Academic literature on the topic 'Робоча температура'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Робоча температура.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Робоча температура"

1

Андрущенко М.І., к.т.н., Куликовський Р.А., к.т.н., Акритова Т.О., асп., Капустян О.Є., к.т.н., Бриков М.М., д.т.н., and Осіпов М.Ю., к.т.н. "ДОСЛІДЖЕННЯ МЕТОДІВ ТА ПРИЛАДІВ ТЕРМОМЕТРІЇ ДЛЯ ВИЗНАЧЕННЯ ТЕМПЕРАТУРИ ПОВЕРХОНЬ ТЕРТЯ ДЕТАЛЕЙ ПІД ЧАС ЗНОШУВАННЯ." Перспективні технології та прилади, no. 14 (December 4, 2019): 12–23. http://dx.doi.org/10.36910/6775-2313-5352-2019-14-2.

Full text
Abstract:
Показано, що одним із основних параметрів, який негативно впливає на зносостійкість і здатність до самозміцнення поверхні тертя деталей в процесі зношування, є температура. Особливо це стосується матеріалів з великою кількістю в структурі метастабільного аустеніту. В залежності від хімічного складу метастабільного аустеніту негативний вплив нагрівання поверхні тертя може позначатися вже при температурах близько 100° С. Тому для обґрунтованого вибору матеріалів для виготовлення або відновлення деталей та їх структури потрібна інформація про рівень температури, яка виникає на поверхні тертя в процесі зношування. В роботі розглянуті два основні способи термометрії, які найкраще підходять для визначення температури робочих поверхонь деталей. Це контактний, за допомогою термоелектричних термометрів (термопар), та безконтактний, в якому датчиком виступає напівпровідниковий імерсійний болометр БП1-2, що працює в інфрачервоній частині спектру. Запропоновано способи, схеми та пристосування для визначення температур робочих поверхонь скребків змішувачів вогнетривкої маси та штампів для пресування вогнетривів в виробничих умовах. А також поверхонь тертя зразків при випробуваннях на стандартній установці Х4-Б та на лабораторному стенді, розробленому в ЗНТУ.
APA, Harvard, Vancouver, ISO, and other styles
2

Адамбаєв, Д. Х., and О. С. Тітлов. "Вдосконалення енергетичних характеристик генераторів абсорбційних холодильних агрегатів." Refrigeration Engineering and Technology 57, no. 2 (June 30, 2021): 74–80. http://dx.doi.org/10.15673/ret.v57i2.2021.

Full text
Abstract:
На основі оригінальної методики розрахунку термодинамічних параметрів генератора абсорбційного холодильного агрегату (АХА) виконаний аналіз його робочих параметрів з урахуванням результатів експериментальних досліджень типових виробничих аналогів. Отримані результати теоретичного дослідження дозволили зробити наступні висновки. По-перше, на відміну від чистих речовин, при роботі генератора на бінарних сумішах, зокрема, на водоаміачному розчині (ВАР), коефіцієнти подавання генератора залежать від величини підведеного теплового навантаження. Так, при збільшенні теплового навантаження від 40 до 80 Вт чисельні значення коефіцієнтів подавання знижуються приблизно в 3 рази. По-друге, залежність питомої кількості підведеного тепла має оптимум (мінімум) в діапазоні величин теплового навантаження від 40 до 80 Вт і температур кінця кипіння від 145 до 170 °С. Основним значимим результатом розрахункових досліджень можна вважати знайдену критичність енергетичної ефективності і температури кінця пароутворення (кипіння) ВАР в генераторі. Показано, що робота типового АХА з повітряним охолодженням теплорозсіювальних елементів при температурі навколишнього середовища 25 °С найбільш ефективна в діапазоні температур кінця кипіння від 147 до 155 °С. Зниження і зростання цієї температури за межами оптимального діапазону призводить до збільшення питомих енерговитрат при роботі АХА, відповідно до 9%, причому в першому випадку це пов'язано з невиправдано високим підігрівом рідкої фази, а в другому – зі збільшенням частки абсорбенту (води) в паровій суміші. Показано також, що наявність мінімуму енерговитрат при роботі генератора АХА пояснюється тим, що в досліджуваному діапазоні режимних параметрів термосифона (температура на вході в генератор від 87 до 112 °С, на виході – від 145 до 170 °С, тиск в системі 9 бар, масова частка аміаку в ВАР 0,34) досягається оптимальне співвідношення складу рідкої і парової фази на виході генератора. Детальне вивчення фізичної природи даного ефекту повинно проводитися на основі спільного моделювання теплових і гідравлічних характеристик генераторів
APA, Harvard, Vancouver, ISO, and other styles
3

Максимук, Д. В., М. С. Богданов, and В. А. Голіков. "АНАЛІЗ ТА ОЦІНКА ЕФЕКТИВНОСТІ РОБОТИ СИСТЕМИ ОХОЛОДЖЕННЯ НАДДУВНОГО ПОВІТРЯ У ВПУСКНОМУ РЕСИВЕРІ СУДОВОГО МАЛООБЕРТОВОГО ДИЗЕЛЯ АБСОРБЦІЙНОЮ БРОМИСТОЛІТІЄВОЮ ХОЛОДИЛЬНОЮ МАШИНОЮ." Ship power plant 41 (November 5, 2020): 54–58. http://dx.doi.org/10.31653/smf341.2020.54-58.

Full text
Abstract:
Умови експлуатації суднових малообертових дизелів (МОД) відрізняються упродовж рейсу значною зміною температури зовнішнього повітря, відповідно повітря на вході наддувного повітря у ресивер. При високих температурах забортної води охолоджувачі наддувного повітря (ОНП) не в змозі підтримувати температуру наддувного повітря на рівні, достатньому для демпфування підвищених температур повітря на вході в робочі циліндри двигуна, що забезпечувало б високу паливну ефективність МОД. За даними фірм-розробників суднових МОД "MAN" і "Wartsila" підвищення на 10 °С температури повітря на вході у ресивер суднових МОД призводить до збільшення питомої витрати палива bе приблизно на 0,5 % і відповідного зменшення ККД МОД, що ставить гостро завдання комплексного охолодження наддувного повітря на вході в циліндри МОД.
APA, Harvard, Vancouver, ISO, and other styles
4

Фролов, Є., С. Попов, and О. Сидорчук. "Підвищення експлуатаційних параметрів деталей двигунів внутрішнього згоряння." Науковий журнал «Інженерія природокористування», no. 4(18) (February 10, 2021): 24–28. http://dx.doi.org/10.37700/enm.2020.4(18).24-28.

Full text
Abstract:
Робота присвячена підвищенню надійності та довговічності деталей циліндро-поршневої групи двигунів внутрішнього згоряння. Зміцнення деталей машин можливе за рахунок застосування спеціальних технологічних процесів. Сучасні матеріали та покриття повинні задовольняти високим робочим температурам і навантаженням. Хромування, борування та іонно-плазмове напилення не задовольняють встановленим вимогам якості. Алюмінієвий поршень зазнає руйнувань в районі головки. Це проявляється у накопиченні шпарин, каналів, слідів вимивання сплаву.Окрім цього, внаслідок нагрівання, втрачається міцність алюмінієвого сплаву більше, ніж у 2 рази.Запропоновано створення та застосування покриття, яке б витримувало робочі температури понад 2000ºС, а також ударно-пульсуючі навантаження. Пропонується детонаційно-газовий метод напилення. Він характеризується універсальністю матеріалів: від полімерів до тугоплавкої кераміки, любі метали і сплави. Напилені частинки володіють високою кінетичною енергією. Покриття характеризується високою міцністю, яка сягає 180…200 МПа, твердістю HRCe 60, мінімальною шпаринністю. Температурний вплив при напиленні на заготовку незначний. Запропоновано послідовність підготовчих операцій. Зміцненню підлягали поршень та жарове кільце на детонаційно-газовій установці «УН-102». Застосовувався маніпулятор, що використовує енергію пострілу установки. Отримані поверхні характеризуються регулярною макроструктурою (хвилястістю).Нанесенню підлягав нікель-алюмінієвий сплав. Товщиною покриття – 150…270 мкм, твердість – HV 550, адгезія до основи – 94…100 МПа.Результати досліджень на деталях циліндро-поршневої групи засвідчили зниження робочих температур, внаслідок припрацьовування покриття та якісного ущільнення камери згоряння. Довговічність кілець становить 1,6·106…2,3·106 , що свідчить про значне підвищення опору втомі та ресурсу роботи. Запропонована технологія є придатною та рекомендується до впровадження у серійне виробництво.
APA, Harvard, Vancouver, ISO, and other styles
5

Бошкова, І. Л., Н. В. Волгушева, М. Д. Потапов, Н. О. Колесниченко, and О. С. Бондаренко. "Рішення завдань теплопровідності в тілі при дії двох джерел теплоти." Refrigeration Engineering and Technology 56, no. 3-4 (January 11, 2021): 146–55. http://dx.doi.org/10.15673/ret.v56i3-4.1945.

Full text
Abstract:
У роботі аналізуються математичні моделі, що представляють нагрівання тіл у мікрохвильовому електромагнітному полі з урахуванням масовіддачі, наприклад, при випаровуванні вологи. Дослідження ґрунтуються на підходах, запропонованих О.В. Ликовим, в основі яких лежить рівняння теплопровідності з урахуванням внутрішніх джерел теплоти, які можуть бути як позитивними, так і негативними. Об’ємний характер нагрівання матеріалу в мікрохвильовому полі дозволяє розглядати матеріал як середовище, у якому діють внутрішні позитивні джерела теплоти. Негативне джерело теплоти пов'язане з потоком вологи, що випарувалася. Розглядаються моделі, що описують теплопровідність у напівобмеженому масиві при граничних умовах I і III роду. Рішення моделей у неявному (диференціальному) вигляді привело до одержання залежностей для розрахунку локальних температур у тілі. Проведено аналіз розрахункових даних по розподілу вологовмісту й температури матеріалу в процесі сушіння при мікрохвильовому підведенні енергії. Представлено результати розрахунків при різних значеннях коефіцієнтів тепловіддачі, питомої потужності магнетронів, коефіцієнта температуропровідності матеріалу. Отримано відповідність розрахун­кових значень реальним фізичним процесам. У той же час виявлені області, для яких розрахунки не відповідають реальній фізичній картині. Визначені обмеження по застосовності по питомій щільності теплового потоку й коефіцієнту тепловіддачі. Аналітично досліджена середня температура тіла з безперервно діючими джерелами теплоти при граничних умовах III роду. Установлено, що для одержання достовірних даних по температурах матеріалу по аналітичним залежностям, отриманим для середньої безрозмірної надлишкової температури, потрібне виконання умови tc > t0 (температура навколишнього середовища вище температури матеріалу)
APA, Harvard, Vancouver, ISO, and other styles
6

Макєєва, К. М., and О. О. Книш. "Обґрунтування застосування робочих речовин «нового покоління» у випарниках холодильних і теплонасосних установок." Refrigeration Engineering and Technology 55, no. 4 (September 5, 2019): 211–16. http://dx.doi.org/10.15673/ret.v55i4.1633.

Full text
Abstract:
Наведено енергетичне та екологічне обґрунтування застосування озонобезпечних холодоагентів R1234yf, R513a і R448a в холодильних і теплонасосних установках. При виборі робочих речовин крім екологічних показників були враховані такі параметри, як холодильний коефіцієнт; допустимі по міцності конструкції машин, тиск конденсації і різниця тисків; питома об'ємна холодопродуктивність, величиною якої визначаються розміри компресора; відношення тисків, більш низькі значення якого обумовлюють більш високі робочі коефіцієнти компресора. Для обґрунтування можливості заміни холодоагентів R134a і R404a на холодоагенти «нового покоління» R1234yf, R513a і R448a зроблено порівняння циклів холодильних машин і циклів теплонасосних установок для зазначених холодоагентів на одних температурних рівнях. Для побудови циклів процесів, що характеризують роботу холодильних установок, були прийняті такі температури: температура кипіння –15 °С, температура конденсації 30 °С; для побудови циклів процесів, що характеризують роботу теплонасосних установок: температура кипіння 5 °С, температура конденсації 40 °С. За вихідними даними були побудовані цикли холодильної та теплонасосної установок на lgp-h діаграмах для кожного досліджуваного холодоагенту. На рисунках наведені цикли для однокомпонентного холодоагенту R1234yf і сумішевих холодоагентів R448a і R513a. Пропоновані озонобезпечні холодоагенти практично не поступаються замінним холодо­агентам за основними показниками ефективності роботи холодильної машини: питомої масової холо­допродуктивності і холодильного коефіцієнта. При використанні пропонованих холодоагентів масова витрата зменшиться в 1,8 рази, споживана потужність теплонасосних і холодильних систем змен­шиться в 1,4 рази, проте вартість даних холодоагентів у 10 разів більше вже використовуваних холодоагентів
APA, Harvard, Vancouver, ISO, and other styles
7

Golubets, V. M., I. M. Honchar, and Yu S. Shpulyar. "ПІДВИЩЕННЯ СТІЙКОСТІ МЕТАЛО- І ДЕРЕВОРІЗАЛЬНОГО ІНСТРУМЕНТУ НАНЕСЕННЯМ ЕЛЕКТРОІСКРОВИХ ПОКРИТЬ." Scientific Bulletin of UNFU 28, no. 2 (March 29, 2018): 111–14. http://dx.doi.org/10.15421/40280220.

Full text
Abstract:
Проаналізовано характеристики матеріалів, що використовують для виготовлення різального інструменту. Встановлено, що важливою характеристикою для інструментальних сталей є їх прогартовуваність. Але якщо робоча температура в зоні контакту інструмент-деталь перевищує температуру відпуску, то твердість інструменту понижується через розпад мартенситу та укрупнення частинок карбідної фази, і інструмент буде затуплюватись. Тому важливою прикладною задачею підвищення стійкості різального інструменту є поверхневе зміцнення леза. Проведено дослідження щодо поверхневого зміцнення метало- і дереворізального інструменту з використанням нових комбінованих електродів для нанесення елeктроіскрового покриття (ЕІП) методом електроіскрового легування (ЕІЛ). У розроблених комбінованих електродах використано відомі тверді сплави ТК, ВК, порошковий дріт ПД 80Х20Р3Т з додаванням до них компоненту "К". Виконано експериментальні дослідження процесу свердління зразків із сталі 40Х, загартованої до твердості HRC 38–40. За інструмент взято свердла марки HSS (аналог швидкорізальна легована сталь Р6М5) швейцарської фірми IRWIN. Свердління здійснено цими свердлами незміцненими, зміцненими твердими сплавами ТК і ВК, порошковим дротом ПД 80Х20Р3Т, а також порошковим дротом ПД 80Х20Р3Т з додаванням до них компоненту "К". Встановлено, що стійкість свердел, зміцнених порошковим дротом ПД80Х20Р3Т+"К", порівняно зі серійним незміцненим збільшилась майже у 7 разів. Проведено також поверхневе зміцнення ЕІЛ зубців стрічкової пилки із сталі D6A (аналог 50ХГФМА) для пиляння деревинних матеріалів, з використанням електроду Т15К6+"К". Порівняльні дослідження проведено під час розпилювання деревини ясеня. За результатами досліджень встановлено, що ресурс роботи стрічкової пилки, зміцненої ЕІЛ, збільшився у 2 рази порівняно з незміцненими пилками. На підставі отриманих результатів можна стверджувати, що внаслідок зміни структури поверхневого шару металу підвищується його твердість, а завдяки високій іонізації міжелектродного простору – виникають сприятливі умови для перебігу реакцій, які зумовлюють зміну його хімічного складу. Однак для пояснення механізму процесу зміцнення наведені твердження потребують детальних металографічних досліджень.
APA, Harvard, Vancouver, ISO, and other styles
8

А.В. Беспалова, А.И. Кныш, Д.И. Чекулаев, В.П. Приступлюк, Т.В. Чумаченко, and В.Г. Лебедев. "ШЛЯХИ ЗНИЖЕННЯ ТЕМПЕРАТУРИ АЛМАЗНИХ ВІДРІЗНИХ КРУГІВ ПРИ РОЗРІЗАННІ КАМ'ЯНИХ БУДІВЕЛЬНИХ МАТЕРІАЛІВ." Перспективні технології та прилади, no. 18 (June 30, 2021): 6–13. http://dx.doi.org/10.36910/6775-2313-5352-2021-18-1.

Full text
Abstract:
У процесі ремонту і реставрації будівель часто розрізають керамічні плитки і блоки з Al2O3 і ZrO2. В даний час для цих цілей широко використовуються алмазні абразивні диски. Процес розрізання супроводжується значним виділенням тепла і нагріванням алмазного диска. При температурі близько 600º міцність диска на розрив зменшується в 2 рази і відбувається графітизація алмазних зерен. Таким чином, при розрізанні алмазним кругом кам'яних і будівельних матеріалів, температура нагріву кола не повинна перевищувати 600 ºС. В роботі виконано математичне моделювання процесу нагрівання алмазного відрізного круга на металевій основі при розрізанні керамічних матеріалів для визначення часу безперервної роботи до критичної температури 600ºС. Результати моделювання, представлені на графіках, показали залежність температури нагрівання кола від діаметра останнього, частоти обертання, хвилинної подачі, від зернистості і товщини кола. Показано, що шляхом підбору відповідних характеристик процесу час безперервної роботи може бути близько 10 - 12 хв без застосування примусового охолодження.
APA, Harvard, Vancouver, ISO, and other styles
9

Стоянов, П. Ф. "Аналіз енергетичних показників конденсаторів холодильних установок з повітряним охолодженням." Refrigeration Engineering and Technology 54, no. 6 (December 30, 2018): 4–11. http://dx.doi.org/10.15673/ret.v54i6.1255.

Full text
Abstract:
В статті виконано літературний огляд досліджень пов'язаних з удосконаленням теплообмінників з повітряним охолодженням, аналіз енергетичних показників конденсаторів з повітряним охолодженням, представлені основні напрямки підвищення їх енергетичної ефективності. Автором статті досліджено роботу повітряного конденсатора при зміні режимних параметрів його експлуатації, оцінено вплив робочого тіла холодильної установки на характеристики теплообмінника. Результати проведеного дослідження свідчать, що робоче тіло холодильної установки істотно впливає (до 9,2%) на показники теплової потужності обладнання в рівноцінних умовах експлуатації. Оцінено залежність витрати охолоджуючого повітря крізь теплообмінник, зміни необхідної потужності вентилятора від температури охолоджуючого повітря на вході в апарат за умови дотримання фіксованої температури конденсації хладону та теплової потужності конденсатору. Виявлено, що при підвищенні температурі зовнішнього повітря від 25 ºС до 28 ºС відбувається підвищення енергоспоживання вентилятора серійного апарату на 250%. В роботі оцінено енергетичну ефективність конденсаторів повітряного охолодження в залежності від параметрів навколишнього середовища, сформовані рекомендації щодо оптимізації роботи теплообмінників з повітряним охолодженням.
APA, Harvard, Vancouver, ISO, and other styles
10

Vovk, S., O. Pazen, N. Ferents, and A. Lyn. "ВИЗНАЧЕННЯ ОПТИМАЛЬНОЇ ТОВЩИНИ ПРОТИПОЖЕЖНОЇ ПЕРЕДІЛКИ НАВКОЛО ПЕЧЕЙ ТА ДИМОХОДІВ В БУДІВЛЯХ З ГОРЮЧИМИ БУДІВЕЛЬНИМИ КОНСТРУКЦІЯМИ." Fire Safety 39 (April 5, 2022): 77–84. http://dx.doi.org/10.32447/20786662.39.2021.09.

Full text
Abstract:
Вступ. Опалювальні печі, на частку яких припадає 80 % від загальної кількості тепла, яке виробляється у сільській місцевості, широко використовуються в одно-, двоповерхових будівлях, як в наявному житловому фонді, так і в новому будівництві. Пожежі, які виникають в житлових будинках, найчастіше, призводять до загибелі та травмування людей. Серед причин виникнення пожеж порушення правил пожежної безпеки при влаштуванні та експлуатації печей, теплогенеруючих агрегатів та установок становлять 3 868 випадків (6,9 %).Метою статті є дослідження пожежної безпеки при влаштуванні печей та димоходів в будівлях з горючими будівельними конструкціями.Методи дослідження. У роботі було використано ряд методів, зокрема, статистичний, системний, порівняльний, а також метод математичного моделювання процесу теплообміну в багатошаровій плоскій конструкції для визначення температури зовнішньої поверхні залежно від товщини та матеріалу виконання димоходу.Основні результати дослідження. У статті проаналізовано пожежну небезпеку пічного опалення, яка полягає в наявності високих температур на поверхні елементів печі (стінок, патрубків, труб), що можуть бути джерелом запалювання горючих матеріалів і горючих конструкцій будівель. Температура на поверхні елементів нетепломістких печей залежить від виду палива, що спалюється, режиму паливника печей і може перевищувати 600 оС. Температура в паливнику теплоємних печей може становити понад 1000 оС, а в димовому каналі біля міжповерхового перекриття – 500 оС. Ступінь нагрівання бічних поверхонь і перекриття печі, а також димових каналів залежить від товщини стінок, виду і кількості палива, що спалюється, і тривалості горіння. У роботі розрахунково визначено температуру на зовнішній поверхні протипожежної переділки залежно від її розмірів та геометричної форми перерізу димоходу при температурі димових газів до 4500 С.Така температура утворюється при роботі котлів та печей в турборежимі. Дослідження проводилися для димоходів із різних матеріалів, зокрема: з керамічної цегли різної товщини, з керамічної цегли і шару цементно-піщаної штукатурки, з керамічної цегли і переділки із бетону, із керамічної цегли і переділки із мінеральної вати, із жаростійкого бетону і переділки з мінеральної вати, із сталі. Висновок. Для запобігання пожежі в димоходах необхідно регулярно проводити перевірки опалювального приладу і димоходу, здійснювати правильний підбір потужності опалювального приладу. На основі приведених аналітичних залежностей визначено оптимальну товщину протипожежної переділки навколо димоходу, встановлено, що на дану товщину суттєво впливають теплотехнічні властивості будівельних матеріалів, із яких виконано димохід та переділку. Показано, як з допомогою математичного моделювання процесу теплообміну за необхідності можна встановити температуру на поверхні димоходу з будь-якого будівельного матеріалу. Встановлено, що димоходи, які мають форму циліндра, менше нагріваються у порівнянні з прямокутними.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Робоча температура"

1

Самородов, Вадим Борисович, and Вадим Михайлович Шевцов. "Дослідження теплових режимів роботи гідрооб'ємнї передачі в складі гідрооб’ємно механічної трансмісії трактора." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Федоров, Андрій Юрійович, and Андрій Петрович Марченко. "Методика оцінки характеристик системи охолодження при модернізації силової установки танка Т-72." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Букатенко, Олексій Іванович, Михайло Олексійович Подустов, and М. С. Католік. "Розрахунок конструктивних параметрів теплообмінника охолодження нітрозних газів у виробництві нітратної кислоти." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/47387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Андрущенко, П. С. "Температурна залежність робочих характеристик біполярних транзисторів." Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/27685.

Full text
Abstract:
Кер.: Л.В. Однодворець
Біполярні транзистори (БТ) використовуються в електронному мікроприладобудуванні як підсилювачі струму, оскільки відносно невеликі зміни струму бази або напруги між базою та емітером можуть спричинити значні зміни струму між емітером і колектором. Мета роботи полягала у дослідженні впливу температури на робочі характеристики БТ різних типономіналів. При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/27685
APA, Harvard, Vancouver, ISO, and other styles
5

Сніжко, В. В. "Температурна залежність робочих характеристик біполярних транзисторних структур." Master's thesis, Сумський державний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/71744.

Full text
Abstract:
Мета роботи полягала у конструюванні та розробленні стенду для дослідження температурної залежності робочих характеристик біполярних транзисторних структур з подальшим впровадженням у лабораторний практикум. Розглянуті питання стосовно фізичних процесів, конструктивно-технологічних особливостей, робочих схем і параметрів біполярних транзисторних структур, а також основні причини нестабільності роботи біполярних транзисторів при зміні температури. В роботі використано методику розрахунку статичних характеристик біполярних транзисторних структур. Розроблено лабораторний стенд для дослідження впливу температури на вхідні та вихідні вольт-амперні характеристики біполярних транзисторних структур, підключених за схемою зі спільним емітером. При збільшенні температури від 20 до 50°С відбувається зростання коефіцієнта підсилення по струму. У діапазоні температур t = 20-40°С при Іб = 0,2 і 0,3мА величина коефіцієнта β практично не змінюється. Таким чином, можна зробити висновок, що температурний діапазон t = 20-40°С відповідає області стабільної роботи біполярного транзистора.
APA, Harvard, Vancouver, ISO, and other styles
6

Авраменко, Віктор Васильович, Виктор Васильевич Авраменко, Viktor Vasylovych Avramenko, and С. О. Завгородній. "Комп’ютерне моделювання роботи нелінійної системи автоматичного регулювання температури." Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/39165.

Full text
Abstract:
Системи автоматичного регулювання (САР) здійснюють підтримку заданих значень режимних параметрів різноманітних об’єктів, в тому числі таких, що описуються нелінійними диференціальними рівняннями. Порушення принципу суперпозиції в нелінійних системах призводить до цілого ряду стійких і нестійких режимів їхньої поведінки. Крім того, в системі можуть виникати автоколивання. Тому в наш час розвиваються методи аналізу нелінійних САР, що мають на меті вирішити проблему керування нелінійними об’єктами. Одним з цих методів є комп’ютерне моделювання роботи САР при певних заданих початкових умовах.
APA, Harvard, Vancouver, ISO, and other styles
7

Миколаївна, Агєєва Галина, Агеева Галина Николаевна, Agieieva Galyna, Леонід Іванович Крівєльов, Леонид Иванович Кривелев, and Leonid Kriveljov. "Температурні особливості роботи плит жорсткого аеродромного покриття." Thesis, Національний авіаційний університет, 1998. https://er.nau.edu.ua/handle/NAU/54552.

Full text
Abstract:
В рамках розрахунково-теоретичного етапу моніторингу реконструкції аеродромних покриттів в аеропорту Бориспіль проведені розрахунки по визначенню: величин температурних впливів, міцності плити при екстремальних температурних впливах, критичних значень температурних впливів, які викликають втрату стійкості плит покриття
APA, Harvard, Vancouver, ISO, and other styles
8

Кривенко, Ю. М. "Дослідження роботи датчика температури масиву покриття злітно-посадкової смуги." Thesis, ТОВ "ЦК "КОМПРИНТ", 2014. http://er.nau.edu.ua/handle/NAU/19144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Кривенко, Ю. М. "Дослідження роботи датчика температури масиву покриття злітно-посадкової смуги." Thesis, ТОВ ЦК КОМПРИНТ, 2014. https://er.nau.edu.ua/handle/NAU/52554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Однодворець, Лариса Валентинівна, Лариса Валентиновна Однодворец, Larysa Valentynivna Odnodvorets, and А. Л. Удовиченко. "Вплив температури на характеристики біполярних транзисторів." Thesis, Сумський державний університет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/41017.

Full text
Abstract:
Біполярні транзистори широко використовуються у мікроприладобудуванні як активні елементи інтегрованих мікросхем, керовані джерела, підсилювачі та перемикачі постійного, змінного або імпульсного струмів. Структура біполярного транзистора відрізняється від структури дискретного тим, що має спеціальні ізоляційні області для забезпечення умов його нормального функціонування в одному кристалі, який може налічувати порядка 106 біполярних транзисторів.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Робоча температура"

1

Піддубний, Б. А., and Володимир Миколайович Соловйов. Комп’ютерне моделювання радіаційно-стимульованої стабілізації (001) Si поверхні. РВГІЦ КДПУ ім. В. Винниченка, 1999. http://dx.doi.org/10.31812/0564/1025.

Full text
Abstract:
Поверхні, границі розподілу напівпровідників відіграють суттєву роль в процесі формування й функціонування значної кількості приладів та структур сучасної мікроелектроники. Ідеальна поверхня є неврівноваженою структурою, і в залежності від умов її одержання, відпалу, пасівації може трансформуватись в один з більш ніж 300 відомих станів. В сучасних теоретичних дослідженнях важливу роль відіграє комп’ютерне моделювання. Воно дозволяє дослідити атомну структуру, електронні, коливальні й оптичні властивості поверхні. В даній роботі методом молекулярної дннамики з потенціалом Стілінджера-Вебера досліджено особливості релаксації (001) поверхні кремнія при кімнатній температурі за нормальних умов, а також при її опроміненні низькоенергетичними іонами. Поверхня (001) Si була обрана з огляду на те, що вона є найбільш якісною при одержанні її методом молекулярно-променевої епітаксії і для неї ще не одержано в повній мірі переконливих експериментальних і теоретичних даних.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography