To see the other types of publications on this topic, follow the link: Імітаційні експерименти.

Journal articles on the topic 'Імітаційні експерименти'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 journal articles for your research on the topic 'Імітаційні експерименти.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ковальчук, Д. А., and О. В. Мазур. "Дослідження процесів утилізації тепла пароповітряних сумішей: імітаційне моделювання." Automation of technological and business processes 11, no. 4 (February 13, 2020): 68–82. http://dx.doi.org/10.15673/atbp.v11i4.1601.

Full text
Abstract:
Розглянуті основні підходи до розробки імітаційних моделей, освітлені їх недоліки та переваги. Розглянута імітаційна модель процесу глибокої утилізації тепла пароповітряних сумішей з використанням парокомпресійного теплового насосу, до складу якої входять імітаційні моделі компресора, конденсатора, електронного розширювального вентиля, випарника, переохолоджувача та контактного теплообмінника – утилізатора тепла пароповітряних сумішей. Імітаційні моделі цих складових побудовані з використанням експериментальних даних, отриманих авторами в результаті виконання фізичних натурних експериментів на лабораторній дослідній установці. В імітаційній моделі випарника теплового насосу реалізовано функцію розрахунку «баластної» та «ефективної» витрати холодоагенту. «Баластна» витрата виникає за рахунок переохолодження холодоагенту до температури кипіння і супроводжується випаровуванням його частки, яка не приймає участі у відборі тепла випарником. Для цього до імітаційної моделі випарника була додана підсистема розрахунку перепаду температур кипіння (тиску) по довжині випарника в залежності від витрати холодоагенту та температурного напору у випарнику, що враховує довжину ділянки випарника на якій відбувається кипіння рідкої фази. Залежність перепаду тиску по довжині випарника від витрат холодоагенту через нього є не монотонно зростаючою функцією а має екстремум і спадає при рівнях перегріва холодоагенту від 15 до 0 °С. Тиск на виході випарника розраховується в моделі з використанням нелінійної функції двох змінних – положення електронного розширювального вентиля та частоти обертання компресора. Динамічні властивості каналів моделюються ланками, передатні функції яких були отримані в результаті фізичних експериментів. Проведена перевірка розробленої імітаційної моделі на адекватність, для чого було організовано ряд комп’ютерних експериментів з умовами, аналогічними умовам проведення натурних фізичних експериментів. Порівняння результатів моделювання та фізичного експерименту показало високу ступінь їх схожості.
APA, Harvard, Vancouver, ISO, and other styles
2

Клепікова, О. А. "Імітаційні експерименти як аналітична основа прийняття управлінських рішень у страхуванні." Вісник Дніпропетровського університету. Серія : Економіка 22, no. 10/1 (2014): 130–39.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

D.S., Malchykova, Molikevych R.S., and Saf’yanyk I.S. "IMITATION AND GAME STEM TECHNOLOGIES AND PRACTICES IN LESSONS OF NATURAL AND MATHEMATICAL CYCLE." Scientific Bulletin of Kherson State University. Series Geographical Sciences, no. 14 (July 22, 2021): 79–86. http://dx.doi.org/10.32999/ksu2413-7391/2021-14-9.

Full text
Abstract:
The article characterizes the main aspects of STEM-education: the development of critical thinking, integrated learning, active communication of all participants in the learning process, non-standard and innovative approaches and directions of STEM-education development. Its active introduction in teaching natural sciences and mathematics of secondary schools, especially the use of STEM-technologies in teaching. A well-organized, good STEM lesson is, first of all, a coordinated and motivated learning process, where each activity is of special interest and is accessible and understandable for students. To develop this type of training, the teacher must first think in a non-standardized and comprehensive way, experiment and usually constantly improve themselves to achieve the desired result. When designing a quality lesson in STEM format, special attention should be paid to the peculiarities of its creation and organization, namely: all students should form a single joint mechanism of interaction and be actively involved in the productive solution of real situations or problems; it is advisable to invite students to develop their own demonstration models or prototypes; in order to achieve the set goal and produce a truly high-quality innovative product, it is important to work effectively in a team that will work as a single coordinated mechanism, where each of the participants has a task. Following the path of innovative development, the teacher first of all diversifies his pedagogical approach to the presentation of educational material and expands the possibilities of its perception and assimilation by students.Innovative integrated approach to teaching is one of the ways that combines both STEM elements and non-standard forms of presenting information to students. Educational sites, simulation simulators, modern virtual laboratories such as: “VirtuLab”, laboratory – “GoogleSites”, online laboratories “GoLab / Graasp” and interesting, interactive, worksheets: “Liveworksheets” are highly effective in conducting STEM-classes. allowing students to conduct virtual exciting and cognitive experiments in physics, geography, chemistry, biology, ecology and other subjects, in three-dimensional and two-dimensional spaces. STEM-educational space is multidisciplinary, competence-oriented and provides the formation of a unique set of cognitive and social skills, in particular: the ability to identify, pose and solve problems, interact with others in different social and cognitive situations, critically evaluate events and phenomena, motivate and move common goal, etc.Key words: STEM-education, STEM-training, STEM-competencies, STEM-lesson, STEM-games. Стаття характеризує основні аспекти STEM-освіти: розвиток критичного мислення, інтегро-ваного навчання, активного спілкування всіх учасників освітнього процесу, нестандартних та інноваційних підходів та напрямків розвитку природничо-математичної освіти. Активне впровадження STEM-технологій у навчанні перш за все забезпечує злагоджений та мотивований про-цес навчання, де кожна діяльність викликає особливий інтерес та є доступною та зрозумілою для учнів. Щоб забезпечувати такий тип навчання, викладач повинен спочатку мислити нестандартизовано і всебічно, експериментувати і, як правило, постійно вдосконалюватись для досягнення бажаного результату. При розробці якісного уроку у форматі STEM особливу увагу слід звернути на особливості його створення та організації, а саме: усі учні повинні формувати єдиний спільний механізм взаємодії та брати активну участь у продуктивному вирішенні реальних ситуацій чи про-блем; доцільно запросити студентів розробити власні демонстраційні моделі чи прототипи; для досягнення поставленої мети та виробництва справді якісного інноваційного продукту важливо ефективно працювати в команді, яка працюватиме як єдиний злагоджений механізм, де кожен із учасників має своє завдання. Рухаючись шляхом інноваційного розвитку, учитель насамперед урізноманітнює свій педагогічний підхід до викладу навчального матеріалу та розширює можливості його сприйняття та засвоєння учнями. Інноваційний інтегрований підхід до навчання - один із способів, що поєднує як елементи STEM, так і нестандартні форми подання інформації учням. Навчальні сайти, імітаційні тренажери, сучасні віртуальні лабораторії, такі як: «VirtuLab», лабораторія –«GoogleSites», онлайн-лабораторії «GoLab / Graasp» та цікаві, інтерактивні робочі аркуші («Liveworksheets») дуже ефективні у проведенні STEM-класів. Вони дозволяють учням проводити віртуальні захоплюючі та когнітивні експерименти з фізики, географії, хімії, біології, екології та інших предметів, у тривимірних та двовимірних просторах. STEM-освітній простір мультидисциплінарний, орієнтований на компетентністний підхід і забезпечує формування унікального набору когнітивних та соціальних навичок, зокрема: здатність виявляти, ставити та вирішувати проблеми, взаємодіяти з іншими в різних соціальних і пізнавальних ситуаціях, кри-тично оцінювати події і явища, мотивувати та рухатися до спільної мети тощо.Ключові слова: STEM-освіта, STEM-навчання, STEM-компетентності, STEM-урок, STEM-ігри.
APA, Harvard, Vancouver, ISO, and other styles
4

Кос, М. В. "ОСНОВИ ІМІТАЦІЙНОГО МОДЕЛЮВАННЯ В ПРОЦЕСІ ПРОФЕСІЙНОЇ ПІДГОТОВКИ МАЙБУТНІХ ОФІЦЕРІВ-СУХОПУТНИКІВ ТАКТИЧНОГО РІВНЯ ЯК НАУКОВО-ПЕДАГОГІЧНА ПРОБЛЕМА." Духовність особистості: методологія, теорія і практика 92, no. 5 (November 29, 2019): 119–26. http://dx.doi.org/10.33216/2220-6310-2019-92-5-119-126.

Full text
Abstract:
Стаття присвячена проблемам професійної підготовки майбутніх офіцерів-сухопутників тактичного рівня в Україні. У вступі автор актуалізував проблему професійної підготовки майбутніх офіцерських кадрів в Україні. У викладі основного змісту матеріалу визначено сутність імітаційного моделювання. Виокремлено та обґрунтовано зміст основних переваг щодо використання технології у підготовці майбутніх офіцерів-сухопутників тактичного рівня: можливість отримати відповіді на численні актуальні запитання, що виникають на початкових стадіях моделювання: поява ідеї (задуму) та пробна розробка аналогу об’єкту (системи), з метою уникнення вагомих помилок, пов’язаних із витратами різних видів ресурсів; можливість дослідження особливостей функціонування об’єкту (системи) за будь-яких умов, навіть таких, що не виникнуть у реальному експерименті; варіювання параметрів об’єкту (системи) та навколишнього середовища у досить широких межах, відображаючи відповідне середовище; можливість передбачення поведінки об’єкту (системи) у короткочасній та довготривалій перспективі, перенісши на модель результати реальних випробувань; економія часу при використанні імітаційних моделей технічних та технологічних об’єктів (систем); отримання великих обсягів інформації про відображення плинності реальних процесів, за умови уникнення дорогих випробувань реальних об’єктів (систем); виконання ролі гнучкого пізнавального інструменту, що дає змогу відтворити будь-яку реальну або гіпотетичну ситуацію; уможливлення випробувань ризикованих («аварійних») ситуацій, що надає унікальності цьому методу; можливість кількаразових повторень експерименту, з метою відпрацювання стійких навичок правильних дій у відповідних ситуаціях. Ключові слова: імітаційне моделювання, майбутні офіцери-сухопутники, професійна підготовка, фахівці, модель.
APA, Harvard, Vancouver, ISO, and other styles
5

Крутова, Наталія. "Імовірнісно-статистична змістова лінія у продуктивному навчанні шкільної математики." New pedagogical thought 107, no. 3 (December 7, 2021): 111–15. http://dx.doi.org/10.37026/2520-6427-2021-107-3-111-115.

Full text
Abstract:
У статті обґрунтовано проблему формування ймовірнісно-статистичної змістової лінії в шкільному курсі математики. Основну увагу закцентовано на створенні дефініції класичної й статистичної ймовірності та переході до аксіоматичного підходу у формуванні поняття ймовірності та побудови ймовірнісної моделі випадкового експерименту. Наведено приклади компетентнісних задач, що ґрунтуються на роз’ясненні змісту й побудови математичної моделі. Поняття «продуктивне навчання» представлено як організовану співпрацю вчителя та учнів. Визначено один із найбільш ефективних інструментів продуктивного навчання учнів у процесі вивчення статистики і теорії ймовірності – інформаційні технології, зокрема табличний процесор Microsoft Excel, а також імітаційно-моделюючу програму Phet, яка містить опис дій та навчальні цілі комп’ютерного експерименту. Окреслено сфери застосування ймовірнісно-статистичної лінії в соціологічних опитуваннях, зайнятості населення, виборах, біологічних і психологічних експериментах, клінічних дослідженнях лікарських засобів тощо. Наголошено на фундаментальності ймовірнісно-статистичної лінії та окреслено перспективні напрями її вивчення.
APA, Harvard, Vancouver, ISO, and other styles
6

Sahun, Yelizaveta. "Оцінювання інтегральної мультикритеріальної моделі оптимізації завантаження повітряних кораблів." Proceedings of the National Aviation University 85, no. 4 (December 22, 2020): 41–45. http://dx.doi.org/10.18372/2306-1472.85.15137.

Full text
Abstract:
Мета: представлення результатів оцінювання після впровадження розробленої моделі оптимізації завантаження та аналіз адекватності цієї моделі з метою доведення її ефективності, за допомогою зменшення головного критерію – часу завантаження. Методи: експеримент, евристика, статистика, імітаційне моделювання. Результати: розроблена модель оптимізації завантаження пройшла усі процедури верифікації, а аналіз експериментальних даних підвищив її значущість у процесі авіаційного завантаження. Обговорення: Розглянуто деякі параметричні критерії оцінки адекватності моделей для зазначення, що ефективність моделі оптимізації завантаження не може бути оцінена саме за цими критеріями. Тому, оптимізаційна модель з часовими критеріями має бути проаналізована на предмет адекватності лише за непараметричними критеріями, а саме – за Т– критерієм Вілкоксона. Стаття надає результати аналізу експериментальних даних, що демонструють різницю між параметрами моделі та реальною тривалістю процедури завантаження / розвантаження у реальних умовах. Імітаційна модель підтверджує мінімізацію часу завантаження після імплементації оптимізаційної моделі. Отже, результати верифікації моделі можуть розцінюватися як заключна частина дослідження ефективності впровадження інтегрованої мультикритеріальної моделі оптимізації завантаження повітряних кораблів.
APA, Harvard, Vancouver, ISO, and other styles
7

Нечипуренко, Павло Павлович. "Деякі аспекти імітації реальних хімічних процесів та систем у віртуальних хімічних лабораторіях." Theory and methods of e-learning 3 (February 11, 2014): 238–44. http://dx.doi.org/10.55056/e-learn.v3i1.344.

Full text
Abstract:
Перехід сучасного суспільства до інформаційної епохи свого розвитку висуває як одне з основних завдань, що стоять перед системою освіти, завдання формування основ інформаційної культури майбутнього фахівця. Процеси модернізації та профілізації вітчизняної шкільної освіти так само, як і модернізації вищої освіти (участь у створенні єдиного європейського простору, впровадження дистанційної освіти тощо) ведуться на базі інформаційно-комунікаційних технологій навчання. Метою даної статті є обговорення ролі сучасних комп’ютерних моделей у навчанні хімії, та проблеми якості відображення реальних хімічних процесів у комп’ютерних моделях, якими є віртуальні хімічні лабораторії.Дидактична роль нових інформаційних технологій полягає, перш за все, в активізації пізнавальної діяльності і творчого потенціалу учнів [5]. Необхідно створювати умови, аби учень став активним учасником навчального процесу, а вчитель був організатором пізнавальної діяльності учня. Адже вивчення будь-якої навчальної дисципліни – не мета, а засіб розвитку особистості. Ефективність застосування комп’ютерів у навчальному процесі залежить від багатьох чинників, у тому числі й від рівня самої техніки, від якості навчальних програм і від методики навчання, що застосовується вчителем. Більшість педагогів переконані в тому, що комп’ютер є потужним засобом для творчого розвитку дітей, дозволяє звільнитися від багатьох рутинних видів роботи і розробити нові ідеї в методиці навчання, дає можливість вирішувати більш цікаві і складні проблеми [5].Будь-який ілюстративний матеріал (мультимедійні й інтерактивні моделі в тому числі) значно розширюють можливості навчання, роблять зміст навчального матеріалу більш наочним, зрозумілим, цікавим. Не можна скидати з рахунків і психологічний чинник: сучасному учневі чи студенту набагато цікавіше сприймати інформацію саме в інтерактивній формі, ніж за допомогою застарілих схем і таблиць. Використання комп’ютерних моделей, комп’ютерних засобів візуалізації значно підвищує ефективність засвоєння матеріалу[5].Сучасні школярі, які здебільшого є представниками «покоління відеоігор», орієнтовані на сприйняття високоінтерактивного, мультимедіа насиченого навчального середовища. Згаданим вище вимогам якнайкраще відповідають освітні програми, що моделюють об’єкти і процеси реального світу і системи віртуальної реальності. Прикладом таких навчальних систем є віртуальні лабораторії, які можуть моделювати поведінку об’єктів реального світу в комп’ютерному освітньому середовищі і допомагають учням опановувати нові знання й уміння в науково-природничих дисциплінах, таких як хімія, фізика і біологія [3].Хімія – наука експериментальна, її завжди викладають, супроводжуючи демонстраційним експериментом. Ні для кого не є секретом, що матеріальний стан більшості шкіл в Україні є, м’яко кажучи, неідеальним. Дуже часто для демонстрації хімічного досліду не вистачає необхідних реактивів чи обладнання, тому доводиться обходитись теоретичним розглядом лабораторної роботи або проводити один дослід на весь клас. У такому випадку на допомогу вчителеві приходять саме спеціалізовані комп’ютерні програми, на кшталт віртуальних хімічних лабораторій, що дозволяють провести (саме провести, а не спостерігати) дослід у наближених до реальності умовах. Також, наприклад, при вивченні токсичних речовин, зокрема галогенів, віртуальне середовище надає можливість проводити хімічний експеримент без ризику для здоров’я учнів [4].На даний момент розроблена велика кількість навчальних програм для шкільного курсу хімії. Жодна з цих програм не є досконалою, проте сам факт їх створення свідчить про те, що в них існує потреба і вони мають безперечну цінність. Для того, щоб у дитини виник інтерес до співпраці з комп’ютером і в процесі цієї спільної творчості стійка пізнавальна мотивація до вирішення освітніх, дослідницьких завдань, необхідне створення таких умов, при яких учень стає безпосереднім учасником подій, що розвиваються на екрані монітора, тобто умов для повноцінного діяльнісного підходу до навчання.Умова успішного застосування комп’ютерних моделей в освітньому процесі сучасної школи закладена в добре відомих принципах педагогіки співпраці, які можна перефразовувати так: «не до комп’ютера за готовими знаннями, а разом з комп’ютером за новими знаннями» [3].Головна перевага віртуальних хімічних лабораторій полягає в тому, що віртуальні хімічні експерименти безпечні навіть для непідготовлених користувачів. Учні можуть також проводити такі досліди, виконання яких в реальній лабораторії може бути небезпечне або коштує надто дорого. Звичайно, за допомогою віртуальних дослідів не можна опанувати навички реального хімічного експерименту, але віртуальні досліди можуть застосовуватися, наприклад, для ознайомлення учнів з технікою виконання експериментів, хімічним посудом і устаткуванням перед безпосередньою роботою в лабораторії. Це дозволяє учням краще підготуватися до проведення цих або подібних дослідів в реальній хімічній лабораторії. Також проведення віртуальних експериментів допомагає учням та студентам засвоїти навички запису спостережень, складання звітів та інтерпретації даних в лабораторному журналі. Іще слід наголосити на тому, що комп’ютерні моделі хімічної лабораторії за певних умов можуть спонукати учнів експериментувати і отримувати задоволення від власних відкриттів [3].За способом візуалізації розрізняються лабораторії, в яких використовується двовимірна, тривимірна графіка і анімація. Крім того, віртуальні лабораторії можна поділити на дві категорії залежно від способу представлення знань у предметній області. Віртуальні лабораторії, в яких представлення знань у предметній області засновано на окремих фактах, обмежені набором заздалегідь запрограмованих експериментів. Цей підхід використовується при розробці більшості сучасних віртуальних лабораторій. В таких програмах змінити умови проведення експерименту і одержати якісь інші результати неможливо. Інший підхід дозволяє учням проводити будь-які експерименти, не обмежуючись заздалегідь підготовленим набором результатів. Це досягається за допомогою використання математичних моделей, що дозволяють визначити результат будь-якого експерименту і відповідний візуальний супровід. На жаль, подібні моделі поки що можливі тільки для обмеженого набору дослідів [3]. Переваги і недоліки вищезгаданих програмних продуктів достатньо повно були висвітлені Т. М. Деркач, яка, до речі, пропонує використовувати термін «імітаційні хімічні лабораторії» [1; 2].Суттєвою перевагою таких віртуальних лабораторій як ChemLab (виробник: Model Science Software), Croсоdile Chemistry (Crocodile Clips Ltd), Virtual Lab (The ChemCollective) є можливість активного втручання учня у хід роботи, а не пасивне спостерігання за відеофрагментом чи анімацією, що запрограмовані заздалегідь. При виконанні лабораторної роботи за допомогою вищезгаданих програм учень може повторити її безліч разів, при цьому щоразу змінюючи один чи декілька параметрів на власний вибір. В більшості випадків (якщо дії учня не суперечать логіці і можливі для виконання і у реальній лабораторії) учень отримає правильні результати, що лише підкреслить ті закономірності, виявлення яких і було метою роботи. Скажімо у лабораторній роботі «Гравіметричне визначення хлорид-йонів» («Gravimetric Analysis of Chloride») у віртуальній лабораторії ChemLab учень чи студент може замість запропонованих в інструкції 5 г речовини, що містить хлорид-йони, взяти 3, чи 6, чи 10 г її. Але в кожному випадку він отримає і відповідну масу осаду арґентум хлориду, за якою, при виконанні обчислень, прийде до одних і тих самих результатів і висновків.Подібний підхід, коли учень може проявити власну ініціативу при виконанні роботи, дуже позитивно відбивається і на навчальних досягненнях і на зацікавленості учнів. Але разом з ініціативою учні можуть також підключити і власну фантазію – спробувати виконати такі дії, які не були передбачені сценарієм проведення даної роботи (наприклад, нагріти розчин до кипіння, або навпаки охолодити його до температури замерзання) просто із цікавості, тим більше, що у ChemLab можна використовувати обладнання, застосування якого не передбачалось сценарієм виконання роботи. Результати таких незапланованих дій можуть переноситись учнями і на відповідні об’єкти та процеси реального світу, а тому до віртуальних лабораторій завжди висувалась жорстка вимога суворої відповідності віртуальних об’єктів та процесів реальним об’єктам і процесам.Тут доводиться констатувати протиріччя, яке існує в середовищі користувачів віртуальних хімічних лабораторій: методистів, розробників, вчителів, учнів тощо. Справа в тому, що немає і, мабуть, не може бути єдиної думки з приводу того, наскільки повно віртуальні процеси повинні відтворювати об’єктивну реальність. З одного боку, чим більше віртуальний світ схожий на реальний, тим нібито краще – в такому випадку навчання хімії за допомогою віртуальних комп’ютерних лабораторій виходить на якісно новий, більш високий рівень, з’являється набагато більше можливостей і форм застосування навчальних лабораторій у навчанні хімії, зникають передумови для одержання хибних висновків при їх використанні. Але, з іншого боку, врахування найменших дрібниць і максимальної кількості можливих варіантів розвитку подій неминуче призведе до значного ускладнення комп’ютерних програм, суттєвого збільшення баз даних і, як наслідок, подорожчання та подовження часу на розробку відповідних програмних продуктів, та, скоріш за все, суттєво ускладнить використання таких програм людьми без спеціальної підготовки. Не кажучи вже про те, що передбачити всі можливі варіанти дій користувача у віртуальній лабораторії просто неможливо.Інша точка зору полягає в тому, що віртуальні хімічні лабораторії в першу чергу є моделями, тобто системами, що відтворюють, імітують, відображають принципи внутрішньої організації або функціонування, певні властивості, ознаки чи характеристики об’єкта дослідження (оригіналу). Модель завжди є спрощеною версією модельованого об’єкта або явища (прототипу), що в достатній мірі повторює властивості, суттєві для цілей конкретного моделювання (опускаючи несуттєві властивості, в яких вона може відрізнятися від прототипу).Подібне визначення поняття «модель» фактично означає, що такі програми як віртуальні хімічні лабораторії, не повинні перевантажуватись «зайвими дрібницями» – несуттєвими для виконання певної роботи чи досліду зовнішніми ознаками, фактами і процесами. Окрім того, так само як викладач не залишить без догляду учнів у реальній лабораторії, так і викладач, що застосовує віртуальну лабораторію на занятті, повинен бути постійно поруч з учнями, надаючи їм відповідних порад або роз’яснюючи результати спостережень, що викликали питання або сумніви. Таким чином, можна попередити формування в учнів хибних уявлень, неправильних висновків тощо.У представників обох точок зору є свої аргументи. Наприклад, при виконанні стандартної лабораторної роботи в середовищі програми ChemLab «Фракційне розділення солей» («Fractional Crystallization»), сутність якої полягає в тому, що учневі пропонується розділити суміш солей (натрій хлориду та калій дихромату), використовуючи їх різну розчинність у воді за різних температур. Подібні процеси досить поширені як в промисловості (виробництво калійних добрив), так і в лабораторії (перекристалізація солей з метою їх очищення), хоча і в більш складному вигляді. Хід роботи включає в себе такі стадії: відбір наважок солей певної маси; їх розчинення у воді кімнатної температури; нагрівання розчину до повного розчинення калій дихромату; охолодження розчину до 0оС; відділення осаду калій дихромату; зважування калій дихромату, що випав в осад, та відповідні розрахунки.Якщо прискіпливо проаналізувати дану роботу, в ній можна знайти ряд неточностей або спрощень:1) при розчиненні калій дихромату у воді розчин залишається безбарвним;2) відсутній тепловий ефект при розчиненні обох солей;3) не враховано взаємний вплив солей на їх розчинність;4) розчин солей при охолодженні до температури замерзання не кристалізується;5) температура кипіння розчину солей дорівнює температурі кипіння ізомолярного з ним розчину будь-якого неелектроліту;6) зважування одержаного калій дихромату можна провести з високою точністю без попереднього промивання і висушування;7) відсутність допоміжного лабораторного обладнання (штативів, тримачів, шпателів, вакуум-насосу тощо) та можливість відбору наважок речовин без використання терезів.Подібні неточності можна знайти і у всіх інших лабораторних роботах програми ChemLab, але в більшості випадків ці неточності неочевидні, і, найголовніше, не відбиваються ані на одержанні результатів експерименту, ані на їх інтерпретації.Крім того, застосовуючи інструментарій майстра LabWіzard, що дозволяє користувачу створювати власні лабораторні роботи у ChemLab, певну кількість подібних невідповідностей можна заздалегідь передбачити й усунути у створених власноруч лабораторних проектах.[2; 4]Викладач, що використовує віртуальні хімічні лабораторії, обов’язково повинен наголосити на тому, що у віртуальній хімічній лабораторії присутні певні спрощення та невідповідності з об’єктивною реальністю. У групі учнів, що мають високий рівень знань і хімічного мислення, можна навіть побудувати роботу на тому, щоб знайти і обговорити подібні неточності. Наприклад, в рамках курсу «Комп’ютерне моделювання хімічних процесів», що викладається на ІІІ курсі спеціальності «Хімія» у Криворізькому педагогічному інституті, при розгляді особливостей віртуальної лабораторії ChemLab перед студентами була поставлена задача обґрунтовано довести наближений характер розрахунку температури початку кипіння розчину натрій хлориду у даній програмі (в межах лабораторної роботи «Fractional Crystallization»). Студенти на основі другого закону РауляΔtкип=kеб*b – для розчинів речовин-неелектролітів (1)Δtкип=i*kеб*b – для розчинів речовин-електролітів; (2)де kеб – ебуліоскопічна константа розчинника, b – моляльна концентрація розчиненої речовини (моль/кг), і – ізотонічний коефіцієнт, обчислювали температуру початку кипіння для розчину натрій хлориду тієї концентрації, яку вони самі створили у віртуальній хімічній лабораторії. Далі утворений віртуальний розчин нагрівали до кипіння і зазначали температуру початку кипіння. Вона збігалась із розрахованою за формулою (1), тобто без урахування ізотонічного коефіцієнту, який для розчину натрій хлориду повинен наближатись до 2. Значить реальна Δtкип розчину майже вдвічі повинна була б перевищувати Δtкип розчину у віртуальній лабораторії. Висновок зроблений студентами: в даній лабораторній роботі з метою спрощення не враховувався процес іонізації солі, оскільки для моделювання процесів розчинення солей за різних температур він особливого значення не має.Подібний недолік комп’ютерної програми може створити незручності з одного боку, але може бути перевагою з іншого: на основі розгляду подібних фактів можна в цікавій і нестандартній формі залучити групу студентів до повторення навчального матеріалу з різних розділів хімії та розв’язку розрахункових задач.Таким чином, можна зробити висновок про те, що віртуальні хімічні лабораторії є безумовно ефективним інструментом в руках вчителя або викладача хімії. Кожна з віртуальних хімічних лабораторій є моделлю, що описує реальні явища і процеси, а тому неминуче містить ряд спрощень і неточностей, як в плані графічного відображення об’єктів, так і в плані причинно-наслідкових зв’язків між діями користувача та їх результатами у віртуальному середовищі. Головною метою проведення дослідів у віртуальних комп’ютерних лабораторіях є усвідомлення самої сутності явища, що вивчається, його головних закономірностей, а недосконалість візуальних чи інших ефектів має другорядне значення. Подальший розвиток і вдосконалення віртуальних хімічних лабораторій, скоріш за все, буде відбуватись у напрямку збалансування простоти представлення моделі та максимальної її реалістичності.Враховуючи все, сказане вище, можна з упевненістю сказати, що розробка і впровадження віртуальних хімічних лабораторій залишається одним з пріоритетних напрямків у процесі вдосконалення навчання хімії у середній та вищій школі.
APA, Harvard, Vancouver, ISO, and other styles
8

Антонюк, Д. С. "Ефективність використання програмно-імітаційних комплексів як засобу формування економічної компетентності студентів технічних спеціальностей за результатами педагогічного експерименту." Zhytomyr Ivan Franko state university journal. Рedagogical sciences, no. 1(92) (March 30, 2018): 23–29. http://dx.doi.org/10.35433/pedagogy.1(92).2018.23-29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ковальов, Леонід, Марія Медведєва, and Іван Побережець. "ВИКОРИСТАННЯ ІНТЕРАКТИВНОГО ІМІТАТОРА ФІЗИЧНИХ ПРОЦЕСІВ STEP В ОСВІТНЬОМУ ПРОЦЕСІ У ЗАКЛАДАХ ВИЩОЇ ОСВІТИ." Physical and Mathematical Education 29, no. 3 (June 23, 2021): 68–73. http://dx.doi.org/10.31110/2413-1571-2021-029-3-011.

Full text
Abstract:
У статті викладено досвід використання інтерактивного імітатору фізичних процесів Step на заняттях з фізики у навчанні студентів спеціальностей «Агроінженерія», «Геодезія та землеустрій» та «Комп’ютерні науки». Формулювання проблеми. Розуміння студентами дисциплін природничо-математичного циклу, зокрема фізики вважається основною проблемою у закладах вищої освіти. Візуалізація фізичних процесів допомагає зрозуміти, усвідомити та засвоїти більшість тем фізики. А завдяки імітаційному моделюванню студенти мають можливість побачити природу процесів і явищ, які не можна спостерігати не озброєним оком або без використання спеціальних потужних та дорогих приладів. Прикладом такого інтерактивного імітатору фізичних процесів може слугувати Step. Матеріали і методи. Матеріалом дослідження є створення та дослідження студентами імітаційних моделей для вивчення поведінки пружного маятника, математичного маятника, явища резонансу, механічної хвилі та броунівського руху використовуючи інтерактивний імітатор фізичних процесів Step на заняттях з фізики. Методи спостереження, аналізу, систематизації та математичної статистики використовувалися для отримання інформації про доцільність використання інтерактивного імітатору фізичних процесів Step при навчанні фізики. Результати. В статті описано методику використання інтерактивного імітатору фізичних процесів Step при навчанні фізики, зокрема вивченні пружного маятника, математичного маятника, резонансу, механічної хвилі, броунівського руху; відображено результати педагогічного експерименту. Висновки. Узагальнюючи результати дослідження можна стверджувати, що використання інтерактивного імітатору фізичних процесів Step при навчанні фізики дозволяє: візуалізувати навчальний матеріал; полегшити сприймання та розуміння складних фізичних явищ та процесів; формувати у студентів дослідницькі компетентності; підвищити мотивацію навчально-пізнавальної діяльності студентів. Але разом з тим, використання лише імітаційних моделей не підвищує якість фізичної підготовки студентів.
APA, Harvard, Vancouver, ISO, and other styles
10

СМАКОВСЬКИЙ, ЮРІЙ. "МЕТОДИКА ФОРМУВАННЯ ПЕДАГОГІЧНОЇ КУЛЬТУРИ МАЙБУТНІХ УЧИТЕЛІВ МУЗИЧНОГО МИСТЕЦТВА ЗАСОБАМИ ДУХОВНОЇ МУЗИКИ: АНАЛІЗ РЕЗУЛЬТАТІВ ПЕДАГОГІЧНОГО ЕКСПЕРИМЕНТУ." Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 1 (April 2020): 417–25. http://dx.doi.org/10.31494/2412-9208-2020-1-1-417-425.

Full text
Abstract:
У статті досліджується проблема формування педагогічної культури майбутніх учителів музичного мистецтва засобами духовної музики. Встановлено, що на сучасному етапі розвитку вищої освіти в Україні педагоги мають можливість активно впроваджувати новітні методики формування педагогічної культури, що ґрунтуються на використанні духовної музики у освітньому процесі. Автором визначено методи формування педагогічної культури майбутніх учителів музичного мистецтва засобами духовної музики: навчальні (пояснювально-ілюстративні, проблемно-пошукові, аналітико-інтерпретативні, модельні, імпресивні, художньо-концептуального синтезу, емоційно-почуттєвого узагальнення, художньо-асоціативний, проблемно-пошукові, сприймання, емоційного впливу, колективного обговорення, творчої роботи) та виховні (стимулювання творчої діяльності, розповідь, бесіда, диспут, дискусія, метод прикладу, прослуховування і обговорення музичних творів, створення спеціальних творчих ситуацій, творчі вправи, привчання, доручення, створення спеціальних творчих ситуацій з акцентуванням культуропедагогічного змісту тощо), що дозволяють підсилити процес формування педагогічної культури майбутніх учителів музичного мистецтва. Визначено критерії педагогічної культури майбутніх учителів музичного мистецтва, що узгоджуються з компонентами досліджуваного феномену (емоційно-мотиваційний, когнітивно-аксіологічний, морально-світоглядний, діяльнісно-творчий). На основі виокремлених критеріїв та прояву їх показників визначаються рівні (трансформаційний, імітаційний, ресурсний, початковий) педагогічної культури майбутніх учителів музичного мистецтва. Описано етапи дослідно-експериментальної роботи з упровадження методики формування педагогічної культури майбутніх учителів музичного мистецтва засобами духовної музики, яка відбувалась у три етапи: адаптаційний, пізнавально-коригувальний, акмеологічний. Подано результати ефективності експериментальної роботи, що доводять позитивний ефект упровадження в освітній процес визначеної методики формування педагогічної культури майбутніх учителів музичного мистецтва засобами духовної музики. Ключові слова: педагогічна культура майбутніх учителів музичного мистецтва, духовна музика, критерії та рівні педагогічної культури майбутніх учителів музичного мистецтва, методи формування педагогічної культури майбутніх учителів музичного мистецтва засобами духовної музики.
APA, Harvard, Vancouver, ISO, and other styles
11

Kryvchenko, Yuri. "КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ САМООРГАНІЗАЦІЇ КЛАСТЕРНИХ СИСТЕМ: ЗАЛЕЖНІСТЬ СТРУКТУРИ ВІД ОСОБЛИВОСТЕЙ ГЕНЕЗИСУ." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 4 (14) (2018): 153–61. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-153-161.

Full text
Abstract:
Актуальність теми дослідження. Перколяційні методи показують високу ефективність під час дослідження речовини, генезису й еволюції зв'язкових областей у матеріалах. У таких задачах вивчається і кластерна система фізичного тіла, і її вплив на об’єкт загалом. Вивчення структури та властивостей перколяційних кластерів дозволить досліджувати і прогнозувати поведінку об’єктів (твердих тіл) у різних умовах зовнішнього середовища, генезис їх утворень у часі. Постановка проблеми. Практичне дослідження кластерних систем у твердих тілах пов’язано зі складністю і трудомісткістю експериментів. Основні проблеми полягають у тому, що для отримання достовірної інформації про структуру і властивості необхідно синтезувати кластери із широким діапазоном параметрів і створити надійну систему їх діагностики. Аналіз останніх досліджень і публікацій. У статті наведено огляд останніх публікацій в українських і закордонних журналах, включаючи експериментальні й теоретичні роботи, що містять дослідження самоорганізованої критичності. Виділення недосліджених частин загальної проблеми. У наведених дослідженнях розширюються можливості опису процесів генерації та еволюції кластерних систем у твердих тілах; міститься гіпотеза, що дозволяє істотно збільшити кількість варіантів кластероутворення. Постановка завдання. Провести імітаційне моделювання кластероутворення із взаємодіючими елементами за допомогою методу Монте-Карло. Визначити залежності параметрів перколяційних систем, що самоорганізуються, від ступеня самоорганізації, довжини кореляції, швидкості генерації системи та інших параметрів. Отримати аналітичні вирази залежностей та значення відносної похибки. Виклад основного матеріалу. Для вирішення задач, пов’язаних із практичним дослідженням кластерних систем, розроблено програмний комплекс моделювання кластероутворення, у якому імітується взаємодія кластеркластер і кластер-частка. У моделі вирішується багатовимірна перколяційна задача. Як алгоритм зростання кластерів використовується шлях послідовного нарощування заданої кількості часток. Висновки відповідно до статті. Комп'ютерні розрахунки, проведені, зокрема, методом Монте-Карло, дають найбільш надійні передбачення властивостей перколяційних систем. У роботі отримані аналітичні вирази для залежностей потужності нескінченного кластера, радіус-вектора центра мас, ступеня анізотропії та фрактальної розмірності від відстані агрегації, від кількості часток, генерованих на кожній ітерації, та від кількості актів взаємодії між елементами кластерної системи.
APA, Harvard, Vancouver, ISO, and other styles
12

Теплицький, Ілля Олександрович, and Сергій Олексійович Семеріков. "Психологічні умови ефективності творчої діяльності з комп’ютерного моделювання." New computer technology 5 (November 10, 2013): 85–86. http://dx.doi.org/10.55056/nocote.v5i1.93.

Full text
Abstract:
Продовжуючи проблематику [4], автори пропонують технологічний аспект вирішення розглянутої проблеми. У роботах, присвячених питанням розвитку творчих здібностей школярів [1], [2] В.О. Моляко виокремлює п’ять основних форм – стратегій – творчої інтелектуальної діяльності: 1) пошук аналогів (стратегія аналогізування); 2) комбінаторні дії (стратегія комбінування); 3) реконструктивні дії (стратегія реконструювання); 4) універсальна стратегія; 5) стратегія випадкових підстановок.Реалізується стратегія за допомогою конкретних дій, поєднання яких утворює певну мислительну тактику. Зокрема, серед найбільш уживаних мислительних тактик, що характеризують творчу діяльність, пов’язану з технічним конструюванням, В.О. Моляко виділяє п’ятнадцять різновидів [2, 59]. Для творчої діяльності, пов’язаної з комп’ютерним моделюванням, ми обмежилися вісьмома специфічними:1. Тактика інтерполяції, що передбачає включення до вже існуючої моделі деякого нового модуля, який відповідатиме «вакантній» функції. При цьому передбачається, що новий елемент, який належав деякій відомій моделі, підставляється в “тіло” нової моделі. Такими, зокрема, можуть бути деякі рівняння, записані у формі скінчених різниць.2. Відповідно тактика екстраполяції пов’язана із зовнішнім приєднанням того чи іншого елемента (модуля) до вже існуючої моделі. Наприклад, включення окремого модуля для візуалізації динаміки процесу. Ця тактика не виключає екстраполяцію у її традиційному розумінні – бажанні «зазирнути» за межі обумовлених у моделі меж для значень деяких її параметрів.Наступні пари тактик також заснована на протилежних діях.3. Тактика редукції спрямована на зменшення значень параметрів моделі.4. Тактика гіперболізації, навпаки, спрямована на збільшення цих значень. Так, при обчислювальному експерименті (за умови збереження стійкості моделі) інколи буває доцільним помітне збільшення або зменшення кроку приросту деякого параметра5. Тактика дублювання пов’язана з точним за призначенням використанням у новій моделі якогось модуля з раніше відомої моделі. Наприклад, у алгоритмі розв’язання задачі на моделювання руху зарядженої частинки в електростатичному полі можна використати фрагмент для побудови траєкторії із уже розв’язаної раніше задачі механіки, оскільки другий закон Ньютона справджується для сил будь-якої природи.6. Тактика модернізації спрямована на пристосування моделі до нових умов. Найчастіше така потреба виникає при вдосконаленні моделі шляхом уведення нових суттєвих факторів (чинників). Ця тактика повністю реалізується у нашій методичній системі, де для кожної задачі розглядаються кілька версій – від найпростішої до все більш складних, проте й більш адекватних.7. Тактика інтеграції відповідає побудові нової складної моделі з кількох уже відомих (або раніше створених). Найчастіше це має місце при створенні імітаційних моделей, де головний модуль забезпечує обмін інформацією між рештою модулів – елементів системи.8. Тактика диференціації спрямована на навмисне розчленування структур і функцій у модулях. Наприклад, якщо деякий модуль одночасно виконує декілька функцій, то його буває доцільно розділити на самостійні модулі, кожен із яких буде виконувати лише одну функцію. Найчастіше це підвищує «прозорість» загального алгоритму і сприяє запобіганню можливих помилок.Встановлено, що у школярів та студентів переважає стратегія пошуку аналогів, тоді як у професіональних дослідників – універсальні стратегії та стратегії комбінаторних дій. Переважно у школярів і у меншій мірі у студентів багато рішень приймаються без формування стратегії, точніше, вони демонструють стратегію випадкових підстановок. Професіонали при розв’язуванні нових задач, формуючи стратегію розв’язування, використовують багато тактик мислительних дій, найчастіше це використання має комбінаторний характер. Школярі ж і студенти реалізують значно вужчий діапазон тактик, особливо школярі, котрі в основному користуються тактикою дублювання [2, 62–63].
APA, Harvard, Vancouver, ISO, and other styles
13

Мазур, О. В., К. Є. Грабанова, and С. С. Гудзь. "Розробка та дослідження імітаційної моделі процесу термовакуумної обробки харчових продуктів як об’єкту керування." Automation of technological and business processes 12, no. 1 (March 30, 2020). http://dx.doi.org/10.15673/atbp.v12i1.1708.

Full text
Abstract:
Перевагою теплової обробки харчових продуктів в вакуумі є можливість реалізації процесів в бескисневому середовищі. Теплова обробка в таких умовах сприяє збереженню поживних речовин, вітамінів, антиоксидантів, фарбувальних пігментів сировини, смакових якостей і т.п., а також збільшенню терміну застосування допоміжних речовин і зберігання готових продуктів в порівнянні з обробкою при атмосферному тиску. Роботу присвячено побудові імітаційної моделі процесу теплової обробки харчових продуктів в вакуумному термоелектричному котлоагрегаті. Проведено аналіз технологічного процесу як об’єкту керування. Виконана декомпозиція технологічного процесу на окремі субпроцеси та розроблена його загальна структура з основними взаємозв’язками між моделями окремих вузлів. Розроблено моделі термоелектричного перетворювача, пароводяної сорочки, випарника, паропроводу, конденсатора, радіатора з повітряним охолодженням, вакуумної системи, збірника конденсата, . Ці моделі, а також загальна імітаційна модель процесу реалізовані в середовищі Matlab Simulink. Для перевірки імітаційної моделі технологічного процесу термовакуумної обробки на адекватність проведені її тестові дослідження як об’єкту керування. В статті наведені отримані в ході проведених віртуальних експериментів, квазістатичні та динамічні характеристики процесу за основними каналами перетворень. Результати тестування імітаційної моделі процесу теплової обробки харчових продуктів в вакуумі як обєкту керування свідчать про те, що вона досить адекватно відтворює основні параметри складних теплових та тепломасообміних процесів, що протікають в малогабаритному вакуумному термоелектричному котлоагрегаті, і може бути використана при дослідженнях його як об’єкту керування, а також при розробці та тестуванні алгоритмів керування процесом.
APA, Harvard, Vancouver, ISO, and other styles
14

Світий, І. М. "МОДЕЛЮВАННЯ ДИНАМІКИ ЗАПАСІВ ЗЕРНА НА ХЛІБОПРИЙМАЛЬНОМУ ПІДПРИЄМСТВІ: КОНЦЕПТУАЛЬНА, МАТЕМАТИЧНА ТА ІМІТАЦІЙНА МОДЕЛІ." Automation of technological and business processes 10, no. 1 (April 9, 2018). http://dx.doi.org/10.15673/atbp.v10i1.883.

Full text
Abstract:
Проаналізовано сучасні перспективи України як зернової держави в контексті зовнішньої та внутрішньої торгівлі. Означено неефективне використання наявних потужностей зернових підприємств як основу нестачі потужностей. Обґрунтовано необхідність підвищення ефективності рішень, що мають прийматися персоналом, за рахунок інтелектуальної підтримки прийняття рішень, як спосіб підвищення ефективності роботи зернових підприємств. Для вирішення задачі підтримки прийняття рішень та для попередньої оцінки ефективності запропонованих рішень означено задачу побудови моделі процесів накопичення та витрачання запасів зерна, що має стати складовою моделі зберігання запасів зерна на підприємстві. Запропоновано концептуальну модель створення та витрачання запасів зерна. Основу моделі склали основні положення теорії черг. При цьому основні етапи технологічного процесу накопичення та витрачання запасів зерна подано як систему масового обслуговування. Основними параметрами концептуальної моделі означено рівень запасів зерна, кількість обслужених транспортних засобів. Основними факторами, що впливають на означені параметри системи, є інтенсивність вантажопотоків, розмір та час обслуговування заявки. Запропонована математична модель динаміки рівню запасів зерна, що залежить від інтенсивності вхідного та вихідного вантажопотоку. Інтенсивність вантажопотоку напряму корелює з продуктивністю поточно-транспортної системи підприємства. Імітаційну модель запасів зерна було отримано для прикладу зернового терміналу. При цьому поточно-транспортна система терміналу розглянута як багатофазна одно канальна система масового обслуговування. З отриманою моделлю проведено серію машинних експериментів. Також було окреслено основні перспективи розвитку та використання моделі для вирішення задач удосконалення алгоритмів керування запасами зерна.
APA, Harvard, Vancouver, ISO, and other styles
15

Кокоєва, Ю. В. "ПЕРСОНАЛІЗОВАНИЙ ВИБІР КОНСТРУКЦІЙНИХ МАТЕРІАЛІВ ДЛЯ ШТУЧНИХ КОРОНОК З РІВНЯ МУЛЬТИ-ЮНІТ АБАТМЕНТА АБО ТИТАНОВОЇ ПЛАТФОРМИ ДЛЯ БЕЗПОСЕРЕДНЬОГО ПРОТЕЗУВАННЯ НА ДЕНТАЛЬНИХ ІМПЛАНТАТАХ." Art of Medicine, January 5, 2021, 37–45. http://dx.doi.org/10.21802/artm.2020.4.16.37.

Full text
Abstract:
Резюме. Мета. Обґрунтувати оптимальні конструкційні матеріали для коронок із рівня мульти-юніт абатмента або стандартної титанової платформи для безпосереднього протезування на дентальних імплантатах (ДІ) шляхом скінчено-елементного аналізу напружено-деформованого стану багатовимірної моделі «кісткова тканина – дентальний імплантат – протетичний елемент – супраконструкція» (КТ-ДІ-ПЕ-С). Матеріали та методи. У програмному CAD / CAE забезпеченні, розроблені моделі КТ-ДІ-ПЕ-С з імітаційним моделюванням безпосереднього протезування на ДІ, які базувалися на комбінаціях двох видів протетичних елементів (титанова платформа А1 і мульти-юніт абатмент А2) та п’яти матеріалів коронки (склокераміка на основі дисилікату літію КМ1, гібридна кераміка модифікована композитом КМ2, поліметилметакрилат КМ3, діоксид цирконію КМ4, багатошаровий діоксид цирконію КМ5). Результати. Під час чисельного експерименту максимальні навантаження зафіксовані у системах з типом протетичного елементу А1 та А2 у моделях коронки ( 149,37 МПа та 142,08 МПа відповідно), губчастого ( ) та кортикального шарів кістки ( ). Характер розподілу еквівалентних за Мізесом напружень у структурних елементах систем з типами абатментів А1 та А2 схожий для усіх розглянутих моделей з матеріалами коронок КМ1, КМ2, КМ4, КМ5, окрім системи з матеріалом КМ3. Висновки. За результатами аналізу отриманих даних, рекомендованими матеріалами для біомеханічної системи КТ-ДІ-ПЕ-С зі стандартною титановою платформою та мульти-юніт абатментом є діоксид цирконію (КЗМ 6,22 та 6,42 відповідно), багатошаровий діоксид цирконію (КЗМ 5,52 та 5,70) і склокераміка на основі дисилікату літію (КЗМ 2,39 та 2,52).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography