Academic literature on the topic 'Робочий зазор'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Робочий зазор.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Робочий зазор"

1

Melyantsov, Petr, Olexander Losikov, and Vitaliy Movchan. "КОНСТРУКТИВНІ РІШЕННЯ ПО ЗНИЖЕННЮ ОБ’ЄМНИХ ВТРАТ РОБОЧОЇ РІДИНИ В ШЕСТЕРЕННИХ НАСОСАХ ПІДЖИВЛЕННЯ АКСІАЛЬНО-ПОРШНЕВИХ ГІДРОМАШИН." Modern Problems of Metalurgy 1, no. 22 (November 6, 2019): 52–61. http://dx.doi.org/10.34185/1991-7848.2019.01.06.

Full text
Abstract:
В мобільних машинах гірничо-металургійного комплексу має місце застосування об’ємних гідравлічних трансмісій, що значно покращує їх керованість та мобільність в процесі роботи. Розглядаються конструктивні рішення по зниженню об’ємних втрат робочої рідини в шестеренних насосах підживлення аксіально-поршневих гідромашин. Мета дослідження - збільшення експлуатаційної довговічності насосів підживлення аксіально-поршневих гідромашин розробленням конструктивних заходів по зниженню об’ємних втрат в його качаючому вузлі. Запропоновано спосіб компенсації торцевого зазору з застосуванням пластини компенсації торцевого зазору, що складається з робочої поверхні і пружнодемпфуючого елемента, у якому додатково розташовані канали й камери гідростатичного піджиму. Проведено аналіз сил, що діють на пластину компенсації торцевого зазору і обґрунтовано їх оптимальне співвідношення, яке забезпечує величину торцевого зазору, що обумовлює мінімальні об’ємні втрати робочої рідини в качаючому вузлі насосу підживлення і забезпечує збільшення його експлуатаційної довговічності.
APA, Harvard, Vancouver, ISO, and other styles
2

Булгаков, В., І. Головач, З. Ружило, and В. Рибалко. "Розробка нової конструкції лабораторної установки для експериментального дослідження очисників картопляного вороху." Науковий журнал «Інженерія природокористування», no. 3(13) (February 7, 2020): 56–61. http://dx.doi.org/10.37700/enm.2019.3(13).56-61.

Full text
Abstract:
В роботі наведена розроблена авторами лабораторна установка нової конструкції для проведення експериментальних досліджень очисників картопляного вороху спірального типу, здатних до активного самоочищення від налиплого ґрунту, ефективного відведення ґрунтових і рослинних домішок та якісного очищення бульб картоплі з їх мінімальними втратами і пошкодженнями. Зокрема, на цій лабораторній установці будуть проведені експериментальні дослідження очисника картопляного вороху, який складається з п’яти хвилеподібно розташованих робочих спіралей, що дає змогу значно розширити робочу зону сепарації поступаючого картопляного вороху, а це сприятиме кращому його розосередженню по робочій поверхні очисника, більш інтенсивному руйнуванню ґрунтових грудок, а отже покращенню просіювання ґрунтових і рослинних домішок і зменшенню забивання робочих спіралей, що в кінцевому рахунку підвищує продуктивність і працездатність картопляного очисника. Процес очищення бульб від ґрунтових і рослинних домішок зазначеним очисником відбувається за рахунок переміщення картопляного вороху витками консольно закріплених спіральних пружин, що обертаються з певною кутовою швидкістю, та коливального руху самих пружин, що виникає за рахунок прогину їхніх поздовжніх осей під дією ваги поступаю чого в робочу зону очисника вороху. При цьому ґрунтові і рослинні домішки просіваються крізь сепаруючі зазори і витки спіралей, а бульби картоплі транспортуються витками спіралей у напрямі до вивантажувального транспортера. Розрахунки потрібної потужності на привід лабораторної установки показали, що вона не перевищує 1,3 кВт.
APA, Harvard, Vancouver, ISO, and other styles
3

Savchuk, V. P., D. O. Zinchenko, and O. V. Akimov. "МОДЕЛЮВАННЯ РОБОЧИХ ПАРАМЕТРІВ МОТИЛЕВИХ ПІДШИПНИКІВ МАЛООБЕРТОВОГО СУДНОВОГО ДИЗЕЛЬНОГО ДВИГУНА WARTSILA RT-FLEX82C." Transport development, no. 1(8) (April 29, 2021): 91–102. http://dx.doi.org/10.33082/td.2021.1-8.09.

Full text
Abstract:
Вступ. Системне моделювання та аналіз стану підшипників кривошипно-шатун- ного механізму може значно поліпшити розуміння механізму контактної взаємодії робочих поверхонь, пов’язаного з динамічними характеристиками, і є ефективним методом для визначення граничних значень експлуатаційних показників підшипників колінчастого валу. Мета. Ця стаття присвячена моделюванню показників працез- датності мотилевого підшипника дизельного двигуна Wartsila RT-flex82C у програм- ному середовищі GT-Suite при різних значеннях експлуатаційних зазорів, що допомо- же вдосконалити теорію аналізу мащення підшипників двигуна і може забезпечити більш повну довідкову базу для проектування шатунів та підшипників. Моделювання виконувалося із застосуванням показників моторного масла класу в’язкості SAE 30, що подається при температурі 318 К, та тиском 0,5 МПа. Результати. Отрима- но результати робочих параметрів чотирьох варіантів радіального зазору в під- шипнику 0,3, 0,4, 0,5 та 0,6 мм. Підвищення зносу супроводжується ростом мак- симального гідродинамічного тиску в масляному прошарку, а саме із 9,44 МПа до 13,02 МПа (40%), зменшенням товщини змащувального шару з 65,3 мкм до 63,0 мкм (3,5%). Також збільшення зазору закономірно призводить до зменшення середнього моменту тертя -625,6 Н∙м до -468,1 Н∙м та зменшуються втрати потужності з 7,8 кВт до 6,3 кВт. Відповідно, температура масла в підшипнику знижується з 323,4 до 318 К. Висновки. У цій статті ми показуємо, що збільшення радіального зазору призводить до підвищення витрати масла через підшипник, що своєю чергою призводить до падіння тиску. Оскільки математична модель базується на умові постійного тиску циркуляційного масла, розрахована середня витрата становить 21,3, 28,6, 64,8 та 102,8 л/хв для досліджуваних варіантів радіальних зазорів. Мож- на сказати, що працездатність підшипника з радіальним зазором 0,6 мм буде склад- но забезпечити внаслідок падіння в ньому тиску.
APA, Harvard, Vancouver, ISO, and other styles
4

Maksymenko, O. P., V. M. Samokhval, and K. K. Marchenko. "Дослідження зношення карбідовольфрамових валків дротового блоку." Обробка матеріалів тиском, no. 1(50) (March 31, 2020): 299–306. http://dx.doi.org/10.37142/2076-2151/2020-1(50)299.

Full text
Abstract:
Максименко О. П., Самохвал В. М., Марченко К. К. Дослідження зношення карбідовольфрамових валків дротового блоку. Oбробка матеріалів тиском. 2020. № 1 (50). C. 299-306. Метою роботи є обґрунтування можливості застосування оптичного методу вимірювання зношення валків прокатного стану та вивчення особливостей зношення карбідовольфрамових валків дротового блоку. Для вимірювання зношення поверхні врізів валків використовували оптичний метод, згідно якого валок розміщують на оптичному стенді між джерелом світла та лінзою, у відповідному врізі валка закріплюють шаблон, зазор між цим шаблоном і зношеною поверхнею врізу валка проектують на екран та фіксують зображення зазору цифровою камерою. За результатами статистичної обробки багатократних вимірів зношення карбідовольфрамових валків з овальним та круглим калібрами, встановлено, що оптичний метод забезпечує точність вимірювань на рівні ± 0,01 мм. Такий рівень точності є цілком прийнятним, тому застосування оптичного методу вимірювання зношення є цілком обґрунтованим. За результатами аналізу вимірювань зношення комплекту валків дротового блоку визначено показники інтенсивності зношення врізів валків, які становлять: для овальних калібрів чорнових модулів 0,08 – 0,18 мкм/т та для передчистового модулю М9 ‑ 0,08 – 0,1 мкм/т; для круглих калібрів чорнових модулів 0,02 – 0,15 мкм/т та для чистових модулів М8, М10 ‑ 0,03 – 0,08 мкм/т. З аналізу контурів зношення виявлено, що для овальних калібрів у більшості випадків спостерігається рівномірний розподіл зношення відносно осі симетрії калібру. Для круглих калібрів виявлено зміщення максимального зношення від осі симетрії. З візуального аналізу зношених поверхонь врізів калібрів встановлено, що для твердосплавних валків дротового блоку основними механізмами зношення є поєднання адгезійного налипання металу, який прокатується, та абразивного стирання. Термічні пошкодження та корозія для твердосплавних валків проявляється незначною мірою. Отримані дані можуть бути використані для розробки моделі зношення карбідовольфрамових валків та для прогнозування їх витрат.
APA, Harvard, Vancouver, ISO, and other styles
5

Самсоненко, Андрій, Василь Гануш, and Сергій Бергеман. "ДОСЛІДЖЕННЯ ПІДШИПНИКІВ РІДИННОГО ТЕРТЯ РОБОЧИХ КЛІТЕЙ 630 СТАНУ 550." Modern Problems of Metalurgy, no. 24 (March 28, 2021): 110–18. http://dx.doi.org/10.34185/1991-7848.2021.01.11.

Full text
Abstract:
Аналіз експлуатації підшипників рідинного тертя (ПРТ) станів 630 показав, що втрати мастила на клітях 630 досягають до 10 тонн за рік. Причиною цього є недосконалість конструкції ущільнення, а це в свою чергу не забезпечує необхідний режим змащування ПРТ і призводить до високоінтенсивного зносу поверхонь втулки та вкладиша підшипника. Що призводить до виходу з ладу ПРТ раніше встановленого строку заміни втулки та вкладиша. Метою дослідження є визначення навантаженості ПРТ шляхом математичного моделювання для визначення енерго-силових параметрів прокатки на прикладі швелеру №14, визначення коефіцієнту тертя, дослідження процесу зносу поверхні втулки та вкладиша ПРТ та надання рекомендації, щодо можливого шляху удосконалення ущільнення ПРТ клітей 630. Розрахунок піддвердив перехід до граничного тертя при зносі до радіального зазору в 4 мм, що спостерігалось при експлуатації ПРТ. Запропонована удосконалена конструкція ущільнень з використанням V-подібних манжет.
APA, Harvard, Vancouver, ISO, and other styles
6

Rakhmanov, Suleiman, Sergey Belodedenko, Vasiliy Hanush, Ihor Khatskelian, and Viktor Povorotniy. "ЗАБЕЗПЕЧЕННЯ НАДІЙНОСТІ СТАНИНИ РОБОЧОЇ КЛІТІ ПРОШИВНОГО СТАНУ ТПА 350 ПІСЛЯ ЇЇ ДОВГОТРИВАЛОЇ ЕКСПЛУАТАЦІЇ." Metallurgicheskaya i gornorudnaya promyshlennost, no. 3 (September 30, 2020): 3–17. http://dx.doi.org/10.34185/0543-5749.2020-3-3-17.

Full text
Abstract:
Мета. Дослідження напружено-деформованого стану станини робочої кліті прошивного стану трубопрокатного агрегату 350 (ТПА 350). Розробка методики визначення надійності станини робочої кліті прошивного стану ТПА 350 після її довготривалої експлуатації. Розробка стратегії подальшої експлуатації прошивного стану ТПА 350.Методика. При виконанні роботи проводилися тензометрічні виміри напружень, що виникають у станині прошивних станів ТПА 350, проводилися дослідження 3D моделі станини. Було розроблено математичні моделі для визначення функції розподілу довговічності станини прошивного стану та показника безпеки, а також для визначення довговічності станини при наявності існуючих дефектів.Результати. Наведено результати досліджень 3D моделі станин прошивного стану ТПА 350. Визначено напружено-деформований стан робочої кліті прошивного стану ТПА 350. Встановлено, що в станиніробочої кліті прошивного стану виникають максимальні напруження в зонах виявлених раніше тріщин, місця концентрації максимальних напружень «мігрують» при зміні умов закріплення станіни. Виявлено, що небезпеку представляють дефекти (тріщини), які з’являються в напружених зонах станини робочої кліті. Виявлено, що початкові розміри дефектів малі для надійного діагностування, але їх критичні розміри достатньо великі, щоб їх не виявити при обстеженнях. Встановлено, що безпека станини прошивного стану при більш жорстких умовах експлуатації, які фактично спостерігаються у реальності, була вичерпана після 75 років експлуатації. Дослідженнями напружено-деформованого стану встановлено, що зазори в місці з'єднання кришки й станини робочої кліті сприяють росту локальних напружень, наслідки появи яких аналізувалися в даній роботі. Наукова новизна. Вперше проведено дослідження надійності станини прошивного стану ТПА 350 після 80 років експлуатації. При розробці математичної моделі опору втомному руйнуванню використано І та ІІ моди руйнування. Практична цінність. Розрахунки показують, що в даний момент станина прошивного стану працює в зоні повного ризику, що супроводжується утворенням тріщин. Період живучості сферичного дефекту становить близько 5 років, після цього дефект трансформується в тріщину з погано визначною геометрією й розвивається по закономірностях, що вимагають окремого вивчення. Показано, що найбільш ефективно в цьому плані здійснювати її контроль неруйнуючими діагностичними методами. Для продовження експлуатації станини прошивного стану пропонується: надійно закріпити верхню кришку станини прошивного стану гвинтовим механізмом фіксації. Запропоновано максимально знизити (виключити) кількість труб, що виготовляються, із сплавів, що важко деформуються, робити діагностування кліті й регулярно перевіряти розміри тріщин.
APA, Harvard, Vancouver, ISO, and other styles
7

Двойнос, Я. Г., and О. І. Італьянцев. "Вибір переохолоджувача конденсату парокомпресорної холодильної машини." Refrigeration Engineering and Technology 57, no. 1 (February 11, 2021): 5–12. http://dx.doi.org/10.15673/ret.v57i1.1975.

Full text
Abstract:
Зменшення питомих енерговитрат парокомпресорної холодильної машини шляхом встановлення внутрішнього теплообмінника переохолодження конденсату дозволяє отримати економію енергоресурсів протягом тривалого періоду експлуатації, і разом з цим, збільшує вартість обладнання, тому уточнення розрахунку переохолоджувача і аналіз його роботи важливі. Роботу присвячено аналізу існуючих конструкцій переохолоджувача, вибору критеріїв оцінки ефективності встановлення даного теплообмінного обладнання. Розраховано для умов числового експерименту значення теоретичного коефіцієнта термодинамічної ефективності циклу. З використанням програмного забезпечення «EmersonClimate Technologies SELECT 7 (V.7.0)» отримано значення коефіцієнта термодинамічної ефективності циклу з переохолоджувачем, наближені до реального процесу з врахуванням витрат при роботі компресора. Оцінено втрати роботи компресора на подолання гідравлічного опору теплообмінника переохолодження конденсату та отримано локальні значення прогнозованого коефіцієн­та термодинамічної ефективності роботи парокомпресорної холодильної машини в залежності від питомої теплової потужності переохолоджувача. Для умов числового експерименту обрано конструкцію переохолоджувача – пластинчастий теплообмінник з гладкою поверхнею пластин, гідродинамічний режим та визначальні розміри (зазор між пластинами), зроблено припущення та проведено серію числових експериментів з розрахунку локальних значень прогнозованого коефіцієнта термодинамічної ефективності від довжини каналів по паровій фазі. Аналіз результатів дозволив визначити оптимальну довжину теплообмінника, якій відповідає максимальне значення прогнозованого коефіцієнта термодинамічної ефективності. Подальше зростання довжини теплообмінника-пере­охолоджувача призводить до зростання витрат компресора на подолання його гідравлічного опору і прогнозована ефективність машини зменшується. Результати роботи можуть бути використані при проектуванні нового холодильного обладнання, або модернізації існуючого для визначення геомет­ричних розмірів та гідродинамічних режимів теплообмінника-переохолоджувача конденсату
APA, Harvard, Vancouver, ISO, and other styles
8

Protsenko, V. O., V. O. Nastasenko, M. V. Babii, and A. O. Bilokon. "ПЕРСПЕКТИВИ ВДОСКОНАЛЕННЯ ВАЖІЛЬНОГО МЕХАНІЗМУ РУЛЬОВИХ МАШИН ПЛУНЖЕРНОГО ТИПУ." Transport development, no. 1(8) (April 29, 2021): 78–90. http://dx.doi.org/10.33082/td.2021.1-8.08.

Full text
Abstract:
Вступ. Досконалість конструкції будь-якої машини залежить від здатнос- ті зберігати стабільність технічної характеристики протягом усього періоду експлуатації. Особливого значення це набуває для рульових машин, від збережу- ваності яких залежить, зокрема, безпека мореплавства. Мета роботи – аналіз перспектив удосконалення важільних механізмів рульових машин плунжерного типу з точки зору підвищення структурної досконалості та зниження наван- тажуваності деталей. Результати. Показано, що еволюція важільного механіз- му рульових машин плунжерного типу відбувалась у напрямі зниження кількості надлишкових зв’язків. Механізм машини Р-18 має q = 26 надлишкових зв’язків, механізм ГРМ YOOWON-MITSUBISHI YDFT-335-2 має q = 20, машини HATLAPA R4ST-1000 – q = 16. Підвищення структурної досконалості механізмів ГРМ від- бувалось шляхом зміни призначення, конструкції та згодом відмови від напрям- ної балки. У машині Р-18 основним її призначенням є розвантаження плунжера. На несівну спроможність балки значний вплив має величина зазору в її сполучен- ні з опорою плунжерів. За відсутності зазору напрямна сприймає 92,3% попере- чного навантаження. У разі його збільшення до 0,25 мм напрямна сприйматиме вже 56,2% поперечного навантаження, а в разі подальшого збільшення зазору до 0,50 мм сприймає тільки 20% поперечного навантаження. Інша конструкція ГРМ – YOOWON-MITSUBISHI YDFT-335-2 зберегла напрямну як елемент, що унеможливлює поворот плунжерів навколо власної осі, її жорсткість достат- ня для сприяняття максимум 7% поперечного навантаження. Машина HATLAPA R4ST-1000 зовсім не містить напрямної, тобто 100% поперечного навантажен- ня сприймають плунжери. Показано, що кількість надлишкових зв’язків у меха- нізмі чотириплунжерної рульової машини можна зменшити до 6, що означає досягнення за критерієм мінімізації їх кількості глобального екстремуму параме- трів. Висновки. За критеріями структурної досконалості та навантаженості плунжерів поперечною силою, застосований у всіх сучасних ГРМ плунжерного типу тангенсний механізм досяг екстремуму свого розвитку, тому перспектива підвищення технічного рівня рульових машин плунжерного типу знаходиться в площині застосування іншого типу механізму для перетворення поступального руху плунжерів в обертальний рух румпеля.
APA, Harvard, Vancouver, ISO, and other styles
9

Pilipenko, Oleg, Denis Kolesnik, and Anatoli Berezniak. "ТОЧНІСТЬ ТА ПОГРІШНОСТІ ЗУБЧАСТИХ ПЕРЕДАЧ ВЕРТОЛЬОТНИХ РЕДУКТОРІВ." TECHNICAL SCIENCES AND TECHNOLOGIES, no. 1(19) (2020): 18–31. http://dx.doi.org/10.25140/2411-5363-20209-1(19)-18-31.

Full text
Abstract:
Актуальність теми дослідження. Якість робочих поверхонь зубчастих коліс формується під впливом конструктивних факторів (модуля, числа зубців і матеріалу коліс, твердості матеріалу заготовок та їх фізикомеханічних властивостей) і технологічних факторів (швидкості та глибини різання, подачі, ступеня зношуваності інструменту). Зубчасту передачу можна виконати тільки з деяким наближенням до функціонально точної, оскільки елементи зубчастої передачі не можуть бути виготовлені без відхилень. Рівень цих відхилень визначається не тільки технічною, але й економічною доцільністю, а також можливостями виробництва. Постановка проблеми. Виявлення можливості збільшення ресурсів зубчастих передач, зокрема головного, проміжного і хвостового редукторів вертольотів Ми-8 та їх модифікацій. Аналіз останніх досліджень і публікацій. З аналізу літературних джерел можна зробити висновок, що основними факторами, що формують якість робочих поверхонь зубчастих коліс, є конструктивні та технологічні. Сучасні досягнення у сфері конструювання та виробництва сприяють підвищенню точності та зменшенню погрішностей зубчастих передач вертольотних редукторів. Виділення недосліджених частин загальної проблеми. Виявити основні причини виникнення погрішностей зубчастих передач вертольотних редукторів, взаємозв’язок факторів виробництва й параметрів точності зубчастих коліс та можливості керування точністю поверхонь зубців ще на стадії проєктування. Мета статті. Розглянути точність та погрішності зубчастих передач вертольотних редукторів. Виклад основного матеріалу. Розглянуті показники точності зубчастих коліс за нормами кінематичної точності, плавності, контакту зубців та бокового зазору, вплив технології виробництва на якість зубчастих коліс. Функціональна точність забезпечується двома шляхами – конструктивним і технологічним. Приведені основні причини виникнення погрішності операції зубофрезерування, можливості керування точністю та якістю поверхонь зубців ще на стадії проєктування, взаємозв’язок факторів виробництва й параметрів точності зубчастих коліс. Наведені приклади кінематограм показують неприйнятність кінематичного принципу нормування і контролю точності напружених зубчастих передач та передач з модифікованими поверхнями зубців. Тому нормування та оцінювання точності авіаційних зубчастих коліс здійснюють виключно за елементними показниками точності. Показано, що колеса необхідно контролювати по накопиченій погрішності кроку, а не по биттю. Розглянуто контроль за допомогою плям контакту для конічних передач із прямими і круговими зубцями. Висновок відповідно до статті. Збільшення ресурсу передач здійснюється, поза іншими способами, підвищенням точності виготовлення зубчастих коліс, яка у високоресурсних і високонапружених передачах досягає 4-го ступеня точності за нормами плавності та контакту. У багатьох випадках подальше підвищення точності при збільшенні ресурсу не є доцільним, оскільки висока навантаженість коліс на всіх режимах роботи забезпечує статичний розподіл навантаження між спряженими зубцями, що призводить до зменшення динамічного зусилля. Тут прослідковується основний принцип призначення точності авіаційних передач: точність призначається з урахуванням фактичної навантаженості та жорсткості спряжених зубців і всієї пружної системи загалом.
APA, Harvard, Vancouver, ISO, and other styles
10

Тарельник, В., Е. Коноплянченко, Е. Гецович, and М. Довжик. "Удосконалення способу подрібнення кормів молотковими дробарками." Науковий журнал «Інженерія природокористування», no. 2(16) (December 2, 2020): 38–44. http://dx.doi.org/10.37700/enm.2020.2(16).38-44.

Full text
Abstract:
Приведені переваги та недоліки способу подрібнення зерна молотковими дробарками. При цьому до загальних недоліків різних типів подрібнювачів віднесені: висока енергоємність, необхідність додаткового подрібнення часток, інтенсивне спрацювання робочих органів і зв’язку з цим невеликий експлуатаційний період молоткової дробарки, низька якість та рівномірність подрібнення. В якості основного недоліку багатоступінчастих способів подрібнювання кормів вказано те, що матеріал корму проходить обробку через декілька подрібнювачів і кінцевий ступінь подрібнення досягається поступово, при цьому застосовується більш складне, а значить і менш надійне встаткування.Обґрунтовано застосування одноступінчастого способу подрібнення. В роботі описана технологіязбільшення експлуатаційного періоду молоткової дробарки та поліпшення якості і рівномірності подрібнення кормів, шляхом вдосконалення процесу одноступінчастого способу подрібнення, за рахунок формування методом електроіскрового легування (ЕІЛ) на робочих поверхнях молотка та гребінки покриттів з зносостійких матеріалів. Наведено результати легування зразків сталі 65Г, з використанням різних режимів на установці моделі «Елітрон 52А», з метою визначення впливу енергетичних параметрів ЕІЛ на параметри якості покриттів, нанесених електродами складу 10% 1М + 90% ВК6. Запропонований новий спосіб подрібнення кормів молотковими дробарками. Спосіб відрізняється тим, що на більш наближених поверхнях молотка та гребінки (деки) методом ЕІЛ наносять покриття з зносостійких матеріалів, причому наносять таким чином, що їх товщина та шорсткість, по мірі просування молотка вздовж поверхонь гребінки (деки) поступово збільшуються, а величина зазору між ними, відповідно, зменшується. Покриття наносять на повітрі окремими ділянками шириною 5-7 мм, при енергіях розряду – 0,2; 0,52; 2,6 і 4,6 Дж; продуктивністю - 0,5 – 0,8; 1,0 – 1,3; 1,5 – 2,0 і 2,0 – 2,5 см2/хв; товщиною – 0,02; 0,12; 0,19 і 0,23 мм і шорсткістю, (Rz) -7; 21; 65 і 117 мкм, відповідно. В якості матеріалу електроду використовують електрод-інструмент складу 10% 1М + 90% ВК6. В результаті збільшується експлуатаційний період молоткової дробарки, знижуються енерговитрати, поліпшується якість та рівномірності подрібнення.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Робочий зазор"

1

Крівякін, Геннадій Володимирович, and О. С. Афанасьєва. "Дослідження конфігурацій магнітопроводу лінійного двигуна для системи нахилу кузовів швидкісних поїздів." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/47054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Бойко, Анатолій Володимирович, Юрій Миколайович Говорущенко, Олександр Павлович Усатий, and Олена Петрівна Авдєєва. "Вплив міжвінцового зазору на ефективність регулюючої ступені на частковому режимі роботи." Thesis, НТУ "ХПІ", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/37130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Варанкіна, Олександра Олександрівна, and Б. Р. Апальков. "Водно-теплова обробка сировини в технології продуктів бродіння в лабораторних умовах." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography