISO, and other styles
32

Pireaux, J. J., C. Gregoire, M. Vermeersch, P. A. Thiry, and R. Caudano. "Surface vibrational and structural properties of polymers by HREELS." Surface Science 189-190 (October 1987): 903–12. http://dx.doi.org/10.1016/s0039-6028(87)80527-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jiao, Zhen, Qirong Yao, Liliana M. Balescu, Qijun Liu, Bin Tang, and Harold J. W. Zandvliet. "Structural and electronic properties of the α-GeSe surface." Surface Science 686 (August 2019): 17–21. http://dx.doi.org/10.1016/j.susc.2019.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Macis, Salvatore, Carla Aramo, Carmela Bonavolontà, Giannantonio Cibin, Alessandro D’Elia, Ivan Davoli, Mario De Lucia, et al. "MoO3 films grown on polycrystalline Cu: Morphological, structural, and electronic properties." Journal of Vacuum Science & Technology A 37, no. 2 (March 2019): 021513. http://dx.doi.org/10.1116/1.5078794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sato, Yasushi, Ryo Tokumaru, Eriko Nishimura, Pung-keug Song, Yuzo Shigesato, Kentaro Utsumi, and Hitoshi Iigusa. "Structural, electrical, and optical properties of transparent conductive In2O3–SnO2 films." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23, no. 4 (July 2005): 1167–72. http://dx.doi.org/10.1116/1.1894421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mota, Fernando B., Von B. Nascimento, and Caio M. C. de Castilho. "Ab initioelectronic and structural properties of clean and hydrogen saturated β-SiC(100)(3 × 2) surfaces." Journal of Physics: Condensed Matter 17, no. 30 (July 15, 2005): 4739–46. http://dx.doi.org/10.1088/0953-8984/17/30/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kashiwazaki, K., T. Ito, A. Sasajima, T. Takao, and A. Yamanaka. "FRP surfaces and frictional properties of structural materials in superconducting coils." Physica C: Superconductivity 392-396 (October 2003): 1201–4. http://dx.doi.org/10.1016/s0921-4534(03)01125-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gupta, Reema, Vinay Gupta, and Monika Tomar. "Structural and dielectric properties of PLD grown BST thin films." Vacuum 159 (January 2019): 69–75. http://dx.doi.org/10.1016/j.vacuum.2018.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pérez, J. A. Borrego, Maykel Courel, Rocío Castañeda Valderrama, I. Hernández, Mou Pal, F. Paraguay Delgado, and N. R. Mathews. "Structural, optical, and photoluminescence properties of erbium doped TiO2 films." Vacuum 169 (November 2019): 108873. http://dx.doi.org/10.1016/j.vacuum.2019.108873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Xiaodong, Zhitao Zhang, Shavkat Akhmadaliev, Shengqiang Zhou, Yiyong Wu, and Bin Guo. "Structural and magnetic properties of swift heavy-ion irradiated SiC." Vacuum 184 (February 2021): 109849. http://dx.doi.org/10.1016/j.vacuum.2020.109849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Huang, P. J., C. W. Chen, J. Y. Chen, G. C. Chi, C. J. Pan, C. C. Kuo, L. C. Chen, et al. "Optical and structural properties of Mg-ion implanted GaN nanowires." Vacuum 83, no. 5 (January 2009): 797–800. http://dx.doi.org/10.1016/j.vacuum.2008.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sadashivaiah, P. J., T. Sankarappa, T. Sujatha, Santoshkumar, R. Rawat, P. Sarvanan, and A. K. Bhatnagar. "Structural, magnetic and electrical properties of Fe/Cu/Fe films." Vacuum 85, no. 3 (September 2010): 466–73. http://dx.doi.org/10.1016/j.vacuum.2010.08.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vlakhov, E. S., T. I. Donchev, A. Y. Spasov, K. Dörr, K. A. Nenkov, A. Handstein, S. Pignard, and H. Vincent. "Structural and magnetotransport properties of magnetron sputtered La0.7Sr0.3MnO3 thin films." Vacuum 69, no. 1-3 (December 2002): 249–53. http://dx.doi.org/10.1016/s0042-207x(02)00340-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hu, Chun, Yu X. Xu, Li Chen, Fei Pei, Li J. Zhang, and Yong Du. "Structural, mechanical and thermal properties of CrAlNbN coatings." Surface and Coatings Technology 349 (September 2018): 894–900. http://dx.doi.org/10.1016/j.surfcoat.2018.06.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rivera, Abdiel, Anas Mazady, John W. Zeller, Ashok K. Sood, Tariq Manzur, and Mehdi Anwar. "Structural and optical properties of high magnesium content wurtzite-Zn1−xMgxO nanowires." Journal of Vacuum Science & Technology A 37, no. 2 (March 2019): 020604. http://dx.doi.org/10.1116/1.5085837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tang, Xiao-Li, Huai-Wu Zhang, Hua Su, Zhi-Yong Zhong, and Yu-Lan Jing. "Enhancement of structural and magnetic properties in sputtered half-metallic Fe3O4 films." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 25, no. 6 (November 2007): 1489–92. http://dx.doi.org/10.1116/1.2778689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

KAYANI, ZOHRA NAZIR, SAIRA RIAZ, and SHAHZAD NASEEM. "STRUCTURAL AND MAGNETIC PROPERTIES OF THIN FILM OF IRON NITRIDE." Surface Review and Letters 21, no. 01 (February 2014): 1450013. http://dx.doi.org/10.1142/s0218625x14500139.

Full text
Abstract:
The nano-crystalline iron nitride films with a mixture of γ- Fe 4 N , ε Fe 3 N and α Fe 2 N phases were synthesized on copper substrate by sol–gel technology. The structure, morphology and magnetic properties of the samples were characterized using X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer. The films are ferromagnetic at room temperature. Magnetic properties such as coercive forces and saturation magnetization were found to be 398 Oestered and 32.92 emu/cm3, respectively.
APA, Harvard, Vancouver, ISO, and other styles
48

EL-ZAIDIA, E. F. M., SALEEM I. QASHOU, A. A. A. DARWISH, and T. A. HANAFY. "STRUCTURAL, OPTICAL, ELECTRICAL AND DIELECTRIC PROPERTIES OF PVA-YCl3 FILMS." Surface Review and Letters 26, no. 02 (February 2019): 1850149. http://dx.doi.org/10.1142/s0218625x18501494.

Full text
Abstract:
Polyvinyl alcohol (PVA) films doped with 10[Formula: see text]wt.% of yttrium chloride (YCl[Formula: see text] have been made by casting from their aqueous solutions. The structure of un-annealed and annealed PVA-YCl3 films was studied using X-ray diffraction (XRD) patterns and Fourier-transform infrared spectroscopy (FTIR). Both FTIR and XRD revealed that the crystalline ratio of the studied samples increased due to the effect of annealing. The effect of annealing on the optical properties has been studied. Dispersion of the refractive index was described using the single oscillator model. The single oscillator energy and the dispersion energy were estimated. The calculated optical band gap of all PVA-YCl3 films was 5.0[Formula: see text]eV. The behavior of ac conductivity showed that the conduction mechanism of PVA-YCl3 films was correlated barrier hopping model. The dielectric constant and dielectric loss index were decreased with the increase of the field frequency. The electric modulus granted a straightforward technique for assessing the dielectric relaxation time. The calculated activation energy obtained from the electric modulus mechanism was 0.172[Formula: see text]eV.
APA, Harvard, Vancouver, ISO, and other styles
49

FEDORCHENKO, M. I., P. V. MELNIK, M. G. NAKHODKIN, O. I. GUDYMENKO, V. P. KLADKO, and P. M. LYTVYN. "ELECTRONIC AND STRUCTURAL PROPERTIES OF Si–Gd–O ELECTRON EMITTER." Surface Review and Letters 27, no. 01 (March 22, 2019): 1950089. http://dx.doi.org/10.1142/s0218625x19500896.

Full text
Abstract:
Rare earth metals, when deposited and oxidized on semiconductor surfaces, can be an alternative to unstable compounds of alkali metals while creating stable and effective emitters with a low work function. A procedure giving rise to the adsorption of Gd and O atoms on the Si(100) surface and the formation of a Si–Gd–O film with a work function of about 1 eV in the near-surface region is described. The films have been studied using the Auger electron and photoelectron spectroscopy, as well as X-ray diffraction, atomic force and Kelvin probe force microscopy techniques. Information about their electronic properties, structure, surface morphology, and surface distribution of potential was obtained. The main component of the film formed on the Si surface is a polycrystalline Gd2O3 phase, which plays the role of a matrix containing textured microcrystallites of one of the following phases: SiO2, GdO2, or GdSi2. The film surface consists of salient clusters 20[Formula: see text]nm to 80[Formula: see text]nm in diameter and up to 20[Formula: see text]nm in height, as well as craters up to 90[Formula: see text]nm in depth. The surface relief inhomogeneities correlate with the surface distribution of the local work function. This correlation can also be a result of the piezoelectric effect in the strained crystallites of the textured phase located in the bulk of the film. The obtained system was stable in time under vacuum conditions and heating up to [Formula: see text]C. The method proposed for the formation of surfaces with a low work function making use of rare earth metals can be applied to create effective and stable electron emitters.
APA, Harvard, Vancouver, ISO, and other styles
50

OVER, H., H. BLUDAU, M. GIERER, and G. ERTL. "STRUCTURAL PROPERTIES OF ALKALI-METAL ATOMS ADSORBED ON Ru(0001)." Surface Review and Letters 02, no. 03 (June 1995): 409–22. http://dx.doi.org/10.1142/s0218625x95000376.

Full text
Abstract:
The structural properties of the ordered overlayers of Li, Na, K, Rb , and Cs on Ru (0001) are summarized. The major result is that the adsorption site depends on the coverage while the hard-sphere radii of the alkali-metal atoms do not change (if corrected for different numbers of coordination). This comparison also emphasizes the singular behavior of Cs for which adsorption takes place over single Ru atoms at a Cs coverage of 0.25. While on other close-packed substrate surfaces potassium and rubidium occupy ontop positions at low temperatures, this has not been found with Ru (0001). This finding points towards the important role of the substrate. For the ontop adsorption to be favored, an inward displacement of the substrate atoms directly underneath the alkali-metal atoms by a substantial amount is necessary which results in the formation of a quasisevenfold-coordinated bond geometry in connection with a reduction of the dipole-dipole repulsion. The stiffness of the substrate determines the energy cost for this local reconstruction, and consequently ontop adsorption on the hard Ru (0001) substrate has only been observed for the biggest alkali metal Cs where the energy difference between various adsorption sites [on the unrelaxed Ru (0001) surface] is assumed to be small. In order to force potassium to reside in the ontop position, the Ru (0001) surface has to be “softened” which task was accomplished by adding CO molecules to the K-(2×2) overlayer.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography