Contents
Academic literature on the topic 'Температурна обробка'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Температурна обробка.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Температурна обробка"
Shapoval, S. L. "Прилад для дослідження структурно-механічних та теплофізичних властивостей м’яса птиці." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 20, no. 85 (March 2, 2018): 100–106. http://dx.doi.org/10.15421/nvlvet8519.
Full textPusik, L. M., and V. K. Pusik. "ПОТОЧНИЙ СТАН ПІСЛЯЗБИРАЛЬНИХ ОБРОБОК ДЛЯ ПІДТРИМКИ ЯКОСТІ І СКОРОЧЕННЯ ВТРАТ ПЛОДООВОЧЕВОЇ ПРОДУКЦІЇ." Vegetable and Melon Growing, no. 70 (February 7, 2022): 97–110. http://dx.doi.org/10.32717/0131-0062-2021-70-97-110.
Full textШапар, Раїса, and Олена Гусарова. "ОБҐРУНТУВАННЯ ТЕПЛОВОЛОГІСНИХ СТАДІЙНИХ РЕЖИМІВ СУШІННЯ ПЕКТИНОВМІСНОЇ АЙВИ." ГРААЛЬ НАУКИ, no. 2-3 (April 8, 2021): 246–50. http://dx.doi.org/10.36074/grail-of-science.02.04.2021.050.
Full textRoslyk, Iryna. "НОВІ НАНОКОМПОЗИТИ НА МІДНІЙ ОСНОВІ, АРМОВАНІ ВУГЛЕЦЕВИМИ НАНОТРУБКАМИ." Metallurgicheskaya i gornorudnaya promyshlennost, no. 3 (September 30, 2020): 18–27. http://dx.doi.org/10.34185/0543-5749.2020-3-18-27.
Full textMenchynska, A. A., O. V. Yablonska, and T. K. Lebska. "Встановлення режимів термічної обробки ікри прісноводної риби для підвищення її мікробіологічної безпеки." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 19, no. 80 (October 5, 2017): 119–22. http://dx.doi.org/10.15421/nvlvet8025.
Full textНовіков Ф. В. and Полянський В. І. "ВИЗНАЧЕННЯ УМОВ ПІДВИЩЕННЯ ЯКОСТІ МЕХАНІЧНОЇ ОБРОБКИ ЗА ТЕМПЕРАТУРНИМ КРИТЕРІЄМ." Перспективні технології та прилади, no. 17 (December 29, 2020): 99–106. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-15.
Full textЦеліщева, М. О., О. Б. Целіщев, and М. Г. Лорія. "Обгрунтування фотохімічної технології знешкодження хлорвмістного пестицидного препарату сімазин." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 8(256) (December 10, 2019): 123–28. http://dx.doi.org/10.33216/1998-7927-2019-256-8-123-128.
Full textЖученко, О. А., and М. Г. Волощук. "ДОСЛІДЖЕННЯ ТЕМПЕРАТУРНИХ ПОЛІВ ПРОЦЕСУ ГРАФІТУВАННЯ ВУГЛЕЦЕВИХ ВИРОБІВ." Automation of technological and business processes 10, no. 3 (November 13, 2018): 25–35. http://dx.doi.org/10.15673/atbp.v10i3.1087.
Full textЗінченко, Володимир Юрійович, Віктор Ілліч Іванов, Юрій Миколайович Каюков, and Володислав Ростиславович Румянцев. "РОЗРОБКА АЛГОРИТМУ УПРАВЛІННЯ ТЕПЛОВОЮ РОБОТОЮ ТЕРМІЧНИХ ПЕЧЕЙ КАМЕРНОГО ТИПУ." Scientific Journal "Metallurgy", no. 1 (July 22, 2021): 67–73. http://dx.doi.org/10.26661/2071-3789-2021-1-09.
Full textГратій, Т. І., and О. С. Тітлов. "Розробка апаратів для первинної термічної обробки і холодильного зберігання харчових продуктів." Refrigeration Engineering and Technology 57, no. 3 (October 15, 2021): 126–37. http://dx.doi.org/10.15673/ret.v57i3.2163.
Full textDissertations / Theses on the topic "Температурна обробка"
Клєпікова, Катерина Сергіївна, Наталя Петрівна Клочко, Геннадій Семенович Хрипунов, Віктор Миколайович Любов, Неоніла Дмитрівна Волкова, Володимир Романович Копач, and Л. Д. Бахчева. "Синтез високогідрофобних наноструктурованих шарів цинк оксиду методом імпульсного електроосадження." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48608.
Full textОкопний, Руслан Петрович, Руслан Петрович Окопный, Ruslan Petrovych Okopnyi, Віктор Григорович Неня, Виктор Григорьевич Неня, and Viktor Hryhorovych Nenia. "Автономний пристрій збору температурних даних будівель." Thesis, Cумський державний університет, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46409.
Full textВощук, Анна Миколаївна, and Анатолій Володимирович Фесенко. "Взаємозв'язок параметрів циклу шліфування з глибиною дефектного шару деталі." Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19840.
Full textПеченкін, С. В., Людмила Георгіївна Добровольська, and Сергій Семенович Добротворський. "Визначення впливу параметрів режимів різання на температурні поля та глибину порушенного шару поверхні деталі при високошвидкісному фрезеруванні." Thesis, НТУ "ХПІ", 2013. http://repository.kpi.kharkov.ua/handle/KhPI-Press/9475.
Full textЛавінський, Денис Володимирович, and Олег Костянтинович Морачковський. "Розрахунки електромагнітних та теплових полів у технологічних системах електромагнітної обробки." Thesis, Одесский национальный политехнический университет, 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41598.
Full textТолбатова, О. О. "Система керування термічною обробкою харчових продуктів." Master's thesis, Сумський державний університет, 2020. https://essuir.sumdu.edu.ua/handle/123456789/81297.
Full textБарабаш, А. А., and Анатолій Костянтинович Бабіченко. "Автоматизоване управління процесом пастеризації молока з використанням контролерів." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40120.
Full textПавлюк, Ю. М., Ігор Володимирович Григоренко, and Світлана Миколаївна Григоренко. "Вдосконалення системи контролю технологічного процесу виготовлення харчової пластмаси." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39871.
Full textКотік, Оксана Олегівна. "Плазмова обробка оксиду графену." Master's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/33814.
Full textTopicality: oxide graphene - a single layer of graphite where carbon bonds on the surface are more connected with oxygen. This material just get in the hydrogen solution and precipitate any substrate. Reduced graphene oxide is a two dimensional material that is promising for the manufacture of various types of sensors - from infrared sensors to chemical gas sensors. Therefore, obtaining reduced graphene oxide with high electrical conductivity at low annealing temperatures allows to have a basic cheap two-dimensional material for different types of sensors on flexible substrates, which is necessary for the medical industry, robotics and flexible micro- and photoelectronics. Relationship of work with scientific programs, plans, themes cathedra: оbject of research: The theme of the work corresponds to the priority scientific direction of the Department of General Physics and Solid State Physics - "Fundamental research of the most important issues of scientific, technical, socioeconomic, human potential to ensure Ukraine's competitiveness in the world and sustainable development of society and state." The goal of the work: research the effect of plasma treatment on the physicochemical and electrophysical properties of graphene oxide, comparing them with low-temperature thermal reduction. Obtaining basic material for gas and temperature sensors. Object of research: research optical and electrophysical properties of graphene oxide films after various low-temperature annealing methods. Subject of research: graphene oxide reduced at low temperatures in the RF plasma discharge. Research methods: infrared spectroscopy, XPS spectroscopy, volt-ampere characteristics, temperature and frequency dependence of electrical conductivity. Information about the volume of the report, the number of illustrations, tables, applications and literary names in the list of used ones: the report consists of a list of symbols, symbols, abbreviations and terms, introduction, main part (three sections), conclusions, list of reference sources (72); contains 29 figures and tables. Full report – 85 pages. The purpose of the individual task, the methods used and the results obtained: the purpose of the individual task is to study the chemical bonds and electrophysical properties in films of graphene oxide reduced in RF plasma discharge in a hydrogen atmosphere: conductivity on alternating current, temperature dependences of graphene oxide, determination of the conductivity mechanism, temperature resistivity. It was shown that low-temperature plasma treatment of graphene oxide in a mixture of nitrogen and hydrogen for 5 seconds leads to a significant reduction in electrical resistance of the two-dimensional film (up to 8 orders of magnitude) much greater (up to 2 orders of magnitude) than thermal annealing at 350 ° C in vacuum for 15 minutes. indicates the effect on the film of non-thermal factors that occur during RF plasma treatment. It was found that the mechanism of film conductivity can be described by the Mott mechanism (hopping conductivity on traps located near the Fermi level) in two sections of frequency and temperature dependences of conductivity with different parameters indicating the heterogeneity of the obtained film. The reduced graphene oxide films show a significant temperature coefficient of resistance, much better than gold and silver, which allows it to be propagated as a temperature sensor in the range from - 50 to + 100C. Novelty: for the first time it was shown that graphene oxide films can be significantly reduced by low-temperature direct exposure to RF plasma discharge in an atmosphere of nitrogen-hydrogen mixture. The significant temperature coefficient of resistance indicates that the films of reduced graphene can be used as a temperature sensor on a flexible plastic substrate. Conclusion: research of chemical bonds in graphene oxide films by IR spectroscopy show the effective introduction of hydrogen and nitrogen bonds into the graphene structure during the treatment of RF plasma discharge in the forming gas. Annealing in plasma modification was performed at lower values of temperature and duration than thermal annealing, but the conductivity of the samples after plasma treatment is higher by an order of magnitude, indicating a significant effect on material parameters of non-thermal factors occurring in plasma modification of material. The temperature coefficient of resistance of plasma-reduced graphene oxide is much higher than that of gold, silver and carbon nanotube films. The presented results show that graphene oxide reduced at low temperatures is a very promising material for creating temperature sensors on flexible substrates.
Варанкіна, Олександра Олександрівна, and Б. Р. Апальков. "Водно-теплова обробка сировини в технології продуктів бродіння в лабораторних умовах." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48584.
Full text