Academic literature on the topic 'Система вимірювання результатів'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Система вимірювання результатів.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Система вимірювання результатів"

1

Павленко, В’ячеслав Якович, Світлана Василівна Шорнікова, Світлана Василівна Лук’янюк, and Сергій Юрійович Чайковський. "Перспективні рішення щодо автоматизації методів вимірювання в нанометричному діапазоні." Технічна інженерія, no. 2(88) (November 30, 2021): 50–54. http://dx.doi.org/10.26642/ten-2021-2(88)-50-54.

Full text
Abstract:
У статті наголошено, що нанометрологія є невід’ємною складовою нановиробництва, а світовий ринок наноматеріалів активно розвивається і його ємність у 2019 р. оцінювалася в 8,5 млрд дол. США з перспективою зростання на 13,1 % на період до 2027 р. При цьому створюються нові перспективні нанотехнології і наноматеріали. А це вимагає розвитку системи нанометрології. Вважається, що система нановиробництво – нанотехнологія має розв’язувати такі задачі: автоматичне інтелектуальне вимірювання з допомогою числового програмного управління (ЧПУ) з вбудованою міні-ЕОМ; автономне або онлайн програмування вимірювальних інструментів ЧПУ з вбудованою міні-ЕОМ; автоматизована заміна заготовок і виробів; автоматизована заміна зондів і датчиків; автоматизована оцінка результатів вимірювань. У світі створена та використовується велика гама електронних мікроскопів для оцінки геометрії нановиробів. Проте розвиток нанотехнологій вимагає оснащення їх автоматизованими системами та відповідним програмним забезпеченням. Створено експериментальний автоматизований прилад (інтерференційний профілометр) та програмне забезпечення для безконтактного вимірювання мікро- та нанотопографії поверхні виробу, її тривимірного представлення, визначення показників шорсткості та параметрів сканування. Розроблено автоматизовану систему вимірювання і контролю для атомно-силової мікроскопії (АСМ), яка має удосконалений блок контролю систем позиціонування лазерного променя на зонд АСМ. Одним із напрямів автоматизації лінійних вимірювань у нанометрології є використання еталонів порівняння, а для цього необхідне відповідне корегування державних стандартів нанометрології. Проведений аналіз опублікованих матеріалів свідчить про певні позитивні результати у справі автоматизації нановимірювань у середовищі нановиробництва. Проте очевидно, що цей напрям діяльності потребує збільшення фінансування та нових ідей для забезпечення конкурентоздатності нановиробів.
APA, Harvard, Vancouver, ISO, and other styles
2

Криштанович, Світлана. "ПЕДАГОГІЧНИЙ ЕКСПЕРИМЕНТ ФОРМУВАННЯ ПРОФЕСІЙНОЇ КОМПЕТЕНТНОСТІ МАЙБУТНІХ МЕНЕДЖЕРІВ ФІЗИЧНОЇ КУЛЬТУРИ І СПОРТУ ЗА ІНФОРМАЦІЙНО-КОГНІТИВНИМ КРИТЕРІЄМ У ЗАКЛАДАХ ВИЩОЇ ОСВІТИ." Mountain School of Ukrainian Carpaty, no. 22 (June 26, 2020): 116–20. http://dx.doi.org/10.15330/msuc.2020.22.116-120.

Full text
Abstract:
У статті визначено основу експериментального дослідження та встановлено методику експерименту, яка включала мету, завдання, вибір варіативних складників, обґрунтування засобів вимірювання, опис процедури експерименту та узагальнення результатів експерименту.Для розв‘язання поставлених завдань на різних етапах експериментального дослідження використано методи та методики досліджень, зокрема математичної статистики для кількісного й якісного аналізу та перевірки достовірності результатів експериментального дослідження (метод оцінки достовірності середніх величин, метод вимірювання та математичної обробки даних; t-критерій Стьюдента – для визначення наявності або відсутності статистичної розбіжності двох середніх, які подані в абсолютних значеннях). Для достовірності педагогічного експерименту було залучено магістрантів сфери знань 017 «Фізична культура і спорт» у 5-ти закладах вищої освіти України. Було виокремлено контрольну та експериментальну групи. Для розподілу груп на експериментальні та контрольні проаналізовано їхню академічну успішність за дисциплінами, які є фундаментальними для формування професійної компетентності майбутніх менеджерів фізичної культури і спорту за інформаційно-когнітивним критерієм.Установлено, що показниками інформаційно-когнітивного критерію є система знань фахових дисциплін щодо професійної підготовки та здатність використання дослідницьких умінь. Проаналізовано результати педагогічного експерименту для визначення сформованості професійної компетентності майбутніх менеджерів фізичної культури і спорту за інформаційно-когнітивним критерієм. Зясовано, що результатом проведеного формувального етапу педагогічного експерименту є підвищення рівня сформованості професійної компетентності менеджерів фізичної культури і спорту в магістрів за інформаційно-когнітивним критерієм, що сприятиме в подальшому їхній управлінській діяльності.
APA, Harvard, Vancouver, ISO, and other styles
3

Білоусова, Людмила Іванівна, and Олександр Геннадійович Колгатін. "Напрями застосування комп’ютерно орієнтованого тестування навчальних досягнень." Theory and methods of e-learning 3 (November 27, 2013): 09–14. http://dx.doi.org/10.55056/e-learn.v3i1.212.

Full text
Abstract:
Комп’ютерно орієнтоване тестування навчальних досягнень застосовується в навчальному процесі для вирішення різноманітних дидактичних завдань, в кожному з яких проявляються усі дидактичні функції діагностики та контролю, але деякі з них є провідними. Традиційно тестування пов’язується з реалізацією контрольної функції при оцінюванні навчальних досягнень під час поточного, тематичного або підсумкового контролю. Комп’ютерно орієнтоване тестування є потужним методом самоконтролю (провідними є функція контролю й систематизуючо-регулятивна функція). Важливим напрямом застосування педагогічного тестування є діагностика студента з метою вибору варіанту реалізації технології навчання (провідні функції – реалізація механізму зворотного зв’язку, прогностична та систематизуючо-регулятивна). Комп’ютерно орієнтоване тестування з успіхом застосовується у навчальному процесі для актуалізації опорних знань (навчальна, стимулювально-мотиваційна функції та функція контролю), застосування завдань у тестовій формі для створення проблемної ситуації під час вивчення нового матеріалу (навчальна, розвивальна та стимулювально-мотиваційна функції), відпрацювання навичок за допомогою тестів-тренажерів (навчальна та стимулювально-мотиваційна функції), організація навчальних змагань, вікторин тощо (навчальна, виховна та стимулювально-мотиваційна функції). Окремо слід відзначити комп’ютерно орієнтоване тестування високої значимості (high stake assessment), коли за результатами вимірювання здійснюється розподіл студентів або школярів, наприклад, процедура відбору абітурієнтів до вищого навчального закладу (провідними є функція контролю та прогностична функція). Кожне дидактичне завдання висуває специфічні та суперечливі вимоги до відповідної автоматизованої системи тестування, що потребує спеціалізації таких систем.Метою даної роботи є обґрунтування специфічних вимог до автоматизованих систем педагогічного тестування у відповідності з їх дидактичним призначенням.Системи тематичного й підсумкового оцінювання мають забезпечити високу надійність тестових результатів, зручні та надійні засоби їх обліку результатів, захист даних від несанкціонованого використання та спотворення. Якщо оцінка виставляється в автоматичному режимі без втручання викладача, то особливої уваги потребує процедура формування оцінки за шкалою, яку затверджено в навчальному закладі або на рівні держави. Так у загальноосвітній школі за діючими критеріями оцінювання застосовується критеріально орієнтована 12-бальна шкала за рівнями навчальних досягнень. Для правильного оцінювання за такою шкалою завдання тесту мають бути класифіковані за рівнями навчальних досягнень і автоматизована система тестування має враховувати структуру бази завдань для визначення оцінки. У вищих навчальних закладах у разі використання рейтингових шкал оцінювання, наприклад ECTS, слід застосувати нормоорієнтовану інтерпретацію результатів. Для підсумкового оцінювання доцільно застосовувати стандартизовані тести.Для забезпечення надійності тестових результатів багатоваріантного тесту доцільно застосовувати адаптивне тестування на основі моделі Г. Раша. Але підготовка такого тесту потребує створення великої бази тестових завдань і ретельної їх апробації, що пов’язано зі значними витратами. Якщо така підготовка тесту неможлива, доцільно застосовувати тест з фіксованим переліком завдань для усіх тестованих, щоб виключити розбіжність трудності варіантів тесту та забезпечити справедливе оцінювання.Тести для поточного оцінювання часто створюються безпосередньо викладачем. На виконання таких тестів у навчальному процесі відводиться небагато часу, тому вони складаються з невеликої кількості завдань і не забезпечують надійність, достатню для автоматичного оцінювання. Викладач особисто виставляє оцінку з урахуванням кількості правильно виконаних завдань тесту та результатів інших видів контролю (співбесіда, опитування, участь студента у дискусії, виконання лабораторної роботи тощо). Головні вимоги до системи автоматизованого тестування, що застосовується для поточного оцінювання – це зручність і простота інтерфейсу, зокрема зручні засоби створення та редагування завдань і тесту, відсутність зайвих сервісів і налагоджувань, збереження усіх відповідей студента для аналізу (краще на сервері викладача), зручні засоби перевірки якості тестових завдань.Важливим напрямом застосування автоматизованих систем тестування навчальних досягнень є самоконтроль. Оскільки студент може виконувати тест багаторазово, має здійснюватися випадковий вибір завдань з досить великої бази. Щоб не перевантажувати слабких студенів складними завданнями та не втомлювати добре підготовлених студентів дуже простими завданнями, система має бути адаптивною. Доцільно зберігати детальну інформацію про перебіг тестування та його результати на сервері з метою аналізу якості тестових завдань і забезпечення студенту можливості побачити власні досягнення у порівнянні з результатами інших учасників тестування. Збереження результатів тестування на сервері в умовах позааудиторної роботи студента передбачає on-line тестування із застосуванням мережі Інтернет. Доцільно поєднувати самоконтроль з педагогічною діагностикою студента, у такому разі до системи автоматизованого тестування висуваються додаткові вимоги, які розглядатимуся далі.Головним завданням автоматизованого тестування в системі педагогічної діагностики є забезпечення високої інформативності тестових результатів, накопичення даних для формування педагогічного прогнозу. Система має накопичувати результати тестування в динаміці для педагогічного прогнозування та оперативного контролю якості бази тестових завдань. Обов’язковою умовою якісної діагностики є репрезентативність завдань відповідно до структури навчального матеріалу. За результатами діагностики обирається напрям подальшого навчання, при цьому деякі шляхи утворюють цикли – студент багаторазово виконує той самий тест і система тестування має забезпечити варіативність завдань. Паралельні варіанти тесту повинні мати однакову трудність і еквівалентно відображати зміст навчального матеріалу. Сполучення вимоги варіативності з необхідністю забезпечити репрезентативність і паралельність варіантів тесту чинить суттєві перепони розробникам програмного забезпечення. Успішні кроки в напряму вирішення цієї проблеми пов’язані з систематизацією випадкового вибору завдань з бази даних. Педагогічне прогнозування базується на особливостях засвоєння матеріалу за рівнями навчальних досягнень – тому система діагностики має забезпечити окреме опрацювання результатів за рівнями навчальних досягнень. Для прийняття рішень щодо вибору доцільного варіанту реалізації технології навчання важливо знати, які саме елементи навчального матеріалу слабко засвоєні – звідси випливає необхідність окремого опрацювання результатів за елементами навчального матеріалу. Система має бути адаптивною – складні завдання мають пропонуватися тільки тим студентам, які готові до їх сприйняття.Розглянемо відомі автоматизовані системи тестування навчальних досягнень з точки зору їх відповідності до специфічної системи вимог стосовно педагогічної діагностики.Як бачимо за результатами аналізу (табл. 1), кожна вимога виконується більшістю з розглянутих автоматизованих систем, але поєднання варіативності тесту з дотриманням стабільності його трудності та, одночасно, репрезентативності системи завдань відносно структури навчального матеріалу є актуальним напрямом розробки програмного забезпечення педагогічного тестування.Таблиця 1Автоматизовані системи тестування навчальних досягнень і вимоги до їх застосування з метою педагогічної діагностики Автоматизована системаВідповідність вимогамВаріативністьРепрезентативність щодо структури навчального матеріалуСтабільність трудності тестуОкреме опрацювання результатів за рівнями навчальних досягненьОкреме опрацювання результатів за елементами навчального матеріалуОперативність опрацювання результатів та їх інтерппретаціїНакопичування всіх відповідейРеалізація адаптивного алгоритмуКритеріально орієнтований підхід до інтерпретації тестових результатів«EXAMINER-II», 1993 [1]+––––+––+«OpenTest2», 2004 [2]++–––++–+«Експерт», 2003 [3] +++++++++“WEB-EXAMINER”, 2005 [4]+–+––++++“WebTutor”, 2008-2011 роки, [5]++––+++–+«Інформаційна система ВНЗ 2.0.1», 2008 [6]++–––++–+«Телетестинг», 1999 [7]+–+––++++Moodle [8]± ––++–+UniTest System, 2001-2006 [9]++–––++
APA, Harvard, Vancouver, ISO, and other styles
4

Мізюк, Віктория Анатоліївна, and Олександр Вікторович Коваленко. "Комп’ютерна система тестування для підсумкового контролю знань студентів." Theory and methods of e-learning 3 (February 10, 2014): 190–94. http://dx.doi.org/10.55056/e-learn.v3i1.339.

Full text
Abstract:
Сьогодні рейтинг і престиж навчального закладу визначаються не лише загальним рівнем викладання, матеріально-технічним забезпеченням, наявністю в штаті співробітників із вченими званнями, а й ефективністю та якістю системи контролю знань студентів. Поряд із традиційними методами контролю найширше розповсюдження знаходять методи контролю знань шляхом тестування.Спроби ввести тестування в систему освіти проводилися неодноразово. Одним з перших займався конструюванням та впровадженням тестового контролю в американській школі Е. Л. Торндайк. Тестування як об’єктивний контроль рівня освітньо-професійної підготовки фахівця впроваджував французький психолог А. Біне, який розробив тести для вимірювання загальної розумової обдарованості дітей. У радянській школі були спроби працювати за тестовою технологією у 1930-х та 1970-х роках, але на той час поширення цей вид контролю не отримав.Аналіз сучасної науково-педагогічної літератури й освітньої практики показав, що в наш час в Україні йде процес відновлення системи тестування в галузі освіти, а тестові технології розглядаються як один із ефективних засобів контролю якості підготовки й рівня предметних досягнень студентів.На сучасному етапі розвитку комп’ютерних технологій та рівні впровадження їх у різні сфери суспільства, зокрема в освітню галузь, дослідники все частіше звертаються до теми автоматизованого контролю знань, розробки комп’ютерних тестових систем різних навчальних закладах України [1–3]. Застосування комп’ютерів для контролю знань є економічно вигідним і забезпечує підвищення ефективності навчального процесу, об’єктивності оцінки рівня знань і є раціональним доповненням до інших методів перевірки знань.При сучасному розвитку ринку програмного забезпечення та систем комп’ютерного тестування розроблено досить багато програм для комп’ютерного тестування знань студентів. Ці системи являють собою або окремий програмний комплекс, що вимагає установки на комп’ютер кінцевого користувача [4], або Інтернет-сайт, що дозволяє проводити процес тестування й аналіз його результатів за допомогою звичайних веб-браузерів [5].В Ізмаїльському державному гуманітарному університеті з метою підвищення об’єктивності контролю знань студентів у поточному році кафедри інформатики була розроблена і впроваджена у дію комп’ютерна система «Тест_КВ». Область застосування системи на даному етапі – підсумкове тестування студентів денної форми навчання всіх напрямків підготовки. У перспективі розглядається можливість використання системи для проведення контрольних зрізів, кваліфікаційних тестів, заліків і будь-яких інших видів контролю знань студентів всіх форм навчання, у яких головну роль грає максимально об’єктивна оцінка знань.Система «Тест_КВ» дозволяє автоматизувати всі етапи тестування: від ідентифікації користувача, виводу на екран завдань й сприйняття відповіді до автоматичної перевірки їх правильність і генерування відомостей про підсумковий контроль.Архітектура система «Тест_КВ» є клієнт-серверною. Клієнтами системи є деканат, викладачі, студенти. Кожен з вказаною категорії клієнтів працюють з системою після проходження авторизації, використовуючи логін і пароль для доступу. Це дозволяє покласти на клієнтів виконання тільки операцій візуалізації й введення даних, а всі операції і збереженням бази даних та їх керуванням реалізовувати на сервері. Так, викладачі мають можливість внесення нових та корегування існуючих тестових завдань, деканатам надано можливість перегляду результатів тестування окремого студента або групи студентів, отримання електронної версії відомості з тестового контролю, розміщення розкладу семестрової сесії, поновлення списків студентів тощо. Студенти на власній сторінці можуть отримати інформацію про кількість іспитів на даний семестровий період, дату і час проведення тестового контролю, консультації до нього, скористатися методичними матеріалами для підготовки до іспитів.Сам тестовий контроль проводиться на локальному сервері, а тому пройти підсумковий тест студент може тільки з певної дисципліни, до якої за графіком екзаменаційної сесії він отримав доступ, і тільки на комп’ютерах, підключених до локальної мережі університету. За потребою або по запиту деканату у технічному додатку до відомості з тестового контролю відображається прізвище студента, назва тесту, який студент проходив, номер тестового листка, що містить всі видані студентові питання, час початку роботи в системі та ІР-адреса комп’ютера, з якого студент увійшов у систему.Для зручності управління контролюючою системою окремі функції були реалізовані окремим модулями. Це забезпечує легкість розширення функціонування без потреби внеску змін в існуючі модулі. Основними модулями на даний момент є «Управління тестами», «Тестування» та «Адміністрування».Модуль «Управління тестами» призначений для викладачів і максимально оптимізований для зручної роботи по вводу і збереження тестів на головному сервері із використанням повнофункціонального WYSIWYG-редактора. Окрім тестових даних, вбудований текстовий редактор дозволяє просто і зручно додавати в тестові завдання різноманітні мультимедіа-об’єкти (Flash-анімації, відео, аудіо, зображення).Система дозволяє вводити тестові питання наступних видів: 1) закритої форми з однією правильною відповіддю (1 з 4); 2) закритої форми з кількома правильними відповідями (4 з 4); 3) на встановлення істинності або хибності висловлювання (Так/Ні); 4) відкритої форми (коротка числова відповідь або коротка текстова відповідь).В якості додаткових можливостей викладач має можливостіскористатися функцією «Версія для друку», яка дозволяє відкрити й зберегти питання або тест у повній формі у файлі формату PDF у вигляді, оптимізованому для друку;переглянути спосіб відображення тестів в браузері і пройти пробне тестування;додавати перелік питань та методичні матеріали для підготовки студентів до підсумкового контролю.Модуль «Тестування» призначений для студентів. Проходження комп’ютерних тестів з конкретної дисципліни відбувається після авторизації студента та входження в модуль тестування. В системі тестового контролю номер залікової книжки використовується як унікальний номер студента. Після вибору і натискання кнопки «Розпочати тестування» запускається саме тестування. Важливими особливостями даного модуля є: виведення перед тестуванням інформаційного повідомлення, яке прикріплене до тесту; номер поточного питання з загальної кількості; проходження тесту у прямому і зворотному напрямку; таймер залишку часу на тест; продовження тесту після збою з’єднання з сервером.Модуль «Адміністрування» забезпечує централізоване управління всіма сеансами тестування та їхніми параметрами (кількість спроб, час на сеанс тестування, кількість питань у сеансі), а також типом запуску тесту. В системі підтримуються тип запуску тесту за паролем, після вводу якого студент обирає необхідний тест і натискає на посилання «Розпочати тест». Результати тестування опрацьовуються окремим модулем, результатом роботи якого є електронна відомість успішності в якій виводиться відсоток правильних відповідей та відповідна кількість балів підсумкового контролю кожного студента окремої групи.Програмна реалізація системи виконана на найпоширенішій для створення глобальних сайтів зв’язці AMP (Apache, MySQL, PHP), на якій побудовано більше половини всіх провідних ресурсів у мережі Internet (рис. 1). Рис. 1. Схема інтеграції комп’ютерної системи тестування Клієнтським додатком при даній архітектурі є веб-браузер. Виданий на рівні PHP HTML-код оптимізується під базовий стандарт HTMLv4. Це робиться з наступних причин:– використання браузера в якості клієнта дозволяє уникнути інсталяцій спеціалізованого програмного забезпечення на клієнтських місцях;– більшість комп’ютерів оснащені ОС Windows 98/2000/XP/Vista/7, для яких веб-браузер є невід’ємною частиною;– фактично користувач може використовувати будь-яку операційну платформу;– звичність Web-інтерфейсу для користувачів Інтернет.Розроблена система має багато переваг, а саме:кросплатформеність – система не залежить від типу операційної системи, яку встановлено на машині користувача, що дозволяє використовувати як застарілі апаратні платформи під керуванням Windows 95/98, так і сучасні Core 2 Duo або Athlon X2 під керуванням Windows 2000/XP/Vista/7 або X-Window Linux;легкість масштабування – усе, що потрібно для проведення тестування, – це веб-браузер, який присутній у будь-якій операційній системі (ОС), та доступ до сервера за допомогою локальної мережі;зручність у разі оновлення програмного забезпечення - оновлення програмного забезпечення здійснюється лише на сервері, що потребує менше часу та зусиль, а також полегшує супровід системи;у подальшому такі системи з мінімальними затратами часу можуть бути адаптовані для використання у дистанційному навчанні.У цей час комп’ютерна система тестування для підсумкового контролю знань студентів перебуває в експериментальній експлуатації в ІДГУ. Результати проведених тестувань на зимовій екзаменаційній сесії показали ефективність роботи системи (одночасно використовувалось до 134 комп’ютерів у 13 машинних залах). Найбільша кількість студентів, що проходили тестування, за день становила 834 особи.Викладачі й студенти високо оцінили цей метод контролю. Проведене експрес-опитування показало, що переважна більшість студентів (більше 80%) бажають екзаменуватися на комп’ютерах.Порівняння результатів проведення комп’ютерного тестування із традиційним (письмовим, тестово-бланковим) контролем знань виявило значні переваги першого. Комп’ютерний аналог такого контролю краще, тому що дозволяє звільнити викладача від непродуктивних рутинних операцій перевірки й підведення підсумків на основі брошур-тестів. Не викликала сумнівів у викладачів і вірогідність одержуваної оцінки при комп’ютерному контролі знань.Таким чином, розроблена система контролю дозволила ефективно і якісно здійснити перевірку знань студентів з підсумкового контролю і намітила напрямки удосконалення системи з метою покращення системи адміністрування системи, надання деканатам додаткових функцій по обробці результатів, поліпшення інтерфейсу додатків для роботи викладачів і студентів.
APA, Harvard, Vancouver, ISO, and other styles
5

Т. В. Григорович, В. Л. Кравець. "ВИКОРИСТАННЯ СИСТЕМИ КООРДИНАТ ПІД ЧАС ВИЗНАЧЕННЯ ІДЕНТИФІКАЦІЙНИХ ОЗНАК У ПОЧЕРКОЗНАВЧІЙ ЕКСПЕРТИЗІ ПІДПИСІВ." Криміналістичний вісник 31, no. 1 (January 27, 2020): 89–95. http://dx.doi.org/10.37025/1992-4437/2019-31-1-89.

Full text
Abstract:
Метою статті є вдосконалення системи ознак почерку в контексті започаткування нових способів, що уможливлюють достовірне визначення ідентифікаційних ознак за розміщенням особливих точок підписів якісно-описовими та кількісними методами. У процесі дослідження розроблено спосіб визначення положення точок підписів у системі координат, подібній до прямокутної, де горизонтальною віссю вважають лінію підпису, а вертикальною – перпендикуляр до лінії підпису. При цьому використання координатної сітки дає змогу візуально, більш достовірно і точно оцінити як протяжність рухів під час виконання графічних елементів підписів, так і ознаки співвідношення протяжності рухів. Частину ідентифікаційних ознак підписів запропоновано визначати кількісними методами у прямокутній системі координат для встановлення відстаней між окремими точками за їх координатами і числових значень співвідношень відстаней між точками. Впровадження в експертну практику зазначеного способу дослідження підпису зменшить вплив суб’єктивного чинника, забезпечить достовірність визначення ідентифікаційних ознак під час дослідження підписів якісно-описовими методами та убезпечить від надання недостатньо обґрунтованих висновків. Цей спосіб може становити підґрунтя розроблення автоматизованої ідентифікаційної системи «АІС-ПІДПИС». Достовірність отриманих результатів і висновків забезпечено застосуванням емпіричних методів дослідження, у тому числі спостереження, вимірювання, моделювання, прогнозування, формалізації, що дає змогу візуально оцінити окремі ознаки підписів, а також кількісних методів (статистичних, математичних, узагальнення) для встановлення числових залежностей у дослідженні цих ознак.Ключові слова: підпис; ідентифікаційні ознаки; система координат; лінія підпису; координатна сітка.
APA, Harvard, Vancouver, ISO, and other styles
6

Колгатін, Олександр Геннадійович, and Лариса Сергіївна Колгатіна. "Умови застосування модифікованих процедур обчислення тестових балів у системах організації самостійної роботи студентів." Theory and methods of learning fundamental disciplines in high school 8 (November 27, 2013): 142–47. http://dx.doi.org/10.55056/fund.v8i1.210.

Full text
Abstract:
Постановка проблеми. Здійснення зворотного зв’язку в системах організації самостійної роботи студентів у значній мірі спирається на застосування тестових технологій педагогічного вимірювання для здійснення поточного контролю і педагогічної діагностики. Під час самостійної роботи студентів комп’ютерно орієнтоване тестування з успіхом застосовується для вирішення таких завдань як актуалізація опорних знань (навчальна, стимулювально-мотиваційна функції та функція контролю), відпрацювання навичок за допомогою тестів-тренажерів (навчальна та стимулювально-мотиваційна функції), організація навчальних змагань (навчальна, виховна та стимулювально-мотиваційна функції). Надійність результатів вимірювання визначає якість управління самостійною роботою і позитивне ставлення студентів до відповідних навчальних засобів. Неперервний розвиток тестових технологій, розробка нових модифікованих процедур тестування та інтерпретації тестових результатів (наприклад, застосування вагових коефіцієнтів, спеціальних алгоритмів подання тестових завдань, врахування вгадування тощо) зумовлює потребу в розвитку методів визначення їх надійності.Мета даної роботи полягає у використанні методу статистичного моделювання для аналізу умов застосування певних процедур інтерпретації тестових балів у системах організації самостійної роботи студентів.Виклад основного матеріалу. Будь-яке порівняння має спиратися на певний критерій якості. Але кожна процедура інтерпретації тестових результатів передбачає оригінальний критерій, і різноманітність критеріїв позбавляє дослідника можливості застосувати їх для порівняння різних процедур. Більш того шкали, за якими визначаються тестові бали є різними в різних процедурах інтерпретації тестових результатів. Так за класичною моделлю маємо лінійну шкалу відносно кількості правильно виконаних завдань; моделі з ваговими коефіцієнтами, що враховують трудність або складність завдань, передбачають певні нелінійні шкали; модель IRT, яку започатковано Г. Рашем, передбачає визначення підготовленості тестованого в логітах. Одним із напрямів вирішення проблеми може бути перетворення тестового балу за процентільною шкалою, яка відображає ранжування тестованих за результатами тестування. Але, на наш погляд, такий підхід пов’язаний з певними проблемами застосування статистичних методів для обчислення надійних інтервалів, оскільки зв’язок між різними шкалами є нелінійним. В такій ситуації пропонуємо здійснювати порівняння на підставі методу статистичних випробувань. Критерієм якості процедури інтерпретації тестових результатів (Q) оберемо різницю між імовірністю правильного та неправильного висновку щодо ранжування тестованих. Статистичне моделювання процедур тестування та інтерпретації тестових результатів здійснюємо за розробленою нами моделлю [1], яка ґрунтується на апроксимації ймовірності правильної відповіді на завдання за моделлю Г. Раша. В обчислювальних експериментах кількість статистичних випробувань складала 100000, що за наближеними оцінками з імовірністю не менше 95% забезпечувало дві правильні цифри у шуканому значенні критерію Q.Аналіз результатів обчислювальних експериментів, проведений у статті [1] (рис. 1) дає підстави для висновку, що в усіх розглянутих випадках для рейтингової (нормоорієнтованої) інтерпретації тестових результатів саме класична процедура забезпечує найкращі значення запропонованого критерію якості. Проведено зіставлення таких процедур обчислення тестового бала:1. Класична процедура (ряд 1 на рис. 1), що передбачає 1 бал за кожну правильну відповідь і 0 балів в інших випадках.2. Поправка на вгадування (ряд 2 на рис. 1). Вгадування тестованим правильних відповідей призводить до систематичного завищення тестового бала. Для корекції систематичної похибки для випадку тесту з різними за формою завданнями нами на підставі підходу В. В. Кромера [2] було запропоновано процедуру обчислення тестового бала [3] в якій за правильну відповідь тестований отримує 1 бал, за відмову від відповіді – 0 балів, неправильна відповідь оцінюється величиною (–cj)/(1–cj).3. Застосування вагових коефіцієнтів, відповідних до трудності завдань (ряд 3 на рис. 1) – приклади такого підходу досить часто зустрічаються в літературі й автоматизованих системах тестування. Наприклад, вагові коефіцієнти застосовуються в тестах підсумкової державної атестації для завдань середнього і достатнього рівнів.Результати обчислювальних експериментів збігаються з відомими висновками, що класична процедура інтерпретації тестових результатів забезпечує найкраще розділення тестованих, коли їх підготовленість близька до трудності завдань тесту. Але такий тест має вузький робочий діапазон вимірювання и для тестованих з низькою або високою підготовленістю не забезпечує задовільної якості вимірювання. Сучасні педагогічні тести будуються як система завдань зростаючої трудності, що дозволяє суттєво розширити робочий діапазон вимірювання, але чутливість тесту, тобто його здатність розділяти тестованих з невеликою різницею підготовленості зменшується. Відсутні вгадуваннята неуважністьІмовірність угадування 25%, неуважність відсутняІмовірність угадування для половини завдань різної трудності складає 25%; решта завдань не припускають вгадування;неуважність відсутняІмовірність угадування для половини завдань різної трудності складає 25%; решта завдань не припускають вгадування; ймовірність помилки за неуважністю складає 10%Рис. 1. Вплив вгадування та неуважності на якість інтерпретації тестових результатів за різними процедурами обчислення тестового бала (1 – класична; 2 – з поправкою на вгадування; 3 – з ваговими коефіцієнтами). Критерій Q обчислено для випадку ранжування тестованих з різницею підготовленості (θ2–θ1) = 0,5 і середньою підготовленістю θ = (θ2 + θ1) / 2 в термінах моделі Г. Раша (θ = –2 – погано підготовлені учні; θ = 0 – середньо підготовлені учні; θ = 2 – кращі учні) для тесту, який складається з 31 завдання зростаючої трудності (параметр трудності різних завдань за моделлю Г. Раша від –2 до 2), параметр роздільної здатності за моделлю Г. Раша дорівнює 2. Враховуючі значну різницю в підготовленості тестованих, доцільно застосовувати тести, які побудовані як система завдань зростаючої трудності, що забезпечує найкращу якість тестових результатів у широкому діапазоні, як це показано за результатами обчислювальних експериментів [1].Інтерпретація тестових результатів за моделлю IRT не змінює ранжування тестованих у порівнянні з класичною процедурою інтерпретації тестових результатів. Це підтверджується теоретичним аналізом процедури визначення підготовленості тестованого за моделлю IRT і проведеними обчислювальними експериментами. В реальному тестуванні, коли параметри завдань невідомі й обчислюються за результатами тестування, звісно, спостерігатимуся розбіжності в ранжуванні, які викликатимуся похибками визначення параметрів тестових завдань за моделлю Г. Раша.В системі організації самостійної роботи студентів розглянута вище рейтингова (нормоорієнтована) інтерпретація тестових результатів доцільна для проведення певних навчальних змагань і при здійснені студентом самоконтролю, щоб надати йому можливість бачити рівень власних навчальних досягнень на фоні групи. За нормоорієнтованою інтерпретацією тестових результатів може здійснюватися підсумковий контроль.Під час організації самостійної роботи часто застосовується інтерпретація тестових результатів, що орієнтована на критерії, які задаються навчальним стандартом, викладачем або системою педагогічної діагностики й прогнозування. Так, під час здійснення актуалізації опорних знань на початку вивчення нового матеріалу рейтингова інтерпретація тестових результатів не є можливою, оскільки за умови нормального навчального процесу всі тестовані мають успішно виконати тест. Викладач задає певну межу тестового балу, що відповідає якості опорних знань, яка достатня для продовження навчання. Поточний контроль теж частіше здійснюється на основі критеріїв якості засвоєння. За рекомендаціями різних авторів повнота знань, яка ще дає можливість студенту самостійно ліквідувати прогалини складає близько 0,7. За вимогами «Критерієв оцінювання навчальних досягнень ...» [4] мінімальна позитивна оцінка 4 за 12-бальною шкалою виставляється за умови, що учень знає близько половини навчального матеріалу. Тематичний контроль може здійснюватися за нормоорієнтованою інтерпретацією тестових результатів, але для цього потрібно мати стандартизовані тести, створення яких пов’язано з ретельною апробацією цих тестів на великій вибірці з цільової групи. Якщо таких тестів немає, то неможливо перевірити якість засвоєння студентом навчального матеріалу теми через порівняння його навчальних досягнень з досягненнями невеликої і не завжди репрезентативної академічної групи студентів. В такому випадку застосування інтерпретації тестових результатів, що орієнтована на критерії, буде доцільним.Для порівняння якості різних критеріально орієнтованих процедур інтерпретації тестових результатів запропонуємо критерії Z, який за аналогією з вище описаним критерієм Q визначатиме різницю між імовірністю правильного та неправильного висновку щодо перебільшення навчальних досягнень тестованого над певною заданою межею, що встановлена викладачем або освітнім стандартом. Критерії Z є функцією від різниці Δy між навчальними досягненнями та встановленою критеріями межею. Чим більше ця різниця, тим ближче значення критерію до одиниці. Таким чином, під час здійснення аналізу якості процедур тестування й інтерпретації тестових результатів потрібно заздалегідь обрати певну різницю Δy, яка визначатиме частку повноти знань для якій визначатимуся критерій Z. Крім цього, досліджувана процедура тестування й інтерпретації тестових результатів може давати систематичну похибку в бік завищення або заниження вимірюваної повноти знань. Тому потрібно обчислювати значення критерію Z як для випадку перевищення навчальних досягнень над заданою межею, так і для протилежного випадку, коли навчальні досягнення (наприклад, повнота знань) нижче за встановленої межі.Висновки:1. Показано, що під час організації самостійної роботи доцільно застосовувати як нормоорієнтовану, так і критеріально орієнтовану інтерпретацію тестових результатів, у залежності від дидактичних завдань тестування.2. Обчислювальний експеримент підтверджує відомий висновок, що найбільша якість ранжування тестованих забезпечується, якщо тест містить завдання однакової трудності, яка близька до підготовленості тестованих. Але такий тест має вузький діапазон вимірювання.3. Для тестів з нормо-орієнтованою інтерпретацією результатів слід застосовувати класичну процедуру обчислення тестового бала (без корекції вгадування та вагових коефіцієнтів).5. Інтерпретація тестових результатів за моделлю IRT не змінює ранжування тестованих у порівнянні з класичною процедурою інтерпретації тестових результатів за відсутності похибки визначення параметрів завдань.6. Запропоновано критерій, який дає можливість порівнювати якість критеріально орієнтованих процедур інтерпретації тестових результатів, незалежно від застосованої в кожній процедурі шкали вимірювання.Напрями подальших розвідок з проблеми дослідження: доцільно провести порівняльне дослідження якості конкретних процедур тестування та інтерпретації тестових результатів в системах з критеріально орієнтованою інтерпретацією тестових результатів.
APA, Harvard, Vancouver, ISO, and other styles
7

Крамаренко, Тетяна Григорівна, Галина Ігорівна Іванова, and Тетяна Валентинівна Олексійченко. "Використання інформаційної системи для моніторингу навчання теорії ймовірностей." New computer technology 11 (November 22, 2013): 107–10. http://dx.doi.org/10.55056/nocote.v11i1.162.

Full text
Abstract:
Одним із шляхів реформування освіти у вищій школі є модернізація її на компетентнісних засадах, зокрема, через широке запровадження інформаційно-комунікаційних технологій навчання. Особливої ваги набуває генералізація знань, посилення функції теорії у науці, інтеграція і диференціація знань. Компетентності вчителя математики, зокрема математичні і методичні, розглядаємо як особистісні утворення фахівця, які формуються на основі здобутих знань, досвіду діяльності, вироблених ціннісних орієнтацій, ставлень та оцінок.Оскільки підґрунтям для набуття компетентностей виступають знання і вміння майбутніми вчителями застосовувати основні теоретичні положення і розв’язувати задачі, то необхідно регулярно здійснювати моніторинг сформованості відповідних компетентностей, а тому і рівня знань студентів. Акцент при цьому слід робити на взаємоконтроль та самоконтроль. Для забезпечення рівневої диференціації навчання доцільно пропонувати студентам для виконання рівневі тести: 1) вхідний тест (попередній) – система завдань закритої форми, призначених для актуалізації та корекції опорних знань; 2) початковий тест (формувальний, тест початкового розуміння) – система тестових завдань закритої форми з вибором відповіді на впізнавання і розпізнавання; 3) тест базового рівня (формувальний, діагностичний) – система тестових завдань закритої форми або з короткою відповіддю; 4) тест навчальних досягнень (підсумковий) – призначений для встановлення фактичного рівня засвоєння знань і умінь з теми.В якості механізму здійснення поточного (вхідне, тематичне, модульне та інші) та підсумкового контролю знань та умінь студентів доцільно застосовувати систему комп’ютерного тестування, виважене використання якої надає можливість не лише визначати рівень підготовленості студентів, але й здійснювати дистанційне навчання.Теоретичне обґрунтування питань, пов’язаних із використанням комп’ютерного тестування в якості контролю рівня знань, проблеми педагогічного вимірювання та використання тестових технологій у вищій школі розглядали Л. І. Білоусова, О. Г. Колгатін, С. А. Раков, А. М. Калинюк [3], В. О. Шадура [4], С. В. Домашенко [1] та ін.Можна виокремили певні переваги комп’ютерного тестування у порівнянні з традиційними формами контролю:– швидке отримання результатів і вивільнення викладача від трудомісткої роботи по опрацюванню результатів тестування;– об’єктивність оцінки;– виникає можливість студентам здійснювати самоконтроль;– студенти відзначають, що тестування з використанням програмного забезпечення для них є цікавішим у порівнянні з традиційними формами опитування, що створює позитивну мотивацію;– підвищення ефективності роботи викладача шляхом перенесення акцентів у спілкуванні зі студентами на проблемні питання, завдання творчого, евристичного характеру.І хоча акценти у сучасному навчанні робляться не на запам’ятовування і відтворення, а на «мислення» і «розмірковування», осмислення взаємозв’язків теорії з практикою в теорії ймовірностей не можна здійснювати без знання формул, властивостей випадкових подій, випадкових величин, основних законів розподілу. Тому важливо на проміжних етапах вивчення теми здійснювати перевірку сформованості вмінь та навичок розв’язування типових завдань, яка не повинна займати багато часу, але при цьому має якісно діагностувати.Існує значна кількість вільного програмного забезпечення для здійснення тестового контролю (Moodle, iTest та OpenTEST 2). Тестування за допомогою програмного забезпечення Moodle в найбільшій мірі використовуємо при вивченні курсів «Інформаційно-комунікаційні засоби навчання», теорії ймовірностей та математичної статистики. За допомогою Moodle відносно зручно опрацьовувати результати тестування і представляти графічні характеристики.Мета нашого дослідження полягає в розробці початкових тестів і тестів базового рівня до теми «Одновимірні дискретні і неперервні випадкові величини», здійсненні тестування з використанням інформаційної системи LOGIT [2], опрацюванні результатів тестування, побудові профілів питань і профілів респондентів, а також перевірці на практиці того, наскільки дане програмне забезпечення охоплює повний життєвий цикл тесту.Тест в LOGIT проходить стадії створення та наповнення, рецензування, багаторазового випробування та удосконалення. У зв’язку з цим інформаційною системою передбачені такі рівні доступу: адміністратор, менеджер, користувач, гість. В свою чергу, користувачі системи мають певні ролі або їх комбінації, а саме: тестувальник, рецензент, автор. Зрозуміло, що розподіл прав та надання ролей відповідає процесу розроблення тесту.Першою стадією є розроблення тесту, на яку тест переходить після надання йому теми та опису автором і призначення менеджером адміністратора. На цій стадії автор визначає розділи тесту та наповнює не менш як тридцятьма питаннями кожний з них. Тест створюється лише у вигляді системи тестових завдань закритої форми з вибором однієї правильної відповіді. Рецензенти аналізують створене і, при необхідності, роблять зауваження, які в подальшому повинні бути враховані або прокоментовані автором тесту. Після цього автор робить запит до адміністратора тесту на перехід до наступної стадії. Якщо виконуються всі необхідні умови, то адміністратор тесту переводить тест на наступну стадію – випробування. На вказаному етапі користувачі-тестувальники проводять пробне тестування з групами респондентів за всіма розділами. Після отримання результатів тестування системою LOGIT здійснюється статистичний аналіз за певними групами респондентів. Завдяки автоматизації процесу розрахунків та побудові профілів в інформаційній системі, користувачі можуть використовувати її для вдосконалення тестів навіть без глибоких знань із статистики та математики. Результат розрахунку профілів питань окремого розділу та респондентів певних груп подається зведено у вигляді карток з основними показниками. Передбачено і побудову графічних характеристик. Після оптимізації тест переводиться на стадію «застосування», яка не передбачає змін.Провести тестування за допомогою LOGIT можна як безпосередньо за комп’ютером, так і у звичайному паперовому зошиті (із бланком для відповідей), які потім переносяться у систему автором чи користувачами-тестувальниками. Послідовності питань для тесту генеруються, тому кількість варіантів для групи може бути довільною, що виключає можливість списування. Розробниками LOGIT передбачено окремі технічні можливості, використання яких гарантує високий рівень вірогідності тестування та зменшує його похибку.Наведемо приклади розроблених тестових завдань для початкового тесту з курсу теорії ймовірностей, які завантажували в LOGIT.Обрати з поданих формул таку, за допомогою якої задають функцію розподілу для одновимірної неперервної випадкової величини.Обрати з поданих графік щільності рівномірного розподілу.Яка з представлених випадкових величин може бути моделлю для біноміального розподілу ймовірностей? В якості дистракторів пропонувалося: «число картоплин у мішку певної ваги»; «число викликів, які надійдуть на станцію автоматичного зв’язку за проміжок часу T»; «число влучень в ціль при 10 пострілах, якщо немає можливості дізнатися про результат попадання після кожного пострілу»; «число молекул у певному об’ємі речовини».Яка з перерахованих властивостей функції розподілу може не виконуватися для певних випадкових величин? Варіанти: невід’ємна; неперервна; значення не більші одиниці; неспадна. Наші дослідження показали, що LOGIT доцільно використовувати як інструмент для здійснення насамперед поточного контролю знань з дисципліни «Теорія ймовірностей та математична статистика».Комп’ютерне тестування, реалізоване в інформаційній системі LOGIT, демонструє перевагу у порівнянні з Moodle при побудові профілів питань та респондентів для питань у вигляді системи тестових завдань закритої форми з вибором однієї правильної відповіді. За допомогою комп’ютерного тестування у стислі терміни можна діагностувати і усунути недоліки у подальшому вивченні певного курсу.З метою формування гносеологічного та праксеологічного компонентів методичної компетентності у майбутніх вчителів доцільно залучати їх безпосередньо до розробки тестових завдань, тестування та статистичного опрацювання отриманих результатів. Попередньо слід ознайомити майбутніх вчителів з основами педагогічного вимірювання та використання тестових технологій у навчанні учнів та студентів, наприклад, на заняттях з методики навчання математики.
APA, Harvard, Vancouver, ISO, and other styles
8

Євтєєв, Володимир Миколайович. "Нотатки про комп’ютерне тестування." Theory and methods of e-learning 3 (February 10, 2014): 88–95. http://dx.doi.org/10.55056/e-learn.v3i1.322.

Full text
Abstract:
Где лгут и себе и друг другу,и память не служит уму,история ходит по кругуиз крови – по грязи – во тьму.И. Губерман Людину з царини тварин виділила не праця, не розвиток мови і не інші дуже важливі, але все ж другорядні чинники. Головним чинником переможної еволюції людини є накопичення, зберігання і негенетичний спосіб передачі знань про себе і навколишнє середовище. Саме для цього необхідно було розвивати мову, об’єм черепу і прямоходіння, щоб використовувати накопичені знання, тобто працювати. Щоб зрозуміти, як інформаційні технології впливають на суспільний уклад, розглянемо три епохальні винаходи. Десь близько півтори тисяч років до нашої ери почали з’являтись фонетичні алфавіти, які значно спрощували складні писемні технології з використанням ієрогліфів. Все настільки спрощувалось, що засвоїти писемність отримала змогу навіть дитина. Наступний епохальний винахід відбувся приблизно п’ятисотого року вже нашої ери. Це був винахід позиційних систем числення. Наприклад, до цього часу в Європі панувала непозиційна римська система числення, для якої алгоритми арифметичних дій були дуже складні з великою кількістю виключень з правил, тому для того, щоб вміти виконувати арифметичні розрахунки, необхідно було закінчувати університет. І, нарешті, ще через півтори висячи років винайшли персональний комп’ютер. Звичайно обчислювальні пристрої існували і раніше, але з’явились кавоварки, які розмовляють, в’язальні машини і кухонні комбайни, які необхідно програмувати і таке інше. Тепер пересічний громадянин, хоче він того чи ні, повинен засвоювати новий для нього алгоритмічний спосіб мислення так само, як щойно описані винаходи не тільки надавали нові можливості, але й вимагали засвоєння нових вмінь читати, писати і рахувати. Вже давно неписьменна людина є не тільки не бажаною, але й несе в собі певну загрозу суспільству. На жаль, досі не всі зрозуміли, що персональні комп’ютери – це не чергова «друкарська машинка», що це значно серйозніше.Зовнішнє незалежне оцінювання (ЗНО) виникло під гаслами боротьби з корупцією. Корупція в черговий раз перемогла, але ЗНО все ж таки дало корисні результати. Вперше ми отримали більш-менш об’єктивну оцінку стану освіти. Не дивлячись на шалені спроби, не вдалося повністю приховати реальні результати. По-перше, зсув оцінки на 100 балів може справити враження лише на тих, хто геть не розуміє, що таке обчислення. Наприклад, якщо успішність 50%, то додавання 100 балів може перетворити ці бали на 150 і, враховуючи, що тепер максимальна сума балів дорівнює 200, ми отримаємо загальну оцінку 150/200=75%. Кому потрібні подібні числові кульбіти? По-друге, навіщо потрібно натягувати реально виміряний розподіл результатів на геть недоречний в цьому випадку нормальний розподіл. Зрозуміло, що нормальний розподіл виникає, коли середнє значення зумовлене однією причиною, а відхилення від нього випадкові й незалежні. Коли студент шукає відповідь на завдання, він використовує декілька механізмів: просто вгадування, банальну ерудицію (побутовий досвід), знання і навіть помилково сформовані поняття (на жаль, буває і таке). Можливі й композиції наведених механізмів пошуку відповідей. Наприклад, за допомогою власного досвіду відсікається частина запропонованих відповідей і тим самим збільшується ймовірність, а далі йде просте вгадування.Існують два типи тестів, які мають відношення до освіти. Це тести для визначення здібностей і тести на визначення досягнень у навчанні. Перші цікаві більше для наукової діяльності, а використання їх для практичної діяльності, м’яко кажучи, дискусійне. Але тести на досягнення в навчанні мають суто практичне значення. Однак ці типи тестів сильно відрізняються один від одного. По-перше, діапазоном вимірювання. Наприклад, як вказати межі геніальності? А діапазон вимірювання тестів на досягнення завжди обмежений об’ємом навчальної програми. По-друге, на форму закону розподілу результатів вимірювання здібностей повинен впливати лише об’єктивний стан речей, а на форму закону розподілу тестів на досягнення може впливати і завжди впливає технологія (методика) навчання, яка не є об’єктивною причиною. До речі, форма закону розподілу результатів тестування на здібності не зобов’язана бути симетричною, як то прийнято в багатьох досить поширених теоріях тестування. Так, наприклад, якщо можна допустити, що кількість народжуваних із задатками геніїв приблизно однаково з кількістю народжуваних з задатками суперйолопів, то при вимірюванні у зрілому віці цей баланс, напевно, не зберігається. Дійсно, не всі діти з задатками геніальності зможуть розвинути їх в повній мірі. На те є дуже багато причин, при цьому відсоток тих, кому вдалося досягти максимального результату, буде складати значно менше, ніж 50. Те ж саме можна сказати про тих, хто зумів вибратись із дуже неприємних задатків і стати нормальною людиною. Таким чином, врешті решт суперйолопів буде значно більше, ніж геніїв.Оцінка в навчанні грає роль оберненого зв’язку і тому ні в якому разі не можна її спотворювати різними заохочувальними й іншими виховними змістами. Необхідно повернутися до попередньої практики, коли використовувались дві окремі оцінки: оцінка за навчання і оцінка за старанність. На жаль, п’ятибальна система оцінки була спочатку спотворена, а потім взагалі відкинута. Оцінка «задовільно» означала, що учень відтворив 100% навчального матеріалу. Оцінка «добре» відповідала осмисленому використанню знань для практичних завдань. І, нарешті, оцінка «відмінно» виставлялась у разі використання знань у нестандартних (в тих, які не згадувались у процесі навчання) випадках. Оцінка «незадовільно» виставлялась у всіх інших випадках, окрім тих, коли учень не міг або був не здатним, або не хотів навчатись. Для такої ситуації використовували оцінку «дуже погано» з обов’язковим повторним навчанням. Сучасна дванадцятибальна шкільна і, певною мірою, семибальна система вищих навчальних закладів відповідають лише градації сірого, тобто інтервалу від «незадовільно» до «задовільно» п’ятибальної системи. Слід згадати ще одну ваду сучасної системи оцінювання. Це плутанина коду оцінки з кількісною характеристикою. Мова йде про так звану середню оцінку або показник якості навчання. Якщо ми закодуємо числом «1» яблуню, числом «2» – вишню і числом «3» сливу і якщо далі з’ясується, що половина дерев у саду це яблуні, а половина – сливи, ми ж не будемо стверджувати, що у нас гарний вишневий садок? І ще гірше, якщо ми станемо оцінювати якість художнього твору за середнім кодом літер, які використані для його написання.Однією з головних вад комп’ютерного тестування є практична неможливість використати в тесті завдання, що вимагають неформальної перевірки експертом-людиною. Щодо неможливості корегувати завдання під час опитування, то це скоріше є перевагою комп’ютерного тестування, ніж його недоліком. До переваг комп’ютерного тестування слід віднести формальність, тобто незалежність від людського фактору проведення і оцінювання.Зупинимося на труднощах складання завдань для тестування. Перша перепона при розробці завдання – це визначення складності завдання. Добре відомо, що використання часу, необхідного для виконання завдання, не може бути критерієм його складності. Однак і популярний спосіб визначення складності за допомогою пробного тестування теж не витримує критики. Дійсно, якщо студента ретельно тренували бачити повний диференціал, то для нього знаходження деяких інтегралів буде дуже легким завданням, у випадку ж якщо студенту лише повідомляли про повний диференціал, але не тренували його розпізнавати, подібне завдання буде значно складнішим. Можна продовжувати подібні приклади, але і так зрозуміло, що технологія навчання радикальним способом впливає на складність виконання тестових завдань. Оскільки результати тестування мають бути незалежними від методики навчання, то зрозуміло, що використання пробного тестування для оцінки складності завдань не слід використовувати. Комп’ютерний тест – це інструмент для вимірювання. Як і будь-який прилад, він має певний діапазон, у якому він працює достеменно. Це означає, що частину балів студент може набрати, не володіючи знаннями, а просто вгадуючи відповідь. Щоб корегувати оцінку тестування, слід визначити кількість балів, яку студент може набрати, просто вгадуючи, відняти її від отриманої оцінки завдання і при визначенні підсумкової оцінки за тест провести нормування того, що залишилось, на максимальний бал тесту. При складанні завдань належить всіляко зменшувати ймовірність вгадувань. Наприклад, якщо відповідь подається у вигляді числа, то не бажано формулювати завдання у вигляді запитання з переліком можливих варіантів відповіді, а пропонувати студенту ввести число з клавіатури. Бажано відходити від практики використання завдань тільки з однією вірною відповіддю. Студент повинен сам вирішувати, скільки запропонованих відповідей він повинен вибрати: одну, дві, декілька, всі або навіть жодної. При такому підході перевіряються не тільки знання, а й впевненість у них.Рівень освіти знижується. В цьому легко переконатися, запропонувавши студентам завдання, наприклад, з посібників 30-літьої давнини для підготовки абітурієнтів. З багатьох причин необхідно створювати загальний для країни банк тестових завдань. Щоб завдання не старіли, їх треба робити багатоваріантними, тобто варіантів завдання повинно бути так багато, що запам’ятовувати без розуміння кожний з них окремо було б недоцільно. До того ж кожний варіант повинен вирішувати одну й ту саму дидактичну задачу, тобто повинен перевіряти знання конкретного теоретичного положення навчальної програми. Такий банк можна було б використовувати як для підготовки, так і для безпосередньо тестування. При наявності такого банку тестових завдань стане можливим реальне порівняння результатів тестування за різні роки, тоді як зміна завдань кожного року несе велику загрозу зменшення рівня складності. Звісно, таку базу необхідно доповнювати і розширювати на предмет все більшого і якісного охоплення навчального матеріалу. Однак слід дуже ретельно пильнувати і не дозволяти спрощення вимог до складності завдань. Необхідно уніфікувати підсумковий контроль у процесі навчання, і комп’ютерне тестування для цього на часі.Треба щиро сказати, що занепад освіти зумовлений суб’єктивним фактором, а саме недолугим і недалекоглядним керівництвом. Підтвердимо цей висновок наступними тезисами.Перша системна помилка полягає в тому, що замовник, виконавець і приймальник ‑ це одна й та ж установа, а саме МОНмолодьспорту. Якщо виконавця відокремити від замовника, то можна було б конкретніше з’ясувати, яку якість навчання можна вимагати вид виконавця і за яке фінансування. Це дуже непросте з’ясування, бо з одного боку ‑ грошей завжди не вистачає, а з другого ‑ розвиток суспільства напряму залежить від якості освіти.Друга системна вада управління освітою зумовлена недосконалістю теоретичної педагогіки. Наприклад, розглянемо теорію tabula rasa щодо освіти. Офіціальна педагогіка дуже ретельно критикує першу тезу цієї теорії, стверджуючи що «чистих дошок» не існує, але геть не розглядає другу тезу, яка стверджує, що якщо на «дошці» є вільне місце, то там можна написати що завгодно. А чи це так? Ні в кого не виникає заперечень, що процес навчання ‑ це інформаційний процес. Якщо це так, то для інформаційного процесу необхідно мати три структурні одиниці: передавач, канал і приймач. При цьому передавачів і каналів може бути декілька, а приймач один – учень. Саме на ньому відображається результат навчання і саме він є ключовою структурною одиницею в навчанні. Запитайте студента: «Що важливіше: знання чи диплом?». Ви отримаєте цілком обґрунтовану відповідь: «Звичайно ‑ знання, маючи їх завжди можна скласти іспити і отримати диплом». Але ж чому, деякі студенти попри всяку гідність вимолюють неадекватно завищені оцінки? Справа в тому, що крім недосконалостей теорії, існує варварське невігластво керівної ланки. Наприклад, варварський вираз: «Ви не учню ставите негативну оцінку, ви її собі ставите!», або більш хитромудрий: «Якщо студента відраховано з третього курсу, то гроші, які витрачені на його навчання ‑ це нецільове використання коштів». Чому саме платять хабар за вступ до навчального закладу, якщо майбутній студент справжній телепень? Тоді ж треба буде платити за кожний залік, за кожний іспит і кожну контрольну або курсову роботу. А якщо зустрінеться викладач, який не бере хабарів? Дуже довгий і ризикований ланцюжок. Чи не простіше піти і одразу купити диплом? Відповідь на ці запитання проста. Управління освітою відбувається з використанням недолугих і до того ж суперечливих показників. Наприклад, показник успішності, так званий показник якості, геть технологічно необґрунтований показник відношення кількості викладачів до кількості студентів, штучне обмеження кількості стипендіатів, і таке інше. За кожним з цих показників стоїть певна проблема керівної установи. Наприклад, популістський закон підвищення розміру стипендії без підвищення стипендіального фонду. До чого призводить цей суперечливий клубок вимог до керівництва навчального закладу і врешті-решт до викладачів? Негативні оцінки стають винятковим явищем. Тоді, якщо студент веде себе тихо, ходить на заняття, але нічого не вчить, він має свою чергову задовільну оцінку і, «відмотавши» певний строк, отримує диплом. Якби ж можна було перенести хоча б трохи відповідальності за результат навчання на студента, як того вимагає інформаційний характер процесу навчання, і при цьому використати незалежне від людського фактора комп’ютерне тестування, то можливо було б подолати описане ганебне явище.Нарешті, третя системна біда – невтримна вакханалія оптимізації і новаторства. Справа в тому, що оптимізація може бути дуже шкідливою, коли система знаходиться у збудженому нестійкому стані [1] тим, що оптимізаційні дії посилюють нестійкий стан і приводять до катастрофи. Як це не дивно, але діяльність вчителів-«новаторів» може наносити більше шкоди, ніж користі. Інновації можуть бути дуже локально корисними і шкідливими у загальносистемному сенсі. Так, багато століть учнів не спонукали зазубрювати таблицю додавання на кшталт таблиці множення, а замість цього дуже старанно привчали до виконання алгоритму переходу через розряд. Така методика сприяла глибшому розумінню того, як працює позиційна система числення. В наш час все більше вчителів змушують школярів заучувати таблицю додавання, що дійсно прискорює навчання швидкому рахуванню, але повністю знищує розуміння будови позиційної системи числення. Наступний приклад стосується викладання мови. Тенденція полягає в тому, що збільшується навчальний час на написання творів за рахунок навчання робити перекази. В результаті такого підходу учні не вміють писати доповідні, вести лабораторні журнали і взагалі пояснювати щось письмово. Замість цього вони списують з книжок незрозумілий у їхньому віці опис глибинних страждань Лариси Косач.Розглянемо деякі проблеми оптимізації з використання діаграми потенціального рельєфу рівня навчання. На рис. 1 локально стійкі стани мають номери: 1, 3, 5 і 6. Зрозуміло, що освіта може бути ефективною лише в стійких станах. Для того, щоб поліпшити ситуацію, систему треба перевести зі стійкого стану 1 до стійкого стану 3. Будемо збуджувати систему у стані 1 доти, поки система стане здатна сама переходити від збудженого стану 1 до збудженого стану 3 і навпаки. Потім, коли система буде знаходитись у збудженому стані 3, різко увімкнемо гальма, тобто використаємо відповідні стандарти, щоб система «охолола» до стійкого стану 3.Гальма ‑ це незмінний на певний час рівень тестування набутих знань. Якщо потроху знижувати рівень тестів, скажімо для покращення деяких показників, то система сама собою опиниться знов у стані 1. Описаний революційний спосіб оптимізації системи самий простий, однак він не завжди доступний. Наприклад, для переходу від стану 3 достану 5 такий спосіб не підходить. Дійсно, якщо поступово збільшувати збудженість стану 3, ми не досягнемо потрібного рівня і ймовірніше за все опинимося в стані 1. Для того, щоб перевести систему зі стійкого стану 3 до стійкого стану 5, необхідно швидко, протягом однієї чверті періоду коливань системи, збудити систему до необхідного рівня і зробити реформу, тобто змінити «правила гри», і знову увімкнути гальма, але вже на іншому вищому рівні. На рисунку такий перехід позначений штриховою лінією. Тепер зрозуміло, чому так важливо мати дієвий інструмент стабілізації системи. Комп’ютерне тестування, взагалі кажучи, відповідає вимогам для такого інструмента.
APA, Harvard, Vancouver, ISO, and other styles
9

Охріменко, О. "МЕТОДИ ПІДВИЩЕННЯ ТОЧНОСТІ ПОЗИЦІОНУВАННЯ ОБ’ЄКТІВ ЗАСОБАМИ СУПУТНИКОВОЇ НАВІГАЦІЇ." Vodnij transport, no. 2(30) (February 27, 2020): 16–22. http://dx.doi.org/10.33298/2226-8553.2020.2.30.02.

Full text
Abstract:
Розглянуто аналіз засобів обробки навігаційних даних у системах відстеження рухомих об’єктів, а саме розглянуто метод який підвищує точність вимірювання координат, це алгоритм фільтрації Каймана .Значною мірою це стосується різних рухомих об’єктів -організації руху повітряного ,морського, річкового, автомобільного й залізничного транспорту, а також використання сучасних супутникових навігаційних систем у суміжних областях, таких як геодезія й картографія, землевпорядження, моніторинг земної поверхні. Розглянуто Алгоритм фільтрації Калмана – послідовний рекурсивний алгоритм, який використовує прийняту модель динамічної системи для отримання оцінки, що може бути істотно скоригована в результаті аналізу кожної нової вибірки вимірювань у часовій послідовності. Це рекурентний метод, який можна віднести за своїм алгоритмом до метода заміщення. Алгоритм фільтрації Калмана застосовується в процесі управління багатьма складними динамічними системами, так як це математичний апарат, який дозволяє згладжувати дані на льоту, не накопичуючи їх для аналізу. При управлінні динамічною системою, перш за все, необхідно повністю знати її фазовий стан в кожен момент часу,але виміряти всі змінні, якими необхідно управляти, не завжди можливо, і в цих випадках фільтр Калмана є тим засобом, який дозволяє відновити відсутню інформацію за допомогою наявних неточних (зашумленних) вимірювань. Ключові слова: супутникові навігаційні системи, методи обробки навігаційних даних, точність вимірювання координат, метод Калмана
APA, Harvard, Vancouver, ISO, and other styles
10

Шамшин, Олександр Петрович. "Дистанційні лабораторні роботи у фізичному практикумі." New computer technology 15 (May 2, 2017): 185–88. http://dx.doi.org/10.55056/nocote.v15i0.606.

Full text
Abstract:
Метою дослідження є вивчення сучасного стану програмного забезпечення й розробки дистанційних лабораторних робіт з фізики. Задачами дослідження є розробка новітніх віртуальних лабораторних робіт (ВЛР) з фізики із використанням Інтернет-технологій. Об’єктом дослідження є лабораторний практикум, спрямований на: а) експериментальне підтвердження теоретичного лекційного матеріалу, поглиблене вивчення й розуміння фізичних явищ; б) прищеплювання навичок самостійної роботи з вимірювальними приладами, лабораторним устаткуванням; в) набуття елементарних дослідницьких компетентностей – проведення вимірювань, обробка результатів вимірювань, оформлення результатів досліджень. У зв’язку з тим, що в останні роки спостерігається істотна модернізація лабораторного устаткування у ВНЗ, повсюдний перехід на комп’ютерні системи вимірювань та упровадження Інтернет-технологій проведення теоретичних і лабораторних занять, нами був розроблений ряд ВЛР, що використовують сучасні програмні ресурси. Метою створення розглянутих робіт було прищеплювання навичок роботи з вимірювальними приладами, самостійне проведення вимірювань і розрахунків кожним студентом, можливість виконати дослідження з теми роботи шляхом зміни початкових умов системи й аналізу їх впливу на поведінку системи. Предметом дослідження є вивчення впливу варіювання «зовнішніх» параметрів на поведінку системи. Як правило, наявні лабораторні роботи дозволяють проводити вимірювання для одного певного випадку, не дозволяючи змінювати параметри системи. ВЛР саме й здатна позбавити від обмежень реальних установок і проводити дослідження, варіюючи параметри системи в розумних межах, виявляти «зовнішні» впливи на систему, які в реальній установці призвели б до її істотної модернізації. У даній роботі йдеться про ВЛР, розроблені з використанням LabVIEW, що використовуються у навчальному процесі. Результати дослідження: створення дистанційного практикуму ВЛР з фізики на базі програмного продукту LabVIEW для систем збору даних, їх аналізу, опрацювання та візуалізації суттєво підвищує ефективність навчального процесу.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Система вимірювання результатів"

1

Кухаренко, Володимир Миколайович. "Ролі гравців дуального навчання." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Панченко, Є. А. "Дослідження комп'ютеризованої системи обліку електроенергії." Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/8343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Бережной, А. И. "Методи корекції результатів вимірювань в автоматизованих системах обліку електроенергії." Thesis, Видавництво СумДУ, 2010. http://essuir.sumdu.edu.ua/handle/123456789/4035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Носова, І. В., and Ігор Володимирович Григоренко. "Регресійний аналіз результатів вимірювань температури та вологості при зберіганні халви." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ступак, С. С., Н. А. Яремчук, and Р. С. Семенюк. "Способи урахування впливу невизначеності на результати "м'яких" вимірювань." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Плєснецов, Сергій Юрійович, and Д. С. Шпагін. "Програмний засіб для здійснення вимірів у площині та статистичної обробки для аналітичної та науково-дослідної роботи." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/39904.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Система вимірювання результатів"

1

Соловйов, Володимир Миколайович, and Г. Б. Данильчук. Використання ентропійних показників для вимірювання складності економічних систем. КЕІ КНЕУ, 2008. http://dx.doi.org/10.31812/0564/1122.

Full text
Abstract:
Останніми роками було використано кілька підходів для ідентифікації механізмів, що лежать в основі розвитку та функціонування складних систем. Особливо корисні результати було отримано при їх дослідженні методами теорії випадкових матриць, моно- та мультифрактального аналізу, теорії хаосу з реконструкцією траєкторії системи у фазовому просторі та визначення її параметрів, таких як кореляційна розмірність, спектр показників Ляпунова, рекурентні карти. Однак, застосування деяких із методів висуває вимоги до стаціонарності досліджуваних даних, потребує довгих часових рядів та комплексного обчислення кількох параметрів. Іншим підходом до розгляду питання вивчення особливостей складних систем є обчислення характеристик ентропії. Метою даної роботи є аналіз сучасних тенденцій використання ентропійних характеристик системи для вимірювання динамічних властивостей складних систем.
APA, Harvard, Vancouver, ISO, and other styles
2

Пипенко, І. С., and Ю. Б. Мельник. Факторно-критеріальна модель оцінки життєздатності криптоактивів. KRPOCH, 2021. http://dx.doi.org/10.26697/preprint.pypenko.melnyk.1.2021.

Full text
Abstract:
Вступ: Відсутність теоретично обґрунтованої системи факторів і критеріїв криптоактивів не дозволяє здійснити системну оцінку життєздатності ринків криптоактивів та розробити механізми їх ефективного управління. Мета дослідження: визначити систему факторів і критеріїв, а також показників криптоактивів, на основі яких розробити факторно-критеріальну модель оцінки життєздатності криптоактивів. Матеріали і Методи: Методологія дослідження базується на системному підході до визначення основних факторів, критеріїв і показників криптоактивів. Використано кваліметричний підхід для розробки факторно-критеріальної моделі оцінки життєздатності криптоактивів. Проведено анкетування 57 фахівців-експертів для визначення вагомості (значущості) факторів і критеріїв у розробленій моделі. Для оброблення даних моделі використовується кваліметричний інструментарій. Результати: Дослідження криптоактивів методами факторно-критеріального аналізу дозволило схарактеризувати систему з 7 факторів і 30 критеріїв, а також 60 показників. Ці фактори, критерії та показники покладено в основу розробленої моделі оцінки життєздатності криптоактивів. Застосування факторно-критеріальної моделі надає можливість порівняти всі компоненти системи критеріїв, навіть, якщо вони вимірюються в різних одиницях, й визначити загальний рівень життєздатності криптоактивів на основі інтегральної оцінки. Висновки: Факторно-критеріальна модель оцінки життєздатності криптоактивів є унікальним інструментом вимірювання рівня як кожної складової криптоактиву в цій моделі, так і в інтегрованій цілісності. Для оцінки та розуміння життєздатності криптоактиву слід вивчати не тільки показники окремих критеріїв, а й їх взаємовідношення та взаємодію. Координація комплексу вибірково залучених критеріїв забезпечуватиме отримання реального результату – підвищення рівня життєздатності криптоактиву. Ця модель може бути рекомендована для емітентів, інвесторів та користувачів криптоактивів.
APA, Harvard, Vancouver, ISO, and other styles
3

Мінтій, Ірина Сергіївна, and Сергій Олексійович Семеріков. Компетентнісний підхід: надбання та напрямки подальшої розробки. Видавничий центр КТУ, November 2008. http://dx.doi.org/10.31812/0564/919.

Full text
Abstract:
Перехід системи освіти України до зовнішнього незалежного оцінювання загострив питання оцінки результатів освіти – очікуваних та вимірюваних конкретних досягнення випускників, які визначають, що вони здатні робити по завершенні всієї освітньої програми (або її частини). Іншими словами, ЗНО оцінює, наскільки випускник є компетентним, визначаючи це через сформованість компетенцій.
APA, Harvard, Vancouver, ISO, and other styles
4

Бас, Світлана Віталіївна, and Катерина Іванівна Словак. Способи опрацювання запитів та характеристика мобільного доступу до Wolfram|Alpha. Видавничий центр ДВНЗ «Криворізький національний університет», December 2014. http://dx.doi.org/10.31812/0564/1081.

Full text
Abstract:
У статті проаналізовано способи опрацювання запитів різних видів до Wolfram|Alpha, зокрема, можливості запитів природною мовою. Надано характеристику мобільному доступу до Wolfram|Alpha, розглянуто формати подання даних: візуальні подання, зображення, HTML, Mathematica Cell, текстові подання, простий текст, MathML, введення Mathematica, виведення Mathematica, audio подання, спеціальні типи виводу Wolfram|Alpha. Метою статті є аналіз та узагальнення можливостей подання запитів до Wolfram|Alpha різними способами та надання характеристики можливостей мобільного доступу до Wolfram|Alpha. Предметом дослідження є Wolfram|Alpha як хмаро орієнтований сервіс навчання математики. При підготовці матеріалу було використано тематичні дослідження та експериментальне дослідження можливостей подання різних типів запитів до Wolfram|Alpha. Висновок: робота Wolfram|Alpha заснована на опрацюванні природної мови (поки тільки англійської), великій бібліотеці алгоритмів і NKS-підході до відповідей на запити. Wolfram|Alpha не видає перелік посилань, що ґрунтується на результатах запиту, а обчислює відповідь, ґрунтуючись на власній базі знань. Сервіс здатен перекладати дані між різними одиницями вимірювання, системами числення тощо.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography