Academic literature on the topic 'Температура горіння'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Температура горіння.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Температура горіння"

1

Popovych, Vasyl, and Andriy Hapalo. "ТЕМПЕРАТУРНИЙ ВПЛИВ ЛАНДШАФТНИХ ПОЖЕЖ НА ЕКОЛОГІЧНИЙ СТАН ЕДАФОТОПУ." Zeszyty Naukowe SGSP 76 (December 21, 2020): 29–45. http://dx.doi.org/10.5604/01.3001.0014.5977.

Full text
Abstract:
В Україні лісові пожежі набувають значних обсягів та перетворюються на надзвичай- ні ситуації загальнодержавного значення. Внаслідок локалізації та ліквідації великих і особливо великих лісових пожеж, пожеж у природних екосистемах, залучається значна кількість особового складу та техніки. Знищуються практично усі компоненти довкілля – флора, фауна, ґрунти, забруднюються річки, водойми, повітря. Пожежі у природних екосистемах спричиняють потрапляння в атмосферу значної кількості летких продуктів горіння та небезпечних речовин і сполук. Метою роботи є висвітлення результатів досліджень моніторингу довготривалого впливу лісових пожеж на один із найважливіших компонентів екосистеми – едафотоп. Для досягнення поставленої мети були сформовані такі основні завдання: провести аналіз наукових та літературних джерел щодо проблематики впливу лісових пожеж на едафотоп у вітчизняному та зарубіжному контекстах; дослідити модельне вогнище стосовно температурного та вологісного режимів; встановити температуру полум’я на різних ділянках модельного вогнища; встановити потужність еквівалентної дози фотонного іонізуючого випромінювання на місці проведення експерименту. Теплові режими Малого Полісся є достатніми для розвитку багатьох рослин. Веге- таційний період триває понад 200 днів, а період з активними температурами (понад + 10°С) – 150–160 днів. Більше 100 днів у році мають середньодобову температуру понад + 15°С (період інтенсивної вегетації). Відлиги, які понижують морозостійкість лісових та сільськогосподарських культур, затяжні весни у зв’язку з повільним таненням снігу гальмують швидкий прихід тепла. Експериментальні дослідження з вивчення впливу ландшафтних пожеж на екологіч- ний стан едафотопу здійснювалися на території Малого Полісся поблизу Рава-Руського лісництва в селі Лавриків Жовківського району Львівської області. Відбір проб ґрунтів для досліджень їхнього екологічного стану здійснювався із врахуванням давності (за роками) горіння рослинності та лісової підстилки. Також було створено штучне модельне вогнище ландшафтної пожежі (низової, лісової) на відкритому просторі з дотриманням усіх вимог Правил пожежної безпеки в лісах України з метою фіксування температури та вологості ґрунту в зоні горіння, а також аналізу відібраних ґрунтових проб із ділянок горіння. Встановлено, що температура полум’я під час горіння лучної рослинності в початковий момент часу становила +66,7°С. У процесі горіння, через 20 секунд, температура полум’я сягнула +352,5°С, максимальною температура полум’я була +715,7°С після вигорання всього горючого матеріалу (через 2,5 хв після початку досліду). Водночас, на глибині 5 см у початкових точках горіння температура едафотопу підвищується із +7°С до +20 ± 24°С. Яскраво вираженого діапазону зміни вологості на глибині 5 см не спостерігалося. Отримані результати є важливими з точки зору вивчення впливу підвищених температур на компоненти біосфери, а також відновлення девастованих територій.
APA, Harvard, Vancouver, ISO, and other styles
2

Буллер, Михайло Фридрихович, Валерій Анатолійович Роботько, and Ольга Олександрівна Новобранець. "Про терміни службової придатності асфальтованих вогнепровідних шнурів." Озброєння та військова техніка 31, no. 3 (February 1, 2022): 59–66. http://dx.doi.org/10.34169/2414-0651.2021.3(31).59-66.

Full text
Abstract:
В статті досліджені фізико-хімічні (теплостійкість, морозостійкість, водонепроникність) і цільові (час горіння відрізку шнура) характеристики вогнепровідного шнура асфальтованого після 30 років зберігання за плюсових температур в герметичній упаковці. Такий вогнепровідний шнур після тривалого зберігання показав характеристики, які повністю відповідають нормативно-технічній документації. Проведені термічні дослідження методом TG-DTA матеріалів, що становлять конструкцію вогнепровідного шнура (центральної нитки, димного шнурового пороху, першого обплетення, другого обплетення, третього обплетення) за показниками температура початку термічного розкладу і температура початку інтенсивного розкладу. Отримані результати показали, що досліджені термічні характеристики за 30 років зберігання практично не змінились. Досліджена поведінка зразків вогнепровідного шнура в негерметичній упаковці у атмосфері різної відносної вологості та її вплив на швидкість горіння шнура. За отриманими результатами розраховані коефіцієнти дифузії вологи, що складають в залежності від відносної вологості атмосфери (1,92 – 3,51) × 10-8 см2/с. Також встановлено, що ізолюючі шари вогнепровідного шнура мають властивості, здатні не менше 200 діб у вологій атмосфері (92 % відносної вологості) протистояти проникненню вологи для збереження швидкості його горіння.
APA, Harvard, Vancouver, ISO, and other styles
3

Vovk, S., O. Pazen, N. Ferents, and A. Lyn. "ВИЗНАЧЕННЯ ОПТИМАЛЬНОЇ ТОВЩИНИ ПРОТИПОЖЕЖНОЇ ПЕРЕДІЛКИ НАВКОЛО ПЕЧЕЙ ТА ДИМОХОДІВ В БУДІВЛЯХ З ГОРЮЧИМИ БУДІВЕЛЬНИМИ КОНСТРУКЦІЯМИ." Fire Safety 39 (April 5, 2022): 77–84. http://dx.doi.org/10.32447/20786662.39.2021.09.

Full text
Abstract:
Вступ. Опалювальні печі, на частку яких припадає 80 % від загальної кількості тепла, яке виробляється у сільській місцевості, широко використовуються в одно-, двоповерхових будівлях, як в наявному житловому фонді, так і в новому будівництві. Пожежі, які виникають в житлових будинках, найчастіше, призводять до загибелі та травмування людей. Серед причин виникнення пожеж порушення правил пожежної безпеки при влаштуванні та експлуатації печей, теплогенеруючих агрегатів та установок становлять 3 868 випадків (6,9 %).Метою статті є дослідження пожежної безпеки при влаштуванні печей та димоходів в будівлях з горючими будівельними конструкціями.Методи дослідження. У роботі було використано ряд методів, зокрема, статистичний, системний, порівняльний, а також метод математичного моделювання процесу теплообміну в багатошаровій плоскій конструкції для визначення температури зовнішньої поверхні залежно від товщини та матеріалу виконання димоходу.Основні результати дослідження. У статті проаналізовано пожежну небезпеку пічного опалення, яка полягає в наявності високих температур на поверхні елементів печі (стінок, патрубків, труб), що можуть бути джерелом запалювання горючих матеріалів і горючих конструкцій будівель. Температура на поверхні елементів нетепломістких печей залежить від виду палива, що спалюється, режиму паливника печей і може перевищувати 600 оС. Температура в паливнику теплоємних печей може становити понад 1000 оС, а в димовому каналі біля міжповерхового перекриття – 500 оС. Ступінь нагрівання бічних поверхонь і перекриття печі, а також димових каналів залежить від товщини стінок, виду і кількості палива, що спалюється, і тривалості горіння. У роботі розрахунково визначено температуру на зовнішній поверхні протипожежної переділки залежно від її розмірів та геометричної форми перерізу димоходу при температурі димових газів до 4500 С.Така температура утворюється при роботі котлів та печей в турборежимі. Дослідження проводилися для димоходів із різних матеріалів, зокрема: з керамічної цегли різної товщини, з керамічної цегли і шару цементно-піщаної штукатурки, з керамічної цегли і переділки із бетону, із керамічної цегли і переділки із мінеральної вати, із жаростійкого бетону і переділки з мінеральної вати, із сталі. Висновок. Для запобігання пожежі в димоходах необхідно регулярно проводити перевірки опалювального приладу і димоходу, здійснювати правильний підбір потужності опалювального приладу. На основі приведених аналітичних залежностей визначено оптимальну товщину протипожежної переділки навколо димоходу, встановлено, що на дану товщину суттєво впливають теплотехнічні властивості будівельних матеріалів, із яких виконано димохід та переділку. Показано, як з допомогою математичного моделювання процесу теплообміну за необхідності можна встановити температуру на поверхні димоходу з будь-якого будівельного матеріалу. Встановлено, що димоходи, які мають форму циліндра, менше нагріваються у порівнянні з прямокутними.
APA, Harvard, Vancouver, ISO, and other styles
4

Bosak, P. V., V. V. Popovych, V. F. Pinder, and O. V. Stokalyuk. "Температура займання та самозаймання найпоширеніших деревних порід териконів." Scientific Bulletin of UNFU 30, no. 5 (November 3, 2020): 53–58. http://dx.doi.org/10.36930/40300509.

Full text
Abstract:
Екологічна небезпека шахтних породних відвалів в умовах урбанізованого середовища є високою. Для її оцінювання у кожному конкретному випадку потрібно проводити екологічний моніторинг для розроблення природоохоронних заходів з мінімізації негативних їх чинників. Наголошено на чинниках, які призводять до самозаймання вугільних відвалів, та на підставі наукових джерел детально описано хімізм досліджуваних процесів. Окиснення і горіння породних відвалів супроводжується значним виділенням водяної пари, яка є мінералоутворюючим середовищем для більшої частини мінералів: сульфатів, гідрокарбонатів, карбонатів, фосфатів, арсенатів. Окрім цього, внаслідок окиснення виділяється вуглекислота, нітроген оксид (IV), який з водою утворює нітратну кислоту. У разі нестачі кисню в осередках горіння в парогазових викидах міститися сірководень, вуглеводні, амоніак, оксид карбону (II). Акцентовано увагу на тому, що важливе значення в процесах окиснення належить сірці. Окиснення вугілля посилюється на дрібних частинках, через збільшення площі поверхні, що доступна для окиснення. Висвітлено, що найнадійнішим способом захисту від самозаймання вугільних відвалів є створення на їх поверхні рослинного покриву. Процес формування рослинного покриву є дуже важливим, адже при цьому відбувається як накопичення важких металів у рослинах, так і зв'язування субстрату їхніми коренями й кореневищами, що зменшує процес вивітрювання та вимивання породи, яка містить велику кількість важких металів. Встановлено показники температури займання та самозаймання зразків деревних порід відвалів вугільних шахт згідно з ДСТУ8829:2019. Дослідження показників займання та самозаймання твердих речовин і матеріалів здійснювали у весняний та літній періоди. Досліджуваними об'єктами були проби листя та деревина з терикону шахти Нововолинського гірничопромислового району (Волинська область, м. Нововолинськ). Встановлено, що для сосни звичайної температура займання становить: +225 °C, а самозаймання +475 °C. Температура займання берези повислої +260 °C, дуба звичайного +275 °C, козячої верби +280 °C, температура самозаймання – берези повислої +470 °C, дуба звичайного +475 °C, верби козячої +473 °C. Температура займання берези повислої, дуба звичайного, верби козячої ніж сосни звичайної робить їх перспективними породами дерев для запобігання самозайманню вугільних відвалів.
APA, Harvard, Vancouver, ISO, and other styles
5

Мотрічук, Роман Борисович, Оксана В’ячеславівна Кириченко, В’ячеслав Андрійович Ващенко, Сергій Олександрович Колінько, Тетяна Іванівна Бутенко, Євгеній Павлович Кириченко, and Валентин Вікторович Цибулін. "ЗАКОНОМІРНОСТІ ВПЛИВУ ТЕХНОЛОГІЧНИХ ПАРАМЕТРІВ ТА ЗОВНІШНІХ ЧИННИКІВ НА ТЕМПЕРАТУРУ ТА СКЛАД ПРОДУКТІВ ЗГОРЯННЯ ПІРОТЕХНІЧНИХ НІТРАТНО-МЕТАЛЕВИХ СУМІШЕЙ." Вісник Черкаського державного технологічного університету, no. 4 (March 15, 2021): 131–42. http://dx.doi.org/10.24025/2306-4412.4.2020.215189.

Full text
Abstract:
Представлено результати термодинамічних розрахунків залежностей температури та складу продуктів згоряння піротехнічних сумішей з порошків магнію та нітрату калію від коефіцієнта надлишку окиснювача α = 0,1…3,0, величини органічної добавки e = 5…20 % і зовнішнього тиску Р = 105…3*107 Па, що визначають вибухонебезпечні режими їх згоряння. Дослідження проводилися за допомогою методів термодинамічного аналізу процесів горіння сумішей з урахуванням фазової нерівноважності їх продуктів згоряння. За даними термодинамічного розрахунку температура продуктів згоряння істотно залежить від коефіцієнта надлишку окиснювача в суміші та тиску і має максимум. З даних термодинамічних розрахунків температури продуктів згоряння сумішей магній + нітрат калію + парафін, стеарин, нафталін, антрацен випливає, що введення добавок розглядуваних органічних речовин у суміш магнію з нітратом натрію не призводить до істотної зміни загального характеру залежності температури продуктів згоряння від коефіцієнта надлишку окиснювача і тиску для подвійної суміші.
APA, Harvard, Vancouver, ISO, and other styles
6

Зінченко, Володимир Юрійович, Віктор Ілліч Іванов, Юрій Миколайович Каюков, and Володислав Ростиславович Румянцев. "РОЗРОБКА АЛГОРИТМУ УПРАВЛІННЯ ТЕПЛОВОЮ РОБОТОЮ ТЕРМІЧНИХ ПЕЧЕЙ КАМЕРНОГО ТИПУ." Scientific Journal "Metallurgy", no. 1 (July 22, 2021): 67–73. http://dx.doi.org/10.26661/2071-3789-2021-1-09.

Full text
Abstract:
Під час використання локальних систем автоматичного регулювання температури та надлишкового тиску нагрівального середовища у робочому об’ємі полуменевої термічної печі камерного типу налагоди, як правило, вибирають незалежно одна від одної без урахування їх взаємозв’язку. В той же час за управлінням витратою палива та повітря змінюється не лише температура, але і тиск нагрівального середовища у робочому об’ємі печі, що, в свою чергу, супроводжується змінюванням газообміну з довкіллям та значно впливає на температуру в робочому об’ємі. Все це призводить до суттєвої пере- витрати газоподібного палива, та, як наслідок, підвищення вартості термічної обробки металу. За використанням схеми опалювання з постійним об’ємом продуктів горіння у печах такого типу управління їх тепловою потужністю зводиться до комбінування різних компонентів газоподібного палива за умови забезпечення заданої температури нагрі- вального середовища у робочому об’ємі. За принципом динамічного програмування Беллмана оптимізацію управління за цикл термічної обробки металу забезпечують шляхом вибирання для кожного періоду квантування оптимального за вартістю складу вживаного палива. Поточна вартість палива є лінійною функцією середніх витрат його окремих компонентів у періоди квантування. Тому знаходження його мінімального значення для кожного дискретного моменту часу подавали як розв’язання задачі ліній- ного програмування. Розроблено алгоритм визначення раціональних значень витрат окремих компонентів газоподібного палива, а також витрати надлишкового повітря, котрі використовують як управляльні дії для автоматичних систем регулювання темпе- ратури та надлишкового тиску нагрівального середовища у робочому об’ємі печей. Запропоновано функціональну схему автоматичної системи управління, реалізація якої дозволяє не лише оптимізувати технологію опалювання за вартістю окремих компо- нентів палива, але і шляхом самонастроювання забезпечити автономність управління температурою та надлишковим тиском нагрівального середовища у робочому об’ємі печей. Під час управління за режимом реального часу з оптимізацією щодо вартості окремих компонентів палива виконується самонастроювання системи управління.
APA, Harvard, Vancouver, ISO, and other styles
7

Мних, Антон Сергійович, Михайло Юрійович Пазюк, Ірина Анатоліївна Овчинникова, and Олена Миколаївна Барішенко. "ВДОСКОНАЛЕННЯ ПІДГОТОВКИ ТВЕРДОГО ПАЛИВА ДО ТЕПЛОВОЇ ОБРОБКИ АГЛОМЕРАЦІЙНОЇ ШИХТИ." Scientific Journal "Metallurgy", no. 1 (July 22, 2021): 12–19. http://dx.doi.org/10.26661/2071-3789-2021-1-02.

Full text
Abstract:
Досліджено механізм дроблення агломераційної шихти в агрегаті з метою оптимізації його роботи, а також особливості горіння твердого палива під час агломерації. Головним джерелом енергії агломераційного процесу є теплота горіння твердого палива, яким є коксова дрібниця або антрацитовий штиб. Підготовка палива полягає в його подріб- ненні до необхідного фракційного складу в дробильно-подрібнювальних установках. Встановлено залежності між температурою в зоні горіння й газодинамікою шару агло- мераційної шихти від фракційності використовуваного палива, а також між інтенсив- ністю горіння та складом газів у зоні горіння. Виявлено, що під час горінні коксової дрібниці фракцією 0,5…3,0 мм зафіксовано вищу температуру порівняно з горінням фракції 3,0…5,0 мм; інтенсивність горіння збільшується внаслідок тоншого подрібнення коксової дрібниці, що призводить до зниження вмісту монооксиду вуглецю в газах, що відходять. У роботі описано схему процесу дроблення твердого палива у чотири- валковій дробарці а також наведено систему рівнянь, що описує зазначений процес. Для визначення оптимальної продуктивності дробарки виконано серії експериментів щодо подрібнення коксової дрібниці й антрацитового штибу. Аналіз одержаних резуль- татів показує, що за стабільним режимом дроблення спектр фракційності роздрібнюва- ного палива залежить від його природних властивостей. Здійснено дослідження щодо встановлення часу вигорання кондиційної фракції твердого палива. Дослідження меха- нізму дроблення у валковому агрегаті дозволили зробити висновок про необхідність змінювання схеми дроблення палива з його попереднім розсіванням, з метою зниження впливу стиральних навантажень на подрібнюваний матеріал.
APA, Harvard, Vancouver, ISO, and other styles
8

Молчанов, Лавр, Євген Синегін, Тетяна Голуб, and Сергій Семикін. "ДОСЛІДЖЕННЯ НА ФІЗИЧНІЙ МОДЕЛІ ОСОБЛИВОСТЕЙ ВПЛИВУ ЗАПИЛЕНОСТІ СЕРЕДОВИЩА НА ЯКІСНІ ПОКАЗНИКИ ГАЗОВОГО, ПАЛАЮЧОГО ФАКЕЛУ." Modern Problems of Metalurgy, no. 24 (March 28, 2021): 90–97. http://dx.doi.org/10.34185/1991-7848.2021.01.09.

Full text
Abstract:
Процес кисневого конвертування супроводжується виділенням значного обсягу газів, що містять в основному продукти реакцій окислення вуглецю, які формують палаючий факел над горловиною конвертера. При цьому з конвертера виділяється значна кількість пилу різного складу і фракції в залежності від технологічних особливостей продувки, дослідження і облік впливу якої необхідний для розуміння якісних характеристик факела і конвертерного процесу вцілому. У роботі наведені результати дослідження на фізичної моделі, що імітує палаючий факел в запиленому середовищі, шляхом введення твердих порошків різних речовин, на якісні показники горіння факела: візуальні і теплопередачу. Досліджено подачу в палаючий факел порошків хлориду натрію, оксидів заліза, кремнію та алюмінію, чистих порошків заліза, кремнію та алюмінію, сажі і графіту. Встановлено, що введення різних компонентів в факел з температурою нижче, ніж температура факела, навіть при можливому візуальному збільшенні яскравості характеристик, що зокрема встановлено при введенні хлориду натрію або порошку заліза, сприяють зниженню теплопередачі від факела за рахунок відбору тепла на нагрівання і згоряння частинок, що вводяться.
APA, Harvard, Vancouver, ISO, and other styles
9

Gres, Leonid, Olena Gupalo, Oleksandr Yeromin, Yevhen Karakash, and Elina Diakova. "ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ ВИКОРИСТАННЯ ТЕХНОЛОГІЧНОГО КИСНЮ ПРИ ОПАЛЕННІ ТЕПЛОТЕХНІЧНИХ МЕТАЛУРГІЙНИХ АГРЕГАТІВ." Metallurgicheskaya i gornorudnaya promyshlennost, no. 3-4 (November 27, 2019): 14–24. http://dx.doi.org/10.34185/0543-5749.2019-3-4-14-24.

Full text
Abstract:
Мета – розробка методики визначення ефективності використання технологічного кисню для збагачення повітря горіння при опаленні теплотехнічних агрегатів в металургії.Методика. Під час виконання дослідження використано: математичну модель повітронагрівача, яка дозволяє при заданих його конструктивних параметрах та витраті дуття визначати витрати палива, повітря горіння і димових газів, зміну температури димових газів і дуття по висоті насадки; методику розрахунку горіння палива та визначення калориметричної температури його горіння; методику розрахунку коефіцієнта використання теплоти палива.Результати. Дослідження теплової роботи блоку повітронагрівачів доменної печі дозволило визначити, що використання технологічного кисню для збагачення повітря горіння забезпечує роботу повітронагрівачів на доменному газі і задану температуру дуття при вмісті кисню у повітрі горіння 26 %, але потребує збільшення витрати доменного газу на 32 %. При цьому питомі витрати на опалення блоку повітронагрівачів збільшуються на 20,9 %, що робить впровадження цього заходу економічно недоцільним. Дослідження зміни показників енергоефективності методичної печі та парового котла при їх опаленні природним газом та використанні для спалювання палива атмосферного або збагаченого киснем повітря дозволило встановити, що ефективність використання кисню в методичній печі є значно вищою, ніж в котлах. При підвищенні вмісту кисню в повітрі горіння до 31 % економія палива в методичній печі складає 11,6 %, а питома витрата технологічного кисню – 6,28 м3/м3 заощадженого природного газу, в той час як в котлі ці показники відповідно складають 1,7 % та 48,67 м3/м3.Наукова новизна. З використанням розрахункових методів та математичного моделювання теплової роботи доменних повітронагрівачів обґрунтовано, що використання технологічного кисню для збагачення повітря горіння забезпечує отримання заданої температури дуття та економію природного газу, але потребує суттєвого збільшення витрати доменного газу. Встановлено аналітичну залежність, що обґрунтовує максимальну вартість технологічного кисню для його беззбиткового використання в доменних повітронагрівачах. Для нагрівальних печей та парових котлів, що опалюються природним газом та використовують для спалювання палива атмосферне повітря, збагачене технологічним киснем, встановлено аналітичні залежності, які дозволяють визначати: витрату технологічного кисню для економії 1 м3 палива; максимальну вартість технологічного кисню, при якій його застосування не призводить до зростання сумарних витрат на паливо та технологічний кисень.Практична значущість. Розроблені методики визначення ефективності використання технологічного кисню для збагачення повітря горіння при спалюванні палива можуть застосовуватися в системах енергетичного менеджменту металургійного комбінату для управління тепловим балансом підприємства і вибору теплотехнічних агрегатів, в яких використання тимчасових надлишків технологічного кисню дозволяє забезпечити найбільшу економію палива та є економічно доцільним.
APA, Harvard, Vancouver, ISO, and other styles
10

КЛИМАСЬ, Руслан, Олександр КРИКУН, Вадим НІЖНИК, Олександр НІКУЛІН, Дмитро СЕРЕДА, and Сергій ЦИМБАЛІСТИЙ. "ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ВСТАНОВЛЕННЯ ЗАКОНОМІРНОСТІ ЗНИЖЕННЯ ТЕМПЕРАТУРИ І ПРИПИНЕННЯ ГОРІННЯ ТРАНСФОРМАТОРНОГО МАСЛА ЗАЛЕЖНО ВІД ПАРАМЕТРІВ ГРАВІЙНОЇ ЗАСИПКИ МАСЛОПРИЙМАЧА." Науковий вісник: Цивільний захист та пожежна безпека, no. 2(12) (December 23, 2021): 101–10. http://dx.doi.org/10.33269/nvcz.2021.2(12).101-110.

Full text
Abstract:
У статті наведено результати експериментального дослідження щодо виявлення закономірностей зниження температури та припинення горіння трансформаторного масла від параметрів гравійної засипки маслоприймача трансформаторної підстанції, проведеного за методикою експериментальних досліджень з обґрунтування мінімальних геометричних параметрів гравійної засипки маслоприймача. У результаті проведеного експерименту отримано залежність зниження температури (Δθ) трансформаторного масла від відстані його проходження гравійною засипкою маслоприймача
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Температура горіння"

1

Ганжа, Антон Миколайович, Олена Миколаївна Заєць, О. С. Чепель, and І. В. Йощенко. "Створення програми для розрахунку рекуператора-утилізатора теплоти димових газів блоку доменних повітронагрівачів з метою підігріву їх повітря горіння." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Верлока, В. В., and Євген Анатолійович Борисенко. "Вимірювальна система технологічного процесу виготовлення паливних брикетів." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Штангрет, Назар Олегович. "ІНЖЕНЕРНО-ТЕХНІЧНІ РІШЕННЯ ПРИ ДОСЛІДЖЕННЯХ ВПЛИВУ ДИСПЕРСНОСТІ КРАПЕЛЬ ВОГНЕГАСНИХ РЕЧОВИН НА ОСАДЖЕННЯ ПРОДУКТІВ ГОРІННЯ ТА ПОНИЖЕННЯ ТЕМПЕРАТУРИ." Thesis, 2021. http://sci.ldubgd.edu.ua:8080/jspui/handle/123456789/9093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography