Dissertations / Theses on the topic 'Система кондиціювання'

To see the other types of publications on this topic, follow the link: Система кондиціювання.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 dissertations / theses for your research on the topic 'Система кондиціювання.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Демішонкова, С. А., and Д. Б. Ковальковський. "Система опалення і кондиціювання будинку." Thesis, Київський національний університет технологій та дизайну, 2021. https://er.knutd.edu.ua/handle/123456789/19217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Євтушенко, С. О. "Розрахунок та проектування енергоефективної системи літнього кондиціювання повітря." Master's thesis, Сумський державний університет, 2019. http://essuir.sumdu.edu.ua/handle/123456789/76508.

Full text
Abstract:
У розрахунковій частині роботи виконано розрахунки системи літ-нього кондиціонування, параметрів обробки літнього кондиціювання пові-тря, наведена математична модель та методика розрахунку системи не-прямого випарного охолодження згідно М-циклу, виконано дослідження зміни параметрів математичної моделі Майсоценка, виконано розрахунок параметрів вологого повітря на вході в апарат М-циклу та розрахунок па-раметрів обробки літнього кондиціювання повітря з байпасуванням, реци-ркуляцією та апаратом Майсоценко; розділ «Охорона праці та безпека у надзвичайних ситуаціях»
В расчетной части работы выполнены расчеты системы летнего кондиционирования, параметров обработки летнего кондиционирования воздуха, приведенная математическая модель и методика расчета системы никак прямого испарительного охлаждения согласно М-цикла, выполнено исследование изменения параметров математической модели Майсоценка, выполнен расчет параметров влажного воздуха на входе в аппарат М-цикла и расчет па-раметрив обработки летнего кондиционирования воздуха с байпасуванням, Реции-ркуляциею и аппаратом Майсоценко; раздел «Охрана труда и безопасность в чрезвычайных ситуациях»
In the calculated part of the work, calculations were made of the summer air conditioning system, summer air conditioning processing parameters, the mathematical model and the calculation method of the direct evaporative cooling system in no way according to the M-cycle, the study of the changes in the parameters of the Maysocenk mathematical model, the calculation of the humid air parameters at the entrance to the M apparatus -cycle and calculation of the parameters for the processing of summer air conditioning with by-pass, Recycling and Maysotsenko apparatus; section "Occupational safety and security in emergency situations"
APA, Harvard, Vancouver, ISO, and other styles
3

Грідін, А. Ю., and Г. С. Ратушняк. "Особливості забезпечення мікроклімату спортивних та фізкультурно-оздоровчих споруд." Thesis, ВНТУ, 2018. http://ir.lib.vntu.edu.ua//handle/123456789/23419.

Full text
Abstract:
Вказано основні вимоги та особливості проектування систем забезпечення мікроклімату для спортивних та фізкультурно-оздоровчих споруд. Визначено основні показники для проектування систем вентиляції.
Showed the fundamental requirements of designing systems of provision microclimate for sports and health build- ings. Determined basic indicators for designing of ventilating system.
APA, Harvard, Vancouver, ISO, and other styles
4

Комок, Є. А. "Розроблення енергоефективної системи кондиціювання повітря." Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Гірка, М. Е. "Системи забезпечення мікроклімату приміщення." Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ткаченко, Д. О. "Оснащення офісного приміщення системою вентиляції та кондиціювання для забезпечення комфортних умов праці." Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Шмирьов, Володимир Федорович, and Volodymyr Fedorovych Shmyrov. "Наукові основи проектування та створення енергозалежних систем літаків транспортної категорії." Thesis, Національний авіаційний університет, 2020. https://er.nau.edu.ua/handle/NAU/44724.

Full text
Abstract:
Дисертаційну роботу присвячено розробці наукових основ проектування та створення енергозалежних систем та комплексів сучасних літаків транспортної категорії з оптимізацією за еквівалентною масою, включаючи повітрозбірники. Закладено наукові основи проектування систем протиобмерзання літаків, починаючи від визначення зон захисту, потрібних енергетичних витрат і закінчуючи проектуванням протиобмерзачів і повітряних трубопроводів для всього експлуатаційного діапазону застосування літака. Наведено приклади використання розроблених наукових основ проектування при виконанні структурного аналізу модифікацій літаків, пов'язаних із заміною двигуна. Одержаний при проектуванні й вивчений в процесі випробувань і експлуатації енергетичний баланс літака дозволяє обґрунтовано розглядати модифікацію літака як при заміні силової установки, так і при заміні її основних елементів енергозалежних систем літака. Оцінка зводиться до аналізу аеродинамічних особливостей модифікації, пов'язаних з особливостями конструкції мотогондол, зміною елементів захисту від обмерзання, появою нових повітрозабірників в повітряних системах.
Диссертационная работа посвящена разработке научных основ проектирования и создания энергозависимых систем и комплексов современных самолетов транспортной категории с оптимизацией по эквивалентной массе, включая воздухозаборники. В работе заложены научные основы проектирования систем противообледенения самолетов, начиная от определения зон защиты, необходимых энергетических затрат и заканчивая проектированием противообледенителей и воздушных трубопроводов для всего эксплуатационного диапазона применения самолета. Проведен анализ современного состояния научных основ проектирования и создания энергозависимых систем и комплексов современных самолетов транспортной категории. Показано, что для обеспечения конкурентоспособности создаваемых самолетов энергозависимые систем и комплексы должны иметь высокие показатели топливной эффективности, экологичности, надежности, обеспечивать повышенный комфорт и безопасность для пассажиров, а также иметь низкие эксплуатационные расходы. Приведены примеры использования разработанных научных основ проектирования при выполнении структурного анализа модификаций самолетов, связанных с заменой двигателя. Показано, что для современной авиации характерны тенденции на создание более экономичных и безопасных систем самолета, сбалансированных с энергетикой самолета, что обусловливает их сильное усложнение. Важным этапом после выбора двигателя является поиск путей сохранения его мощности, связанных с созданием мотогондолы на достижение минимальных потерь энергетики на внешнюю аэродинамику и по газодинамическому тракту. Важнейшими системами самолета, энергетически связанными с двигателем, являются система подготовки и распределения воздуха, система кондиционирования, система защиты от обледенения, система энергоснабжения и гидравлические системы. Рассмотренные в данной работе системы и процессы характеризуются как сложные, при изучении которых требуется системный подход, включающий многокритериальность, многофакторность, адекватный метод описания, эффективность применяемых моделей. Получение математических моделей сложных систем базируется на принятых предпосылках множественного регрессионного анализа, которые должны выполняться по отношению к моделируемой реальной действительности. Принятые предпосылки многофакторного регрессионного анализа обусловливают обоснованность полученных результатов и параметров моделей, обеспечивающих решение реальной задачи. Создание методов построения математических моделей по результатам проведения многофакторного численного эксперимента позволяет систематизировать и формализовать протекающие процессы. Полученный при проектировании и изученный в процессе испытаний и эксплуатации энергетический баланс самолета позволяет обоснованно рассматривать модификацию самолета как при замене силовой установки, так и при замене ее основных элементов энергозависимых систем самолета. Оценка сводится к анализу аэродинамических особенностей модификации, связанных с особенностями конструкции мотогондол, изменением элементов защиты от обледенения, появлением новых воздухозаборников в воздушных системах, так как для конкретного самолета топография трасс систем остается неизменной и энергетические затраты на самолете потребности, как правило, не меняются.
The dissertation is devoted to the development of Scientific basis for the designing and development of energy-dependent systems and complexes of modern transport aircraft with equivalent mass optimization, including air intakes. It establishes a scientific basis for the designing of aircraft anti-icing systems, starting with determining the protection areas, required power consumption and ending with designing of anti-icers and air ducts for the entire aircraft operating envelope. Examples of implementation of the developed scientific basis for designing during performance of the structural analysis of aircraft modifications related to engine replacement have been given. The energy balance of the aircraft obtained during the design and studied during testing and operation allows to reasonably consider the aircraft modification both when replacing the power plant and when replacing its main elements of energy-dependent aircraft systems. The assessment is reduced to the analysis of aerodynamic features of the modification associated with the design features of nacelles, changes in ice protection elements, adding of new air intakes in air systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Трушляков, Є. І., А. М. Радченко, В. С. Ткаченко, Б. С. Портной, С. Г. Фордуй, С. А. Кантор, E. I. Trushliakov, et al. "Ступеневий принцип розподілу теплового навантаження в системі кондиціювання повітря." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4333.

Full text
Abstract:
Ступеневий принцип розподілу теплового навантаження в системі кондиціювання повітря = The stage principle of distribution of thermal load in air conditioning systems / Є. І. Трушляков, А. М. Радченко, В. С. Ткаченко, Б. С. Портной, С. Г. Фордуй, С. А. Кантор // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 504–508.
Анотація. Підтримання роботи холодильних компресорів в номінальному або близькому до нього режимах шляхом вибору раціонального проектного теплового навантаження та його розподілу за характером зміни поточного теплового навантаження відповідно до поточних кліматичних умов є одним з перспективних резервів підвищення енергетичної ефективності систем кондиціювання повітря, реалізація якого забезпечує досягнення максимального або близького до нього річного виробництва холоду відповідно до його витрат на кондиціювання повітря. В загальному випадку весь діапазон поточних теплових навантажень будь-якої системи кондиціювання повітря включає діапазон нестабільних навантажень, обумовлених попереднім охолодженням зовнішнього повітря зі значними коливаннями витрат холодопродуктивності відповідно до поточних кліматичних умов, і діапазон порівняно стабільної холодильної потужності, що витрачається на подальше зниження температури повітря від певної порогової температури до кінцевої температури на виході. Якщо діапазон стабільного теплового навантаження може бути забезпечений при роботі звичайного компресора в режимі, близькому до номінального, то попереднє охолодження зовнішнього повітря зі значними коливаннями теплового навантаження потребує регулювання холодопродуктивності шляхом застосування компресора з регульованою швидкістю або ж використання надлишку холоду, закумульованого при знижених теплових навантаженнях. Такий ступеневий принцип охолодження забезпечує узгодження роботи холодильних машин з характером зміни поточних теплових навантажень будь-якої системи кондиціювання повітря, чи то центральної системи кондиціювання повітря з його тепловологісною обробкою в центральному кондиціонері, чи то її комбінації з місцевою рециркуляційною системою кондиціювання повітря в приміщеннях, по суті, як комбінації підсистем – попереднього охолодження зовнішнього повітря з регулюванням холодопродуктивності та подальшого охолодження повітря до встановленої кінцевої температури в умовах відносно стабільного теплового навантаження.
Abstract. Maintaining the operation of refrigeration compressors in nominal or close modes by selecting a rational design thermal load and distributing it in response to the behavior of the current thermal load according to the current climatic conditions is one of the promising reserves for improving the energy efficiency of air conditioning systems, which implementation ensures maximum or close to it in the annual cooling production according to air conditioning duties. In general case, the total range of current thermal loads of any air-conditioning system includes a range of unstable loads caused by precooling of ambient air with significant fluctuations in the cooling capacity according to current climatic conditions, and a range of relatively stable cooling capacity expended for further lowering the air temperature from a certain threshold temperature to the final outlet temperature. If a range of stable thermal load can be provided within operating a conventional compressor in a mode close to nominal, then precooling the ambient air with significant fluctuations in thermal load requires adjusting the cooling capacity by using a variable speed compressor or using excess of heat accumulated at reduced load. Such a stage principle of cooling ensures the operation of refrigerating machines matching the behavior of current thermal loads of any air-conditioning system, whether the central air conditioning system with ambient air procession in the central air conditioner, or its combination with the local indoors recirculation air conditioning systems in the air-conditioning system. in essence, as combinations of subsystems – precooling of ambient air with regulation of cooling capacity and subsequent cooling air to the mouth of the set point temperature under relatively stable thermal load.
Аннотация. Поддержание работы холодильных компрессоров в номинальном или близком к нему режимах путем выбора рациональной проектной тепловой нагрузки и ее распределения согласно характеру изменения текущей тепловой нагрузки в соответствии с текущими климатическими условиями является одним из перспективных резервов повышения энергетической эффективности систем кондиционирования воздуха, реализация которого обеспечивает достижение максимального или близкого к нему годового производства холода в соответствии с его расходованием на кондиционирование воздуха. В общем случае весь диапазон текущих тепловых нагрузок любой системы кондиционирования воздуха включает диапазон нестабильных нагрузок, обусловленных предварительным охлаждением наружного воздуха со значительными колебаниями затрат холодопроизводительности в соответствии с текущими климатическими условиями, и диапазон сравнительно стабильной холодопроизводительности, расходуемой на дальнейшее понижение температуры воздуха от некоторой пороговой температуры до конечной температуры на выходе. Если диапазон стабильной тепловой нагрузки может быть покрыт при работе обычного компрессора в режиме, близком к номинальному, то предварительное охлаждение наружного воздуха со значительными колебаниями тепловой нагрузки требует регулирования холодопроизводительности путем применения компрессора с регулируемой скоростью или использования избытка холода, аккумулированного при пониженных тепловых нагрузках. Такой ступенчатый принцип охлаждения обеспечивает согласование работы холодильных машин с характером изменения текущих тепловых нагрузок любой системы кондиционирования воздуха, то ли центральной системы кондиционирования воздуха с его тепловлажностной обработкой в центральном кондиционере, то ли ее комбинации с местной циркуляционной системой кондиционирования воздуха в помещениях, по сути, как комбинации подсистем–предварительного охлаждения наружного воздуха с регулированием холодопроизводительности и последующего охлаждения воздуха до конечной температуры в условиях относительно стабильной тепловой нагрузки.
APA, Harvard, Vancouver, ISO, and other styles
9

Трушляков, Є. І., А. М. Радченко, В. С. Ткаченко, С. А. Контор, E. I. Trushliakov, A. M. Radchenko, V. S. Tkachenko, and S. A. Kantor. "Удосконалення системи кондиціювання зовнішнього повітря комбінованого типу." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4331.

Full text
Abstract:
Трушляков, Є. І. Удосконалення системи кондиціювання зовнішнього повітря комбінованого типу = Increasing the efficiency of ambient air conditioning in the combined type system / Є. І. Трушляков, А. М. Радченко, В. С. Ткаченко, С. А. Контор // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 488–493.
Анотація. Обґрунтовано напрям підвищення ефективності кондиціювання зовнішнього повітря в системах комбінованого центрально-місцевого типу шляхом раціонального розподілу теплового навантаження – витрат холодопродуктивності – центрального кондиціонера на зони змінного теплового навантаження відповідно до поточних кліматичних умов і відносно стабільної його величини, тобто витрат холодопродуктивності на подальше охолодження повітря на вході до системи місцевого кондиціювання рециркуляційного повітря в окремих приміщеннях. За результатами зіставлення значень надлишку виробництва холоду та його дефіциту за кожні 3 доби для раціонального проектного теплового навантаження системи кондиціювання (холодопродуктивності встановленої холодильної машини), яке забезпечує близьке до максимального річне виробництво холоду, та за відповідними величинами надлишку і дефіциту холодопродуктивності відповідно до поточних кліматичних умов по накопиченню за упродовж липня обґрунтована доцільність акумуляції надлишку холодопродуктивності центрального кондиціонера при знижених поточних теплових навантаженнях та її використання для покриття дефіциту холоду при підвищених теплових навантаженнях шляхом попереднього охолодження зовнішнього повітря. Розроблено схему комбінованої центрально-місцевої системи кондиціювання повітря, до складу якої входять підсистеми кондиціювання зовнішнього повітря в центральному кондиціонері та місцевого кондиціювання рециркуляційного повітря в окремих приміщеннях.
Abstract. The direction of increasing the efficiency of outdoor air conditioning in combined central-local type systems by rationally distributing the heat load - cooling capacity of the central air conditioner into zones of variable heat load in accordance with current climatic conditions and its relatively stable value, i.e. cooling capacity required for further air cooling at the entrance to the indoor recirculation air conditioning system is justified. By comparing the values of the excessive production of cold and its deficit within every 3 days for a rational design heat load of the air conditioning system (cooling capacity of the installed refrigeration machine), which provides close to maximum annual production of cold, and the corresponding values of the excess and deficit of cooling capacity in accordance with current climatic conditions during July substantiated the feasibility of accumulating the excess of cooling capacity of a central air conditioner at low current loads and its use for covering cooling deficit at elevated heat loads through pre-cooling the outdoor air. A scheme of a combined central-local air conditioning system, which includes the subsystems for the outdoor air conditioning in a central air conditioner and for the local indoor recirculated air conditioning has been developed.
Аннотация. Обосновано направление повышения эффективности кондиционирования наружного воздуха в системах комбинированного центрально-местного типа путем рационального распределения тепловой нагрузки–расходов холодопроизводительности–центрального кондиционера на зоны переменной тепловой нагрузки в соответствии с текущими климатическими условиями и относительно стабильной ее величины, то есть затрат холодопроизводительности на дальнейшее охлаждение воздуха на входе в систему местного кондиционирования рециркуляционного воздуха в отдельных помещениях. По результатам сопоставления значений избытка производства холода и его дефицита за каждые 3 суток для рациональной проектной тепловой нагрузки системы кондиционирования (холодопроизводительности установленной холодильной машины), которая обеспечивает близкое к максимальному годовое производство холода, и по соответствующим величинам избытка и дефицита холодопроизводительности в соответствии с текущими климатическими условиями по накоплению в течение июля обоснована целесообразность аккумуляции избытка холодопроизводительности центрального кондиционера при пониженных текущих тепловых нагрузках и ее использования для покрытия дефицита холода при повышенных тепловых нагрузках путем предварительного охлаждения наружного воздуха. Разработана схема комбинированной центрально-местной системы кондиционирования воздуха, в состав которой входят подсистемы кондиционирования наружного воздуха в центральном кондиционере и местного кондиционирования рециркуляционного воздуха в отдельных помещениях.
APA, Harvard, Vancouver, ISO, and other styles
10

Трушляков, Є. І., А. М. Радченко, А. А. Зубарєв, А. В. Грич, В. С. Ткаченко, Я. Зонмін, E. I. Trushliakov, et al. "Методологічний підхід до визначення холодопродуктивності систем кондиціювання повітря." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4336.

Full text
Abstract:
Методологічний підхід до визначення холодопродуктивності систем кондиціювання повітря = A methodological approach to defining the refrigeration capacity of air conditioning systems / Є. І. Трушляков, А. М. Радченко, А. А. Зубарєв, А. В. Грич, В. С. Ткаченко, Я. Зонмін // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 592–596.
Анотація. Ефективність застосування установок кондиціювання повітря комфортного й енергетичного призначення упродовж певного періоду, як і будь-якої енергоустановки, визначається отримуваним при цьому ефектом, передусім у вигляді зменшення споживання палива за рік або збільшення виробництва електричної (механічної) енергії у разі кондиціювання повітря на вході теплового двигуна та річного виробництва холоду як показника ефективності використання холодильної потужності установок комфортного кондиціювання повітря. Оскільки в обох випадках ефект залежить від тривалості та глибини охолодження, то цілком правомірною є його оцінка у першому наближенні термочасовим потенціалом, який представляє собою добуток зниження температури повітря та тривалості експлуатації при зниженій температурі і, таким чином, враховує поточні кліматичні умови. Вочевидь, що реалізація потенціалу охолодження (кондиціювання) зовнішнього повітря залежить від встановленої (проектної) холодопродуктивності установок кондиціювання, яка, в свою чергу, повинна враховувати коливання теплових навантажень відповідно до поточних змінних тепловологісних параметрів зовнішнього повітря. Виходячи з різного темпу прирощення річного термочасового потенціалу охолодження зі збільшенням встановленої холодопродуктивності установки кондиціювання повітря, обумовленого зміною теплового навантаження відповідно до поточних кліматичних умов упродовж року, необхідно вибирати таке проектне теплове навантаження на установку кондиціювання повітря (його встановлену холодопродуктивність), яке забезпечує досягнення максимального або близького до нього річного термочасового потенціалу охолодження при відносно високих темпах його прирощення, відповідно й ефекту від охолодження у вигляді зменшення витрати палива за рік у разі кондиціювання повітря на вході теплового двигуна та річного виробництва холоду установками комфортного кондиціювання повітря. Показано, що при однакових кліматичних умовах упродовж року та глибині охолодження зовнішнього повітря раціональні значення проектної холодопродуктивності установок кондиціювання комфортного й енергетичного призначення співпадають.
Abstract. The efficiency of using air conditioning units for comfort and energetics for a certain period, as well as any power plant, is determined by the effect obtained, primarily in the form of reducing fuel consumption over the year or increasing the production of electrical (mechanical) energy in the case of air conditioning at the heat engine inlet and by annual cold production as an indicator of the efficiency of using the cooling capacity of comfort air-conditioning plants. Since in both cases the effect depends on the duration and depth of cooling, it is quite justified to estimate it in the first approximation by the thermal hourly potential, which is the result of summation hour by hour of air temperature drops multiplied by duration of operation at a lowered temperature and, thus, takes into account current climatic conditions. Obviously, the realization of the cooling potential (air conditioning) of the ambient air depends on the installed (design) cooling capacity of the air conditioning units, which, in turn, must take into account the fluctuations in thermal loads in accordance with the current variable thermal and humidity parameters of the ambient air. Based on the different rates of the increment of the annual thermal hourly cooling potential with an increase in the installed cooling capacity of the air conditioning unit due to a change in the heat load in accordance with current climatic conditions during the year, it is necessary to choose such a design thermal load on the air conditioning unit (its installed cooling capacity) that ensures maximum or close to it the annual thermo-hour cooling potential at a relatively high rate of its increment, respectively, and the effect of cooling in the form of a decrease in fuel consumption per year in the case of air conditioning at the inlet of heat engine and annual cold production of comfort air conditioning units. It is shown that under the same climatic conditions during the year and the depth of ambient air cooling, the rational values of the design cooling capacity of air conditioning units for comfort and energy purposes are the same.
Аннотация. Эффективность применения установок кондиционирования воздуха комфортного и энергетического назначения в течение определенного периода, как и любой энергоустановки, определяется получаемым при этом эффектом, прежде всего в виде уменьшения потребления топлива за год или увеличения производства электрической (механической) энергии в случае кондиционирования воздуха на входе теплового двигателя и годового производства холода как показателя эффективности использования холодильной мощности установок комфортного кондиционирования воздуха. Поскольку в обоих случаях эффект зависит от продолжительности и глубины охлаждения, то вполне правомерной является его оценка в первом приближении термочасовым потенциалом, который представляет собой произведение снижение температуры воздуха и продолжительности эксплуатации при пониженной температуре и, таким образом, учитывает текущие климатические условия. Очевидно, что реализация потенциала охлаждения (кондиционирования) наружного воздуха зависит от установленной (проектной) холодопроизводительности установок кондиционирования, которая, в свою очередь, должна учитывать колебания тепловых нагрузок в соответствии с текущими переменными тепловлажностными параметрами наружного воздуха. Показано, что при одинаковых климатических условиях в течение года и глубине охлаждения наружного воздуха рациональные значения проектной холодопроизводительности установок кондиционирования комфортного и энергетического назначения совпадают.
APA, Harvard, Vancouver, ISO, and other styles
11

Трушляков, Є. І., А. М. Радченко, В. С. Ткаченко, Є. C. Смоляной, С. А. Кантор, E. I. Trushliakov, А. M. Radchenko, V. S. Tkachenko, Е. S. Smolyanoy, and S. A. Kantor. "Оцінка ефективності реалізації встановленої холодопродуктивності систем кондиціювання повітря." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4335.

Full text
Abstract:
Оцінка ефективності реалізації встановленої холодопродуктивності систем кондиціювання повітря = Estimation of the efficiency of realization of the installed refrigeration capacity of air conditioning system / Є. І. Трушляков, А. М. Радченко, В. С. Ткаченко, Є. C. Смоляной, С. А. Кантор // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 547–555.
Анотація. Запропоновано підхід до аналізу ефективності використання встановленої (проектної) холодопродуктивності холодильних машин систем кондиціювання припливного повітря (СКПП) з урахуванням змін теплових навантажень у відповідності з поточними кліматичними умовами. При цьому порівнюють потенційно можливе вироблення холоду (виходячи з наявної встановленої холодопродуктивності) за певний період, як приклад – за найбільш теплий липень місяць, з її використанням на попереднє охолодження зовнішнього повітря до певної проміжної (порогової) температури, і подальше глибоке охолодження повітря при відносно стабільному тепловому навантаженні. Висунуто гіпотезу попередньої оцінки доцільності застосування регулювання холодопродуктивності за співвідношенням сумарних за деякий проміжок часу використання холоду на охолодження зовнішнього повітря і потенційно можливого вироблення холоду при повній реалізації наявної встановленої холодопродуктивності СКПП. Запропонований підхід до вибору раціональної встановленої холодопродуктивності СКПП та її розподілу відповідно до характеру зміни теплового навантаження у відповідності з поточними кліматичними умовами доцільно використовувати для визначення областей ефективного застосування енергозберігаючих способів реалізації холодопродуктивності, зокрема, акумуляцією та використанням надлишку холодопродуктивності при змінних теплових навантаженнях, частотного або іншого способу регулювання холодопродуктивності компресорів при відхиленнях теплового навантаження від номінального.
Abstract. An approach to analyzing the efficiency of using an installed (design) refrigeration capacity of refrigeration machine of ambient air conditioning system (AACS) with taking into account the current climatic conditions of operation. With this a potential refrigeration capacity generation (according to available installed refrigeration capacity) during a definite time, as an example – during the most hot July month, with their spending for ambient air precooling down to a definite intermediate (threshold) temperature and further deep cooling the air at relatively stable heat load. The hypothesis of previous evaluation of the expedient application of refrigeration compressors with controlling the refrigeration capacity by using a frequency converter according to relation between the refrigeration capacity spending for ambient air precooling down to a definite intermediate (threshold) temperature and a potential refrigeration capacity generation with full realization of available installed refrigeration capacity of AACS summarized during a definite time. A proposed method for choosing a rational installed (design) refrigeration capacity of AACS and their shearing according to the behavior of heat load changing due to current climatic conditions of operation is quite expedient for determining the ranges of efficient application of energy saving methods of spending the available refrigeration capacity as an example by accumulation of excessive (unused) refrigeration capacity at lowered current heat loads on AACS and its using for ambient air precooling or by using a frequency converter for electric motor of refrigeration compressor for controlling the refrigeration capacity within small fluctuation of heat loads of deep subcooling the air precooled.
Аннотация. Предложен подход к анализу эффективности использования установленной (проектной) холодопроизводительности холодильных машин систем кондиционирования приточного воздуха (СКПВ) с учетом изменений тепловых нагрузок в соответствии с текущими климатическими условиями. При этом сравнивают потенциально возможная выработка холода (исходя из имеющейся установленной холодопроизводительности) за определенный период, как пример – по наиболее теплый июль месяц, с ее использованием на предварительное охлаждение наружного воздуха до промежуточной (пороговой) температуры, и дальнейшее глубокое охлаждение воздуха при относительно стабильной тепловой нагрузке. Выдвинута гипотеза предварительной оценки целесообразности применения регулирования холодопроизводительности по соотношению суммарных, за некоторый промежуток времени, использования холода на охлаждение наружного воздуха и потенциально возможной выработки холода при полной реализации имеющейся установленной холодопроизводительности СКПВ. Предложенный подход к выбору рациональной установленной холодопроизводительности СКПВ и ее распределения в соответствии с характером изменения тепловой нагрузки в соответствии с текущими климатическими условиями целесообразно использовать для определения областей эффективного применения энергосберегающих способов реализации холодопроизводительности, в частности, аккумуляцией и использованием избытка холодопроизводительности при переменных тепловых нагрузках, частотного или иного способа регулирования холодопроизводительности компрессоров при отклонениях тепловой нагрузки от номинальной.
APA, Harvard, Vancouver, ISO, and other styles
12

Трушляков, Є. І., А. М. Радченко, С. Г. Фордуй, А. А. Зубарєв, С. А. Кантор, В. С. Ткаченко, E. I. Trushliakov, et al. "Аналіз екологічної ефективності систем кондиціювання повітря комбінованого типу." Thesis, 2020. http://eir.nuos.edu.ua/xmlui/handle/123456789/4341.

Full text
Abstract:
Аналіз екологічної ефективності систем кондиціювання повітря комбінованого типу = The ecological efficiency analysis of combined air conditioning system / Є. І. Трушляков, А. М. Радченко, С. Г. Фордуй, А. А. Зубарєв, С. А. Кантор, В. С. Ткаченко // Матеріали XI міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2020. – Т. 1. – С. 442–445.
Анотація. В роботі досліджено екологічну ефективність кондиціювання повітря в кліматичних умовах м. Київ. Показниками оцінки екологічного ефекту обрані сумарні по накопиченню річні скорочення викидів двооксиду вуглецю CO2 та оксиду азоту NOX. Показано, що при використанні методу забезпечення максимального темпу приросту виробництва холоду спостерігається найбільше скорочення шкідливих викидів.
The paper investigates the environmental efficiency of air conditioning in the climatic conditions of Kiev. The indicators for assessing the environmental effect are the cumulative annual reductions in carbon dioxide CO2 and nitrogen oxide NOX emissions. It is shown that when using the method of ensuring the maximum rate of increase in cold production, the greatest reduction in harmful emissions is observed.
APA, Harvard, Vancouver, ISO, and other styles
13

Radchenko, M., E. Trushliakov, A. Radchenko, S. Kantor, V. Tkachenko, М. Радченко, Є. Трушляков, А. Радченко, С. Кантор, and В. Ткаченко. "Approach to enhance the energetic efficiency of air conditioning systems by cooling load distribution in ambient air procession." Thesis, 2020. http://eir.nuos.edu.ua/xmlui/handle/123456789/4346.

Full text
Abstract:
Approach to enhance the energetic efficiency of air conditioning systems by cooling load distribution in ambient air procession = Підхід до підвищення енергетичної ефективності систем кондиціювання повітря шляхом розподілу холодопродуктивності при обробці зовнішнього повітря / M. Radchenko, E. Trushliakov, A. Radchenko, S. Kantor, V. Tkachenko // Матеріали XI міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2020. – Т. 1. – С. 490–500.
У загальному випадку весь діапазон холодопродуктивності будь-якої системи кондиціювання повітря включає нестабільний діапазон і порівняно стабільну частину холодопродуктивності для подальшого охолодження повітря. Таким чином, стабільний діапазон холодопродуктивності може бути забезпечений роботою звичайного компресора, в той час як режим із значними коливаннями холодопродуктивності вимагає її модуляції. Пропонований підхід може бути використаний для проектування систем зі змінним потоком хладагента (VRF), забезпечених системою обробки зовнішнього повітря (OAP).
Abstract. In general case, an overall cooling load band of any air conditioning system comprises the unstable cooling load range and a comparatively stable cooling load part for further air cooling. Thus, the stable cooling load range can be covered by operation of conventional compressor, meantime mode with considerable cooling load fluctuation needs load modulation. A proposed method can be adopted for designing Variable Refrigerant Flow (VRF) systems provided with Outdoor Air Processing (OAP) system.
APA, Harvard, Vancouver, ISO, and other styles
14

Трушляков, Є. І., А. М. Радченко, А. А. Зубарєв, В. С. Ткаченко, Я. Зонмін, С. Г. Фордуй, E. I. Trushliakov, et al. "Визначення встановленої холодопродуктивності системи кондиціювання зовнішнього повітря за поточними тепловими навантаженнями." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4328.

Full text
Abstract:
Визначення встановленої холодопродуктивності системи кондиціювання зовнішнього повітря за поточними тепловими навантаженнями = Determining cooling capacity of ambient air conditioning system according to current heat loads / Є. І. Трушляков, А. М. Радченко, А. А. Зубарєв, В. С. Ткаченко, Я. Зонмін, С. Г. Фордуй // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 447–451.
Анотація. Ефективність застосування систем кондиціювання зовнішнього повітря залежить від того, наскільки повно використовуються встановлені холодильні потужності в конкретних кліматичних умовах, тобто за більш повного навантаження і тривалого часу упродовж року. За показник кількісної оцінки ефективності використання холодильної потужності систем кондиціювання повітря взято виробництво холоду – кількість виробленого холоду відповідно до його поточних витрат на кондиціювання повітря, яка в свою чергу залежить від поточних витрат холодопродуктивності та тривалості роботи системи кондиціювання за цих витрат і представляє собою їх добуток. Вочевидь, що максимальна величина поточної кількості виробленого/витраченого холоду свідчить про ефективне використання встановленої холодильної потужності. Однак, оскільки поточні витрати холодопродуктивності та їх тривалість, тобто кількість виробленого/витраченого холоду, залежать від змінних поточних кліматичних умов, то вони теж характеризуються значними коливаннями, що ускладнює вибір встановленої холодопродуктивності системи кондиціювання повітря. Вочевидь, якщо визначати кількість виробленого/витраченого холоду за його поточними величинами і нарощуванням упродовж року, то можна суттєво спростити вибір встановленої холодопродуктивності. При цьому поточна кількість виробленого/витраченого холоду спричиняє зміну темпу прирощення річного виробництва холоду зі зміною встановленої холодопродуктивності і максимальному темпу відповідає встановлена холодопродуктивність, яка забезпечує її ефективне використання. Виходячи з різного темпу прирощення річного виробництва холоду зі збільшенням встановленої холодопродуктивності системи кондиціювання повітря, обумовленого зміною теплового навантаження відповідно до поточних кліматичних умов упродовж року, вибирають таку величину проектного теплового навантаження на систему кондиціювання повітря (встановлену холодопродуктивність), яка забезпечує максимальний або близький до нього темп прирощення річного виробництва холоду, а відтак і максимальну ефективність використання встановленої холодильної потужності.
Abstract. The efficiency of the use of outdoor air conditioning systems depends on how full the installed cooling capacity is used, that is, with a more complete load and for as long as possible yearly duration in actual climatic conditions. The production of cold is taken as a criteria of a quantitative evaluation of the efficiency of using the cooling capacity of air conditioning systems – the amount of cold produced in accordance with its current demand for air conditioning, which in turn depends on the current consumption of cooling capacity and its duration and equals to their multiplication. It is obvious that the maximum value of the current amount of cold produced/consumed indicates an effective use of the installed cooling capacity. However, since the current demands of cooling capacity and their duration, that is, the amount of cold produced/consumed, depend on the changing current climatic conditions, they are characterized by significant fluctuations, which makes it difficult to choose the installed cooling capacity of the air conditioning system. Obviously, if we determine the amount of cold produced/consumed by its current values and summarized during the year, it is possible to significantly simplify the choice of the installed cooling capacity. At the same time, the current amount of cold produced/consumed causes a change in the rate of increment of the annual cold production with a change in the installed cooling capacity, and the maximum rate corresponds to the installed cooling capacity, which provides its efficient use. Proceeding from a different rate of increment of annual cold production with an increase in the installed cooling capacity of the air conditioning system due to a change in heat load in accordance with current climatic conditions during the year, the value of design heat load on the air conditioning system (installed cooling capacity) that provides maximum or close to it the rate of increment of the annual production of cold, and hence the maximum efficiency use of installed cooling capacity is chosen.
Аннотация. Эффективность применения систем кондиционирования наружного воздуха зависит от того, насколько полно используются установленные холодильные мощности, то есть при более полной нагрузке и в течение как можно более длительного времени в течение года, в конкретных климатических условиях. В качестве показателя количественной оценки эффективности использования холодильной мощности систем кондиционирования воздуха взято производство холода – количество произведенного холода в соответствии с его текущим расходованием на кондиционирование воздуха, которое в свою очередь зависит от текущих затрат холодопроизводительности и продолжительности работы системы кондиционирования при этих затратах и представляет собой их произведение. Очевидно, что максимальная величина текущего количества производимого/затраченного холода свидетельствует об эффективном использовании установленной холодильной мощности. Однако, поскольку текущие затраты холодопроизводительности и их продолжительность, то есть количество производимого/затраченного холода, зависят от меняющихся текущих климатических условий, то они характеризуются значительными колебаниями, что затрудняет выбор установленной холодопроизводительности системы кондиционирования воздуха. Очевидно, если определять количество производимого/затраченного холода по его текущим величинам и наращиванию в течение года, то можно существенно упростить выбор установленной холодопроизводительности. При этом текущее количество производимого/затраченного холода вызывает изменение темпа приращения годового производства холода с изменением установленной холодопроизводительности, и максимальному темпу соответствует установленная холодопроизводительность, которая обеспечивает ее эффективное использование. Исходя из разного темпа, приращение годового производства холода с увеличением установленной холодопроизводительности системы кондиционирования воздуха, обусловленного изменением тепловой нагрузки в соответствии с текущими климатическими условиями в течение года, выбирают такую величину проектной тепловой нагрузки на систему кондиционирования воздуха (установленную холодопроизводительность), которая обеспечивает максимальный или близкий к нему темп приращения годового производства холода, а значит и максимальную эффективность использования установленной холодильной мощности.
APA, Harvard, Vancouver, ISO, and other styles
15

Трушляков, Є. І., А. М. Радченко, А. А. Стахель, С. А. Кантор, and А. А. Зубарєв. "Проектне теплове навантаження системи кондиціювання повітря і прирощення річного споживання холоду." Thesis, 2018. http://eir.nuos.edu.ua/xmlui/handle/123456789/4339.

Full text
Abstract:
Проектне теплове навантаження системи кондиціювання повітря і прирощення річного споживання холоду / Є. І. Трушляков, А. М. Радченко, А. А. Стахель, С. А. Кантор, А. А. Зубарєв // Матеріали IX міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". – Миколаїв : НУК, 2018. – С. 207–208.
APA, Harvard, Vancouver, ISO, and other styles
16

Трушляков, Є. І., М. І. Радченко, Б. С. Портной, А. А. Зубарєв, С. А. Кантор, Я. Зонмін, E. I. Trushliakov, et al. "Раціональне теплове навантаження системи кондиціювання повітря за темпом прирощення річної холодопродуктивності." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4337.

Full text
Abstract:
Раціональне теплове навантаження системи кондиціювання повітря за темпом прирощення річної холодопродуктивності = Rational thermal load of air conditioning systems according to yearly coling capacity rate / Є. І. Трушляков, М. І. Радченко, Б. С. Портной, А. А. Зубарєв, С. А. Кантор, Я. Зонмін // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 423–426.
Анотація. Показано, що виходячи з різного темпу нарощування річного виробництва холоду (річної холодопродуктивності), обумовленого зміною теплового навантаження відповідно до поточних кліматичних умов, необхідно вибирати таке проектне теплове навантаження на систему кондиціювання повітря (встановлену холодильну потужність холодильних машин), яке забезпечує досягнення максимального або близького до нього річного виробництва холоду при відносно високих темпах його нарощування. З метою визначення встановленої холодильної потужності, яка забезпечує максимальний темп нарощування річної холодопродуктивності (річного виробництва холоду), проаналізовано залежність прирощення річної холодопродуктивності, віднесеної до встановленої холодильної потужності, від встановленої холодильної потужності. За результатами досліджень запропоновано метод визначення раціонального теплового навантаження системи кондиціювання повітря (встановленої – проектної холодопродуктивності холодильної машини) відповідно до змінних кліматичних умов експлуатації упродовж року, яке забезпечує близьке до максимального річне виробництво холоду при відносно високих темпах його нарощування.
Abstract. It is shown that, based on the varying rate of increment in the annual production of cold (annual refrigeration capacity) due to the change in the thermal load in accordance with current climatic conditions, it is necessary to select such a design thermal load for the air conditioning system (installed refrigeration capacity of chillers), which ensures the achievement of maximum or close to it annual production of cold at a relatively high rate of its increment. In order to determine the installed refrigeration capacity, which provides the maximum rate of increase in the annual refrigerating capacity (annual production of cold), the dependence of the increment on the annual refrigerated capacity, relative to the installed refrigeration capacity, on the installed refrigeration capacity, has been analyzed. Based on the results of the research, a method has been proposed for determining the rational thermal load of the air conditioning system (installed – the design refrigeration capacity of the chiller) in accordance with the changing climatic conditions of operation during the year, which provides nearby the maximum annual production of cold at relatively high rates of its growth.
Показано, что исходя из различного темпа приращения годового производства холода (годовой холодопроизводительности), обусловленного изменением тепловой нагрузки в соответствии с текущими климатическими условиями, необходимо выбирать такую проектную тепловую нагрузку на систему кондиционирования воздуха (установленную холодильную мощность холодильных машин), которая обеспечивает достижение максимального или близкого к нему годового производства холода при относительно высоких темпах его приращения. С целью определения установленной холодильной мощности, которая обеспечивает максимальный темп приращения годовой холодопроизводительности (годового производства холода), проанализирована зависимость приращения годовой холодопроизводительности, относительно установленной холодильной мощности, от установленной холодильной мощности. По результатам исследований предложен метод определение рациональной тепловой нагрузки системы кондиционирования воздуха (установленной – проектной холодопроизводительности холодильной машины) в соответствии с меняющимися климатическими условиями эксплуатации в течение года, которое обеспечивает близкое максимальному годовому производство холода при относительно высоких темпах его приращения.
APA, Harvard, Vancouver, ISO, and other styles
17

Трушляков, Є. І., А. М. Радченко, Б. С. Портной, С. Г. Фордуй, E. I. Trushliakov, A. M. Radchenko, B. S. Portnoi, and S. G. Forduy. "Методи визначення теплового навантаження систем кондиціювання повітря з урахуванням поточних кліматичних умов." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4332.

Full text
Abstract:
Методи визначення теплового навантаження систем кондиціювання повітря з урахуванням поточних кліматичних умов = Methods to determine the heat load of air conditioning systems with account of current climatic conditions / Є. І. Трушляков, А. М. Радченко, Б. С. Портной, С. Г. Фордуй // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 493–497.
Анотація. Одним з найбільш привабливих резервів підвищення енергетичної ефективності систем кондиціювання повітря є забезпечення роботи холодильних компресорів в номінальному або близькому до номінального режимах шляхом вибору раціонального проектного теплового навантаження та його розподілу в межах його проектної величини відповідно до характеру поточного теплового навантаження за змінних поточних кліматичних умов з метою максимального або близького до нього річного виробництва холоду відповідно до його витрат на кондиціювання повітря. В загальному випадку весь діапазон поточних теплових навантажень будь-якої системи кондиціювання повітря включає діапазон нестабільних навантажень, пов’язаних з попереднім охолодженням зовнішнього повітря зі значними коливаннями витрат холодопродуктивності відповідно до поточних кліматичних умов, і порівняно стабільну частку холодильної потужності, що витрачається на подальше зниження температури повітря від певної порогової температури до кінцевої температури на виході. Цілком очевидно, що стабільний діапазон теплового навантаження може бути забезпечений при роботі звичайного компресора в режимі, близькому до номінального режимі, тоді як попереднє охолодження зовнішнього повітря зі значними коливаннями теплового навантаження потребує регулювання холодопродуктивності шляхом застосування компресора з регульованою швидкістю. Таким чином, за характером зміни поточних теплових навантажень будь-яка система кондиціювання повітря, чи то центральна система кондиціювання повітря з його тепловологісною обробкою в центральному кондиціонері, чи то її комбінація з місцевою рециркуляційною системою кондиціювання повітря в приміщеннях, по суті, складається з двох підсистем: попереднього охолодження зовнішнього повітря і його подальшого охолодження до встановленої кінцевої температури. Запропонований метод розподілу проектного теплового навантаження в залежності від характеру поточних теплових навантажень є корисним для раціонального проектування систем центрального кондиціювання повітря та їх комбінованих версій з місцевою системою кондиціювання повітря.
Abstract. One of the most attractive reserves for improving the energy efficiency of air conditioning systems is to ensure the operation of refrigeration compressors in nominal or close to nominal modes by selecting a rational design heat load and distributing it within its design value according to the behavior of the current heat load under variable current climatic conditions to provide the maximum or close to maximum annual cooling capacity generation accord-ing to cooling duties of air conditioning. In the general case, the overall range of current thermal loads of any air conditioning system includes a range of unstable loads associated with the precooling of ambient air with significant fluctuations in cooling capacity according with current climatic conditions, and a relatively stable range of cooling capacity consumed to further reduce air temperature from a certain threshold temperature to the final outlet tem-perature. It is quite obvious that a stable range of heat load can be ensured within operating a conventional com-pressor in a mode close to the nominal mode, while precooling the ambient air with significant fluctuations in heat load requires regulation of the cooling capacity through the use of a variable speed compressor. Thus, in response of the behavior of the change in current heat loads, any air conditioning system, whether the central air-conditioning system with its heat procession in a central air conditioner, or a combination thereof with a local recirculation sys-tem of indoor air, essentially consists of two subsystems: pre-cooling the ambient air and then cooling it to the set point temperature. The proposed method of distribution of design heat load depending on the behaviour of current heat load is useful for the rational design of central air conditioning systems and their combined versions with the local air conditioning system.
Аннотация. Одним из самых привлекательных резервов повышения энергетической эффективности систем кондиционирования воздуха является обеспечение работы холодильных компрессоров в номинальном или близком к номинальному режимах путем выбора рационального проектной тепловой нагрузки и ее распределения в пределах ее проектной величины в соответствии с характером текущей тепловой нагрузки в соответствии с меняющимися текущими климатическими условиями с целью максимального или близкого к нему годового производства холода в соответствии с его расходованием на кондиционирование воздуха. В общем случае весь диапазон текущих тепловых нагрузок любой системы кондиционирования воздуха включает диапазон нестабильных нагрузок, связанных с предварительным охлаждением наружного воздуха со значительными колебаниями затрат холодопроизводительности в соответствии с текущими климатическими условиями, и сравнительно стабильную долю холодопроизводительности, расходуемой на снижение температуры воздуха от определенной пороговой температуры до конечной температуры на выходе. Совершенно очевидно, что стабильный диапазон тепловой нагрузки может быть обеспечен при работе обычного компрессора в режиме, близком к номинальному, тогда как предварительное охлаждение наружного воздуха со значительными колебаниями тепловой нагрузки требует регулирования холодопроизводительности путем применения компрессора с регулируемой скоростью. Таким образом, по характеру изменения текущих тепловых нагрузок любая система кондиционирования воздуха, то ли центральная система кондиционирования воздуха с его тепловлажностной обработкой в центральном кондиционере, то ли ее комбинация с местной рециркуляционной системой кондиционирования воздуха в помещениях, по сути, состоит из двух подсистем: предварительного охлаждения наружного воздуха и его дальнейшего охлаждения до установленной конечной температуры. Предложенный метод распределения проектного тепловой нагрузки в зависимости от характера текущих тепловых нагрузок весьма полезный для рационального проектирования систем центрального кондиционирования воздуха и их комбинированных версий с местной системой кондиционирования воздуха.
APA, Harvard, Vancouver, ISO, and other styles
18

Трушляков, Є. І., А. М. Радченко, С. А. Кантор, В. С. Ткаченко, С. Г. Фордуй, Я. Зонмін, E. I. Trushliakov, et al. "Визначення проектної холодопродуктивності системи кондиціювання повітря в конкретних кліматичних умовах і різними методами." Thesis, 2020. http://eir.nuos.edu.ua/xmlui/handle/123456789/4342.

Full text
Abstract:
Визначення проектної холодопродуктивності системи кондиціювання повітря в конкретних кліматичних умовах і різними методами = Determine of project cooling capacity of the air conditioning system in actual climate conditions and by different methods / Є. І. Трушляков, А. М. Радченко, С. А. Кантор, В. С. Ткаченко, С. Г. Фордуй, Я. Зонмін // Матеріали XI міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2020. – Т. 1. – С. 449–453.
Анотація. Запропоновано використання скорочення питомого споживання палива та вироблення холоду для визначення проектної холодопродуктивності холодильних машин системи кондиціювання повітря. Показано, що значення проектної холодопродуктивності, розраховані за обома показниками ефективності однакові для одних і тих же кліматичних умов.
Determine of project cooling capacity of the air conditioning system in actual climate conditions and by different methods It is proposed to use a reduction in specific fuel consumption and cold production to determine the design refrigeration capacity of refrigeration machines of the air conditioning system. It is shown that the value of the design refrigerating capacity calculated by both efficiency indicators are the same for the same climatic conditions.
APA, Harvard, Vancouver, ISO, and other styles
19

Трушляков, Е. И., Н. И. Радченко, В. С. Ткаченко, E. I. Trushliakov, M. I. Radchenko, and V. S. Tkachenko. "Регулирование холодопроизводительности систем кондиционирования приточного воздуха." Thesis, 2019. http://eir.nuos.edu.ua/xmlui/handle/123456789/4330.

Full text
Abstract:
Трушляков, Е. И. Регулирование холодопроизводительности систем кондиционирования приточного воздуха = Cooling capacity control of ambient air conditioning systems / Е. И. Трушляков, Н. И. Радченко, В. С. Ткаченко // Матеріали X міжнар. наук.-техн. конф. "Інновації в суднобудуванні та океанотехніці". В 2 т. – Миколаїв : НУК, 2019. – Т. 1. – С. 483–488.
Анотація. Показано, що експлуатація систем кондиціювання приточного повітря (СКПП) відрізняється значними коливаннями теплового навантаження відповідно до поточних кліматичних умови. Це робить вельми проблематичним застосування в них холодильних компресорів з перетворювачами частоти, вельми ефективними при регулюванні холодопродуктивності замкнених систем кондиціювання повітря, в яких діапазон регулювання температури і, відповідно, коливання теплового навантаження порівняно незначний порівняно з охолодженням зовнішнього повітря. З метою аналізу ефективності регулювання холодопродуктивності СКПП зміною швидкості обертання електродвигуна поршневого компресора в конкретних кліматичних умовах весь діапазон зміни поточних теплових навантажень розбито на дві області відповідно до регулювання холодопродуктивності за допомогою перетворювача частоти: на область ефективного регулювання холодопродуктивності без енергетичних втрат (без зменшення холодильного коефіцієнта) від номінального до її порогового значення і область зниженої холодопродуктивності, що не регулюється частотним перетворювачем. Показано, що для самого теплого літнього місяця частка холоду, що витрачається на охолодження зовнішнього повітря до температури 10 °С при 50 % регулюванні холодопродуктивності, становить близько 10 % всієї його кількості, яка могла бути вироблена при номінальному навантаженні. При більш високих температурах охолодженого повітря, як і в більш прохолодні періоди навіть літніх місяців, вона ще менше. Це свідчить про невисоку ефективність регулювання холодопродуктивності СКПП зміною швидкості обертання електродвигуна поршневого компресора і необхідність застосування інших способів регулювання. Запропонований підхід до аналізу ефективності регулювання холодопродуктивності СКПП в конкретних кліматичних умовах дозволяє не тільки оцінити ефективність того чи іншого способу регулювання, а й виявити резерви підвищення ефективності використання встановленої холодопродуктивності.
Abstract. It is shown that the operation of ambient air conditioning systems (AACS) has significant fluctuations in the heat load in accordance with current climatic conditions. This makes it very problematic to use refrigeration compressors with frequency converters, which are very effective for controlling the refrigeration capacity in closed air conditioning systems, in which the temperature control range and, accordingly, fluctuations in thermal load are relatively insignificant compared to the cooling of ambient air. For the purpose of analyzing the efficiency of control-ling the refrigeration capacity of the AACS by changing the electric motor speed of the piston compressor in current climatic conditions, the entire range of changing current thermal loads is divided into two parts according to control-ling the refrigeration capacity by using a frequency converter: the part of effective cooling capacity adjustment without energy losses (without reducing the coefficient of performance) from nominal to its threshold value and the part of reduced refrigeration capacity without its controlling by a frequency converter. It is shown that for the warmest summer month, the proportion of refrigeration capacity spent for cooling ambient air to the temperature of 10 °C with 50 % frequency controlling the refrigeration capacity is about 10 % of the total amount of that could be produced at nominal refrigeration capacity. At higher temperatures of cooled air it is even less. This shows the low efficiency of controlling the refrigeration capacity of the AACS by changing the speed of rotation of the piston compressor electric motor and the need to use other methods of controlling the refrigeration capacity. The proposed approach to analyzing the efficiency of controlling the refrigeration capacity of AACS in current climatic conditions allows not only to estimate the efficiency of refrigeration capacity controlling method but also to reveal the reserves for increasing the efficiency of using the available refrigeration capacity.
Аннотация. Показано, что эксплуатация систем кондиционирования приточного воздуха (СКПВ) отличается значительными колебаниями тепловой нагрузки в соответствии с текущими климатическими условиями. Это делает весьма проблематичным применение в них холодильных компрессоров с преобразователями частоты, весьма эффективными при регулировании холодопроизводительности в замкнутых системах кондиционирования воздуха, в которых диапазон регулирования температуры и, соответственно, колебания тепловой нагрузки сравнительно незначительны по сравнению с охлаждением наружного воздуха. С целью анализа эффективности регулирования холодопроизводительности СКПВ изменением скорости вращения электродвигателя поршневого компрессора в конкретных климатических условиях весь диапазон изменения текущих тепловых нагрузок был разбит на две области в соответствии с регулированием холодопроизводительности с помощью преобразователя частоты: на область эффективного регулирования холодопроизводительности без энергетических потерь (без уменьшения холодильного коэффициента) от номинального до ее порогового значения и область пониженной холодопроизводительности, не регулируемой частотным преобразователем. Показано, что для самого теплого летнего месяца доля холода, расходуемого на охлаждение наружного воздуха до температуры 10 °С при частотном 50 % регулировании холодопроизводительности, составляет около 10 % всего его количества, которое могло быть произведено при номинальной нагрузке. При более высоких температурах охлажденного воздуха, как и в более прохладные периоды даже летних месяцев, она еще меньше. Это свидетельствует о невысокой эффективности регулирования холодопроизводительности СКПВ изменением скорости вращения электродвигателя поршневого компрессора и необходимости применения других способов регулирования. Предложенный подход к анализу эффективности регулирования холодопроизводительности СКПВ в конкретных климатических условиях позволяет не только оценить эффективность того или иного способа регулирования, но и выявить резервы повышения эффективности использования установленной холодопроизводительности.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography