Academic literature on the topic 'Фюзеляж'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Фюзеляж.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Фюзеляж"

1

Ефимцов, Б. М., and Л. А. Лазарев. "Расчет колебаний шпангоутов в подкрепленной оболочке, моделирующей фюзеляж самолета." Акустический журнал 60, no. 5 (2014): 518–25. http://dx.doi.org/10.7868/s0320791914040042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

PEYGIN, Sergey V., and Sergey A. ORLOV. "OPTIMAL AERODYNAMIC DESIGN OF A WING-BODY CONFIGURATION FOR A WIDE-BODY LONG-RANGE AIRCRAFT." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 63 (February 2019): 115–24. http://dx.doi.org/10.17223/19988621/63/10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Timchenko, S. V. "NUMERICAL STUDY OF THE AERODYNAMIC CHARACTERISTICS OF A “WING – FUSELAGE – ENGINE NACELLE – PYLON” THREEDIMENSIONAL LAYOUT OF THE ENGINE FOR A WIDE-BODY LONG-RANGE AIRCRAFT." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 62 (2019): 135–41. http://dx.doi.org/10.17223/19988621/62/11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bragin, N. N., S. A. Orlov, and S. V. Peygin. "INVESTIGATION OF THE STABILITY OF OPTIMAL AERODYNAMIC DESIGNING OF THE THREE-DIMENSIONAL WINGFUSELAGE LAYOUT FOR A WIDE-BODY LONG-RANGE AIRCRAFT WITH REGARD TO ITS INITIAL SHAPE." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 62 (2019): 79–90. http://dx.doi.org/10.17223/19988621/62/7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Царенко, М. "Ордена на фюзеляже." Нумізматика і фалеристика, no. 4 (60) (2011): 26–29.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Дибир, А. Г., А. А. Кирпикин, and Н. И. Пекельный. "ДО ВИЗНАЧЕННЯ УРІВНОВАЖУВАЛЬНОЇ НАВАНТАГИ НА ШПАНГОУТ ОДНОПАЛУБНОГО ФЮЗЕЛЯЖУ." Open Information and Computer Integrated Technologies, no. 91 (June 18, 2021): 113–21. http://dx.doi.org/10.32620/oikit.2021.91.08.

Full text
Abstract:
With the optimal design of the fuselage, a very important issue is the choice of the optimal position of the load-bearing floor in the cross-section of the fuselage.Depending on the relative position of the load-bearing floor, the reduced thickness of the floor, the scheme of fastening the floor to the frames and the ratio of the reduced thicknesses of the fuselage skin and the floor, the position of the center of stiffness of the fuselage cross-section changes, the torsional stiffness of the fuselage. This leads to a change in torque, a redistribution of shear flows, a redistribution of flattening loads on the frame from the bending of the fuselage.In this work, two schemes of fastening the floor to the frame are considered - a rigid, torque connection and a hinged one. In this case, the frame takes up additional load from the floor. The fuselage is considered as a thin-walled rod, loaded with horizontal and vertical shear forces, torque and flattening forces from the fuselage bending.For reliability, the calculation of the position of the center of stiffness in a double-closed cross-section was carried out by two methods: a fictitious force and a fictitious moment. The influence of various parameters on the location of the center of rigidity was investigated. The influence of the vertical position of the floor, the ratio of the reduced thicknesses of the floor and the fuselage skin and the cross-sectional area of the beams of the floor attachment to the fuselage on the position of the center of stiffness was evaluated. Diagrams of these dependencies were constructed based on the results of calculations. The dependence of the torsional stiffness on the position of the floor and the ratio of the reduced thicknesses of the floor and the fuselage skin was investigated. Based on the calculation results, a diagram of these dependencies was built. Various constructive solutions were considered for fastening the floor to the fuselage skin: with their direct connection and with the floor support only on the beam. The floor loading from flattening loads caused by the bending of the fuselage was studied. The diagram of the loading of the frame and the floor from flattening loads is shown.According to the diagrams, you can choose the optimal vertical position of the floor, the reduced floor thickness and the cross-sectional area of the beam
APA, Harvard, Vancouver, ISO, and other styles
7

Долгих, Вячеслав Сергеевич. "ОПТИМІЗАЦІЯ НОСОВОЇ ЧАСТИНИ ФЮЗЕЛЯЖУ З ТОЧКИ ЗОРУ АЕРОДИНАМІКИ ЛІТАКА." Open Information and Computer Integrated Technologies, no. 86 (February 14, 2020): 127–38. http://dx.doi.org/10.32620/oikit.2019.86.09.

Full text
Abstract:
The paper represents the analysis intended to optimize the fuselage nose section with regard to aircraft aerodynamics in the process of development of an unmanned transport aircraft (UTA). The article deals with provisions of high aerodynamic efficiency that cannot be achieved without proper selection of the shape and optimal fuselage parameters that determine mutual interference of aircraft components and units. When analyzing the flow improvement around the fuselage nose in flight, three fuselage versions were considered listed further: 1) a prototype for testing automatic flight control systems with participation of pilots; 2) a nose symmetrical relative to the fuselage rocket type cylinder axis; 3) a supposedly optimal variant based on the results of previous calculations. The aerodynamic characteristics of 3D fuselage models for positive integer Reynolds numbers (full-scale model) were calculated using the ANSYS software package. Three computational grids were built for these models in ANSYS ICEM CFD. The given version of the fuselage nose section intended for testing automatic flight control systems with participation of pilots initially has the greatest resistance among the considered variants. That is, first variant of the fuselage nose gives substantial braking zone as well as significant flow acceleration zone exists in place where fuselage is transformed into cylindrical part. The variant with the nose section symmetrical relative to the rocket type cylinder axis has smaller braking zone and less dispersed flow in place where fuselage is transformed into cylindrical part and, therefore, it has lower resistance in comparison with the first version. The fuselage execution developed on the basis of the results of previous calculations, despite the extensive acceleration zone at the junction of the nose to the cylindrical part, has shown the least resistance, respectively, and is the best of the considered variants. This is also confirmed by a comparison of streamlines over the nose surface. The streamlines are given for calculations at angle of attack of 8°; at this angle of attack, the difference in the coefficient Cx is clearly visible.
APA, Harvard, Vancouver, ISO, and other styles
8

Двейрін, О. З., О. Г. Гребеніков, А. М. Гуменний, and А. С. Чумак. "МЕТОД ІНТЕГРОВАНОГО ПРОЕКТУВАННЯ НОСОВОЇ ЧАСТИНИ ФЮЗЕЛЯЖУ ЛІТАКА ТРАНСПОРТНОЇ КАТЕГОРІЇ." Open Information and Computer Integrated Technologies, no. 91 (June 18, 2021): 4–36. http://dx.doi.org/10.32620/oikit.2021.91.01.

Full text
Abstract:
Regulatory and technical documentation, design features and methods of fuselage transport category aircraft design was performed and identified the need to update design methods and calculate the characteristics of the fuselage using parametric models and integrated design systems CAD / CAM / CAE / PLM. The method of integrated fuselage design of transport category aircraft is developed and theoretically substantiated. Within the framework of the proposed method, parametric models of master geometry, aerodynamic flow and mass-inertial characteristics of the fuselage were created, taking into account the design features of transport aircraft.The proposed method was used to study the influence of geometric parameters of fuselage nose section on aerodynamic and mass characteristics of the fuselage, showing the efficiency of work with parametric models.The choice of parameters of the fuselage nose section in preliminary and sketch design of a promising aircraft for local airlines is justified, which allowed to implement and test the suitability of the proposed method for in new competitive aircraft designing process.The use of the method for integrated fuselage design for local aircraft allowed to determine the rational configuration of the nose section of the fuselage and increase the fuel efficiency of the aircraft by 6.4%, reduce the aerodynamic drag of the fuselage by 10%, increase the viewing angle from the cockpit by 10%. and ensure compliance with current regulatory and technical documentation, as well as determine the mass-inertial characteristics of the fuselage and its parts and form a list of cockpit equipment that will meet flight safety requirements, taking into account the operating conditions and modifications of the aircraft.The configuration of the nose section of the aircraft fuselage for local airlines has been developed, which allows to fit modern requirements for cockpit equipment and layout, low fuselage impedance and high aerodynamic quality and fuel efficiency in cruising mode at speeds up to 850 km / h (M = 0, 8). As a result of verification using other methods and parameters of existing aircraft, the accuracy of the results obtained using the proposed method at the level of 5% was confirmed.
APA, Harvard, Vancouver, ISO, and other styles
9

Бостанов, Баянды Оспанұлы, Еркин Аринов, Ербол Садуахасович Темирбеков, and Байрон Асқарұлы Карасаев. "СОСТАВНАЯ ТРАЕКТОРИЯ НЕПРЕРЫВНОЙ КРИВИЗНЫ." Bulletin of Toraighyrov University. Physics & Mathematics series, no. 3.2020 (October 9, 2020): 24–31. http://dx.doi.org/10.48081/zqvv6566.

Full text
Abstract:
Рассматривается задача о создании безударной сложной траектории (формы, профиля, беговой дорожки) объекта и об определении положения точек соединения, обеспечивающие кинематическую и динамическую гладкости. Исследование направлено, в частности, на улучшение аэродинамических характеристик летательного аппарата, зависящиеся от геометрических характеристик и формы крыла (лопасти, фюзеляжа); на улучшение мореходных качеств судна при плавании в условиях штормового ветра и волнения с использованием комбинированной формы корпуса, удовлетворяющим требованиям к мореходности. Определены математические зависимости, выражающие условия соединения дуг траектории без скачка радиусов кривизны в местах сопряжения. Предлагаемый метод позволяет сформировать сложные технические формы и создать на их основе новые модели комбинированной траектории объекта непрерывной кривизны.
APA, Harvard, Vancouver, ISO, and other styles
10

Кузякин, Юрий Петрович. "Повітряний старт ракет-носіїв з вантажного відсіку фюзеляжу транспортного літака." Адаптивні системи автоматичного управління 2, no. 13 (December 16, 2008): 45–54. http://dx.doi.org/10.20535/1560-8956.13.2008.34074.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Фюзеляж"

1

Бабенко, Валерій Павлович. "Формування траси польоту БПЛА під час планування розвідувальних операцій." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Бурдун, Е. Т., Е. В. Карпенко, and С. С. Михайлов. "Экранолет из полимерных композиционных материалов." Thesis, 2013. http://eir.nuos.edu.ua/xmlui/handle/123456789/1162.

Full text
Abstract:
Бурдун, Е. Т. Экранолет из полимерных композиционных материалов / Е. Т. Бурдун, Е. В. Карпенко, С. С. Михайлов // Матеріали Всеукр. наук.-техн. конф. з міжнар. участю "Сучасні технології проектування, побудови, експлуатації і ремонту суден, морських технічних засобів і інженерних споруд". – Миколаїв : НУК, 2013.
Предлагается замена традиционных материалов в конструктивных элементах экраноплана на современные композиционные.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography