Journal articles on the topic 'Регулювання автоматичне'

To see the other types of publications on this topic, follow the link: Регулювання автоматичне.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 journal articles for your research on the topic 'Регулювання автоматичне.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yastrebenetsky, M., and V. Vasilchenko. "Регулювання безпеки й автоматичне регулювання." Nuclear and Radiation Safety 11, no. 4 (December 10, 2008): 51–57. http://dx.doi.org/10.32918/nrs.2008.11-4(40).07.

Full text
Abstract:
Розглянуто зв'язок загальноприйнятих понять «регулювання безпеки» і «автоматичне регулювання». Наведено загальну схему регулювання ядерної та радіаційної безпеки АЕС, що включає в себе на нижньому рівні контур автоматичного регулювання технологічним процесом і на верхньому рівні — контур регулювання безпеки. Дано опис контуру регулювання безпеки в термінах теорії керування
APA, Harvard, Vancouver, ISO, and other styles
2

Яроцький, М. М. "Огляд системи регулювання рівня води парогенератора блоку ВВЕР-1000." Automation of technological and business processes 13, no. 1 (April 19, 2021): 26–31. http://dx.doi.org/10.15673/atbp.v13i1.1997.

Full text
Abstract:
Досліджені властивості парогенератора блоку ВВЕР-1000, виведені основні характеристики об’єкта і вказані основні принципи, які допоможуть застерегти від помилок у вивченні даного питання. Представлені види автоматичних систем регулювання та вивчені основні недоліки кожної з систем регулювання. На основі зробленого аналізу було встановлено, яка саме автоматична система регулювання є найбільш краща для парогенератора. Пояснений процес знаходження параметрів регулятора та коефіцієнтів пристроїв зв'язку для каналу витрати пари, витрати живильної води та рівня води в парогенераторі. В більшості публікацій не робиться пояснень, чому використовується 3-х імпульсна автоматична система керування, не виконується порівняння з іншими системами регулювання, і просто приводиться вже як факт що використовується 3-хімпульсна система регулювання без пояснень та тонкощів налаштування самої системи регулювання. Не робляться пояснення стосовно налаштування регулятора для 3-х імпульсної автоматичної системи регулювання і для чого потрібні коефіцієнти пристроїв зв'язку. Тому в статті зроблено пояснення, чому використовується 3-х імпульсна автоматична сиситема регулювання а не 2-х імпульсна, як правильно налаштувати регулятор рівня води та як налаштувати пристрої зв'язку і для чого вони потрібні. Приведена модель парогенератора в середовищі Simulink та показано яким чином проходить налаштування спочатку пристроїв зв'язку і потім знаходження параметрів для ПІ-регулятора. Зроблені висновки стосовно застосування 3-х імпульсної системи регулювання, яку модернізацію вона отримала на виробництві та доцільність її використання.
APA, Harvard, Vancouver, ISO, and other styles
3

Якубаш, І. В. "Автоматичне керування процесом сушіння плодоовочевої сировини в конденсаційній термоелектричній сушарці." Automation of technological and business processes 13, no. 1 (April 19, 2021): 11–17. http://dx.doi.org/10.15673/atbp.v13i1.1995.

Full text
Abstract:
Сушіння є одним з найбільш ефективних методів збереження сільськогосподарських і харчових продуктів. Якість висушеного продукту залежить від дотримання регламенту технологічного процесу сушіння. Підвищення якості ведення технологічного процесу (ТП) сушіння плодоовочевої сировини впливає на якість виготовленої продукції, що, в свою чергу, призводить до підвищення конкурентоспроможності підприємства. Дотримання регламенту ТП можливе лише за його автоматизації. Тому завдання автоматизації ТП дедалі більше постає перед сучасними підприємствами. Огляд існуючих вітчизняних розробок в сфері автоматизації сушіння, зокрема сушіння плодоовочевої сировини, показує наявність суттєвих недоліків. В ОНАХТ, на кафедрі АТП і РС у рамках випускної роботи бакалавра розроблено новий підхід до автоматизації керування конденсаційною сушаркою, задля забезпечення високоефективного сушіння плодоовочевої сировини. Метою роботи є розробка найдосконалішої математичної моделі, функція якої б полягала в відтворенні основних властивостей середовища сушіння сільськогосподарських та харчових продуктів, з можливістю їхнього відображення та дослідження. В роботі розкрито мету ТП сушіння та виділено основні технологічні параметри, для яких необхідно скласти регламент, для забезпечення високої якості готової продукції. Складено структурну схему моделі об’єкта керування. Проведено аналіз його каналів зв’язку та їх ідентифікацію. Канали математично описано статичними аперіодичними ланками другого порядку. Розроблено модель id-діаграми вологого повітря, яка є достовірною. Також розроблено повну математичну модель об’єкту керування і зроблено висновки про можливість її використання у подальших розробках як основу при синтезі моделі системи автоматичного регулювання. На кафедрі АТП і РС було реалізовано фізичну модель, яка працює з відповідними встановленими параметрами та відповідає всім перехідним процесам.
APA, Harvard, Vancouver, ISO, and other styles
4

Бричук, Б. В. "Автоматизація пастеризації яблучного соку." Automation of technological and business processes 13, no. 1 (April 19, 2021): 58–63. http://dx.doi.org/10.15673/atbp.v13i1.2002.

Full text
Abstract:
Здоров'я - безцінне надбання не тільки кожної людини, але і всього суспільства. Для підтримки здоров`я людини на певному рівні, необхідно включати в раціон харчування фруктові та овочеві соки, зокрема яблучний сок, який має високі споживні властивості. Збереження цих властивостей можна забезпечити лише за рахунок автоматичного керування технологічним процесом виробництва яблучного соку. Автоматичне керування процесом пастеризації яблучного соку – одне з найбільш складних та важливих завдань, оскільки забезпечує дотримання технологічного регламенту термічної обробки яблучного соку. Процес пастеризації яблучного соку, як об'єкт керування являє собою складну динамічну систему. Аналіз існуючих систем автоматичного керування пастеризацією яблучного соку демонструє певні недоліки і ставить задачі наступної розробки. В Одеській національній академії харчових технологій, на кафедрі автоматизація технологічних процесів і робототехнічних систем розроблено новий спосіб пастеризації яблучного соку, з використанням каскадної системи автоматичного регулювання, яка зменшує запізнення в контурі регулювання температури пастеризації, що підвищує якість готового продукту, продуктивність процесу та знижує його енергоємність. Результати структурно-параметричного синтезу і аналізу розробленої системи автоматичного керування підтверджують переваги запропонованого підходу. Побудована каскадна система автоматичного регулювання забезпечує високу динамічну точність керування розглянутим технологічним процесом. Розроблене автоматизоване робоче місце оператора-технолога і наладчика системи автоматичного керування в SCADA-системі дозволяє зручно і ефективно спостерігати та керувати ходом процесу пастеризації яблучного соку. Подальший розвиток питання автоматизації керування процесом пастеризації яблучного соку знайде в магістерській випускній роботі.
APA, Harvard, Vancouver, ISO, and other styles
5

ШЕЛЯЖЕНКО, ЮРІЙ. "Особиста автономія у праві інформаційних технологій." Право України, no. 2018/03 (2018): 183. http://dx.doi.org/10.33498/louu-2018-03-183.

Full text
Abstract:
Реалізація автономії волі в правових відносинах завдяки інформаційним технологіям зумовлює появу нових форм індивідуальності та інтересів, зокрема штучних, за межами усталених підходів до правового регулювання. Сучасні інформаційні технології створюють нові можливості реалізації та захисту прав людини, криптографічного забезпечення безпеки приватного життя людини, однак стають також інструментами вчинення правопорушень. Автоматичне прийняття рішень спрощує юридичні процедури, але несправедливі алгоритми насаджують нерівність, відчуження та гноблення. Метою статті є з’ясування змісту поняття особистої автономії у сфері IT-права та прогнозування його перспектив, опис існуючих і необхідних правових гарантій індивідуального самоконтролю в цифрову епоху. Аналіз практики Верховного Суду США, Європейського суду з прав людини та Європейського Суду справедливості показує, що здійснення правосуддя в умовах експансії інформаційних технологій у правові відносини потребує збереження усталеної рівноваги прав та обов’язків, пристосування існуючих правових механізмів до нових реалій, застосування фундаментальних принципів права для розвитку правових механізмів тоді, коли старі правові технології вже не допомагають ефективно утверджувати верховенство права. Специфікою особистої автономії у праві інформаційних технологій є мінливість і безпрецедентність її проявів, що вимагає створення нових правових механізмів для утвердження верховенства права на основі субсидіарності правозастосування, довіри та невтручання в автономні суспільні відносини у сфері інформаційних технологій за винятком випадків правомірної необхідності, наприклад, у разі нездатності осіб уникати очевидних загроз, вирішувати проблеми і конфлікти. Враховуючи зростаюче значення роботів (тобто машин, які автоматично працюють в інтересах людей) у житті цивілізованого суспільства та успішні розробки штучного інтелекту, здатного приймати самостійні рішення у правових відносинах, слід розглянути можливість визнання конституційних прав роботів, зокрема, прав на існування, належне функціонування, захист законом, пов’язаних із обов’язками роботів служити людям. Необхідно не тільки подбати про відповідальність людей за своїх роботів та відповідальність роботів за протиправне функціонування, наприклад, у формі деактивації, а й включати у програмне забезпечення розумних машин технічні гарантії правомірного функціонування, етичні передумови на зразок трьох законів роботехніки А. Азімова, що мають бути невід’ємною частиною системи прийняття машиною самостійних рішень, штучної особистої автономії, тобто правової автономії штучного інтелекту. При цьому критерії правосуб’єктності штучного інтелекту можуть бути встановлені законодавством і застосовуватися судами та правоохоронними органами, за необхідності, із залученням фахівців зі штучного інтелекту для вирішення питання примусової деактивації робота, подібно до проведення судово-психіатричної експертизи для перевірки кримінальної деліктоздатності та цивільної дієздатності фізичної особи.
APA, Harvard, Vancouver, ISO, and other styles
6

Luta, A. V., O. V. Tatarenko, and M. A. Afanasieva. "Розробка програмного алгоритму автоматичної системи клімат-контролю в офісному приміщенні за допомогою ПТК «КОНТАР»." HERALD of the Donbass State Engineering Academy, no. 2 (46) (October 1, 2019): 130–35. http://dx.doi.org/10.37142/1993-8222/2019-2(46)130.

Full text
Abstract:
Люта А. В., Татаренко О. В., Афанасьєва М. А. Розробка програмного алгоритму автоматичної системи клімат-контролю в офісному приміщенні за допомогою ПТК «КОНТАР» // Вісник ДДМА. – 2019. – № 2 (46). – С. 130–135. В статті розроблено автоматичну систему клімат-контролю офісного приміщення шляхом розробки програмного алгоритму за допомогою ПТК «КОНТАР». Комплекс модульних пристроїв «КОНТАР» призначений для вирішення широкого кола завдань автоматизації теплопостачання, вентиляції, кондиціонування повітря, а також автоматизації котелень, електротермічних печей та інших енергетичних установок. Програмно-технічний комплекс «КОНТАР» Московського заводу теплової автоматики являє собою систему модулів, що виконують спільне завдання розподіленого управління і збору інформації, пов'язаних між собою інтерфейсом і загальним протоколом обміну. Розроблено функціональну схему автоматичної системи клімат-контролю. Розроблено програмний алгоритм системи клімат-контролю в офісному приміщенні за допомогою програмного середовища Kongraph. У розробленому програмному алгоритмі реалізовані системи керування заслінками, регулювання температури, рівня вологості та рівня вуглекислого гасу у офісному приміщенні. Розроблено програмний алгоритм управління заслінками подачі повітря. Розроблено програмний алгоритм регулювання рівня вологості у приміщенні. Розроблено програмний алгоритм регулювання рівня СО2. Розроблено програмні алгоритми майстер-контролера МС8, слейв-контролера МС5 та релейного модуля MR8 мовою функціональних блоків в програмному середовищі Kongraph. Конвертація і транслювання розроблених програмних алгоритмів здійснюється за допомогою програми Keil. Для того щоб помістити отримані після транслювання бінарні файли у контролери, використовується програма Console. Розроблений програмний алгоритм автоматичної системи клімат-контролю в офісному приміщенні за допомогою ПТК «КОНТАР» можна використовувати в інших приміщеннях. Для того, щоб адаптувати його для інших приміщень, необхідно тільки відкоригувати необхідні параметри завдання температури, вологості та концентрації СО2, якщо умови відрізняються.
APA, Harvard, Vancouver, ISO, and other styles
7

Максимов, Максим, and Владислав Гостіщев. "АВТОМАТИЧНА СИСТЕМА РЕГУЛЮВАННЯ РЕКУПЕРАТИВНОГО НАГРІВНОГО КОЛОДЯЗЯ." Young Scientist, no. 12 (88) (December 30, 2020): 1–5. http://dx.doi.org/10.32839/2304-5809/2020-12-88-1.

Full text
Abstract:
Проведена детальна робота по вивченню властивостей такого об’єкта як рекуперативний нагрівний колодязь. Були виявлені основні аспекти роботи даної установки та було чітко розібрано математичну модель, для якої також були знайдені налаштування для ПІ-регулятора. Дана робота була проведена так як сам об’єкт представляє собою складну систему яка потребує більш детального вивчення. Були вивчені загальні фізичні властивості які використовуються для роботи установки, а також проведена детально робота по розробці математичної моделі та застосуванні її для знаходження оптимальних шляхів керування рекуперативним нагрівним колодязем. Представлена загальна модель яка допоможе зрозуміти, які керуючі впливи можливі на даній установці та як ці впливи не несли за собою подій, які б могли спричинити аварію. Детально досліджено математичну модель, а також проведена велика робота по деталізації даної моделі, включені всі можливі фактори. Всі можливі керуючі впливи та збурення відображені в даній роботі для більш детального вивчення об’єкту.
APA, Harvard, Vancouver, ISO, and other styles
8

Новіков, П. В., О. В. Штіфзон, and Я. А. Шило. "Синтез двоконтурної автоматичної системи регулювання з диференціюванням сигналу з проміжної точки." Automation of technological and business processes 13, no. 1 (April 19, 2021): 18–26. http://dx.doi.org/10.15673/atbp.v13i1.1996.

Full text
Abstract:
У статті розглянуто застосування сучасної методики налаштування двоконтурних автоматичних систем регулювання (ДАСР) з введенням диференціатора в проміжній точці. Мета статті полягає в аналізі існуючих методик налаштування ДАСР, дослідженні сучасної методики налаштування на прикладі теплоенергетичного об’єкта, а також порівнянні її з класичною методикою. На основі проведеного аналізу для налаштування системи регулювання температурного режиму прямоточного котлоагрегату обрано методику, запропоновану Свириденко В.П. Проведено процедуру ідентифікації контурів регулювання. Отримано моделі температурних контурів вода-парового тракту пиловугільного прямоточного котлоагрегату, наведено перехідні характеристики інерційної і проміжної ділянок. Здійснено розрахунок ДАСР за класичною методикою, а також для порівняння розрахована одноконтурана система регулювання. Результати комп’ютерного моделювання системи регулювання температурного режиму водо-парового тракту свідчать, що класична методика налаштування диференціатора не забезпечує необхідної якості перехідних процесів, наявна велика коливальність, що не допустимо для даного теплоенергетичного об’єкту. Для цього ж об’єкта проведений розрахунок за методикою Свириденка В.П. Отримані перехідні процеси мають більший ступінь затухання в середньому на 30%. За результатами дослідження можна зробити висновок, що запропонована методика налаштування ДАСР в порівнянні з класичною методикою краще підходить для налаштування об’єктів, до яких відносяться прямоточні котлоагрегати. Розглянута методика є відносно простою з точки зору її використання, має чітко сформульовані критерії та підкріплена повним набором розрахункових формул. Визначено недоліки даної методики і наведені рекомендації для її подальшого удосконалення.
APA, Harvard, Vancouver, ISO, and other styles
9

Дощенко, Галина. "САМООРГАНИЗУЮЩИЕСЯ СИСТЕМЫ УПРАВЛЕНИЯ СУДОВЫМИ ТЕХНИЧЕСКИМИ СРЕДСТВАМИ." Modern engineering and innovative technologies, no. 04-02 (June 30, 2017): 95–100. http://dx.doi.org/10.30890/2567-5273.2018-04-02-027.

Full text
Abstract:
Ця робота направлена на підвищення ефективності і конкурентоспроможності суден нового покоління. Такий підхід дозволяє створювати крім систем регулювання системи контролю, діагностики, автоматичної сигналізації і аварійного захисту суднових технічних засо
APA, Harvard, Vancouver, ISO, and other styles
10

Зінченко, Володимир Юрійович, Віктор Ілліч Іванов, Юрій Миколайович Каюков, and Володислав Ростиславович Румянцев. "РОЗРОБКА АЛГОРИТМУ УПРАВЛІННЯ ТЕПЛОВОЮ РОБОТОЮ ТЕРМІЧНИХ ПЕЧЕЙ КАМЕРНОГО ТИПУ." Scientific Journal "Metallurgy", no. 1 (July 22, 2021): 67–73. http://dx.doi.org/10.26661/2071-3789-2021-1-09.

Full text
Abstract:
Під час використання локальних систем автоматичного регулювання температури та надлишкового тиску нагрівального середовища у робочому об’ємі полуменевої термічної печі камерного типу налагоди, як правило, вибирають незалежно одна від одної без урахування їх взаємозв’язку. В той же час за управлінням витратою палива та повітря змінюється не лише температура, але і тиск нагрівального середовища у робочому об’ємі печі, що, в свою чергу, супроводжується змінюванням газообміну з довкіллям та значно впливає на температуру в робочому об’ємі. Все це призводить до суттєвої пере- витрати газоподібного палива, та, як наслідок, підвищення вартості термічної обробки металу. За використанням схеми опалювання з постійним об’ємом продуктів горіння у печах такого типу управління їх тепловою потужністю зводиться до комбінування різних компонентів газоподібного палива за умови забезпечення заданої температури нагрі- вального середовища у робочому об’ємі. За принципом динамічного програмування Беллмана оптимізацію управління за цикл термічної обробки металу забезпечують шляхом вибирання для кожного періоду квантування оптимального за вартістю складу вживаного палива. Поточна вартість палива є лінійною функцією середніх витрат його окремих компонентів у періоди квантування. Тому знаходження його мінімального значення для кожного дискретного моменту часу подавали як розв’язання задачі ліній- ного програмування. Розроблено алгоритм визначення раціональних значень витрат окремих компонентів газоподібного палива, а також витрати надлишкового повітря, котрі використовують як управляльні дії для автоматичних систем регулювання темпе- ратури та надлишкового тиску нагрівального середовища у робочому об’ємі печей. Запропоновано функціональну схему автоматичної системи управління, реалізація якої дозволяє не лише оптимізувати технологію опалювання за вартістю окремих компо- нентів палива, але і шляхом самонастроювання забезпечити автономність управління температурою та надлишковим тиском нагрівального середовища у робочому об’ємі печей. Під час управління за режимом реального часу з оптимізацією щодо вартості окремих компонентів палива виконується самонастроювання системи управління.
APA, Harvard, Vancouver, ISO, and other styles
11

Очеретяний, Ю. О., А. І. Головань, and Ю. М. Федорова. "Оптимізація експлуатації суднових систем комфортного кондиціонування повітря за рахунок використання програмованих логічних контролерів." Automation of technological and business processes 12, no. 1 (March 30, 2020): 55–63. http://dx.doi.org/10.15673/atbp.v12i1.1704.

Full text
Abstract:
Різноманітний кліматичний режим світового океану та стан водної поверхні грають істотну роль у формуванні мікроклімату внутрішньосуднових приміщень. Гідрометеорологічні умови, викликаючи різні фізіологічні відхилення від норми у пасажирів і екіпажу, можуть створити у перших незадоволення морською подорожжю, а другим ускладнити виконання службових обов'язків по управлінню судном. Основним призначенням судової системи комфортного кондиціонування повітря (ССККП) є автоматична підтримка заданих параметрів мікроклімату внутрішньосуднових приміщень незалежно від зміни в часі та просторі зовнішніх гідрометеорологічних умов навколишнього середовища. До найбільш поширених на морському флоті способам автоматичного керування і регулювання ССККП відноситься спосіб регулювання шляхом зміни температури холодоносія, яка в свою чергу регулюється зміною продуктивності компресора за допомогою системи керування «Unisab». Дана система допускає регулювання продуктивності компресора в автоматичному режимі, однак, виникає необхідність в завданні значення температури холодоносія механіком в залежності від мінливих зовнішніх і внутрішніх умов навколишнього середовища. Запропонована модель використання програмованих логічних контролерів в якості генератора сигналу управління завданням температури холодоносія дозволяє вирішити проблему коректного регулювання і таким чином збільшити надійність та енергоефективність експлуатації ССККП.
APA, Harvard, Vancouver, ISO, and other styles
12

Сергієнко, Н. "Відновлення виконавчого провадження: проблеми правового регулювання." Юридичний вісник, no. 3 (October 8, 2020): 170–76. http://dx.doi.org/10.32837/yuv.v0i3.1938.

Full text
Abstract:
У науковій статті автором розглянуто сутність відновлення виконавчого провадження, а також визначено різницю між відновленням виконавчого провадження та поворотом виконання рішення. Обґрунтовано авторський алгоритм відновлення виконавчого провадження. Автор констатує, що виконавче провадження підлягає відновленню за постановою виконавця; встановлення незаконності закінчення виконавчого провадження чи повернення виконавчого документа стягувачу не тотожне відновленню виконавчого провадження та автоматично не породжує останнє. Встановлення незаконності закінчення виконавчого провадження чи повернення виконавчого документа стягувачу може бути здійснено судом, а відновлення виконавчого провадження здійснюється виконавцем. Підставами відновлення виконавчого провадження є: 1) у разі якщо постанова виконавця про закінчення виконавчого провадження визнана судом незаконною чи скасована; 2) у разі якщо постанова виконавця про повернення виконавчого документа стягувачу визнана судом незаконною чи скасована; 3) у разі допущення судом (виноситься ухвала) повторного виселення особи, яка знову вселилася у приміщення, з якого була виселена; 4) у разі якщо боржник і надалі перешкоджає проживанню (перебуванню) стягувача у приміщенні, в яке його (стягувача) вселено. Обґрунтовано, що сутність відновлення виконавчого провадження зводиться до повернення правовідносин з-за меж виконавчого процесу назад, у межі виконавчого процесу, у зв'язку з тим, що: 1) визнано незаконним та скасовано завершення виконавчого провадження (що мало місце через його закінчення чи повернення виконавчого документу стягу-вачеві), отже, мала місце проти-правність завершення виконавчого провадження; 2) для фактичного, адекватного та швидкого поновлення прав стягувача слід учинити знову виконавчі дії, котрі вже були вчинені у виконавчому провадженні, яке було завершене (зокрема, знову виселити боржника, вселити стягувача, тобто має йтися про однотипну виконавчу дію). Неможливим є одночасне застосування відновлення виконавчого провадження та поворот виконання рішення, оскільки вони відрізняються як сутнісно, так і за підставами застосування. Оскільки приписи чинного законодавства передбачають різні алгоритми відновлення виконавчого провадження залежно підстав такого відновлення, без будь -яких обґрунтувань, у статті пропонується авторський уніфікований алгоритм відновлення виконавчого провадження.
APA, Harvard, Vancouver, ISO, and other styles
13

Рура, Андрій, and Ольга Тарахтій. "ЗАСТОСУВАННЯ НЕЧІТКОГО РЕГУЛЯТОРА ДЛЯ РЕГУЛЮВАННЯ РІВНЯ В БАРАБАНІ ПАРОВОГО КОТЛА Е-50." Молодий вчений, no. 2 (90) (February 26, 2021): 5–9. http://dx.doi.org/10.32839/2304-5809/2021-2-90-2.

Full text
Abstract:
Рівень води в барабані парового котла є одним із найважливіших параметрів, що характеризує надійність роботи котлоагрегату. В даний час все більшого поширення набувають нечіткі регулятори, які реалізують на практиці нечіткі алгоритми управління агрегатами, механізмами, а також технологічними процесами. Застосування технології нечіткої логіки, орієнтованої на обробку логіко-лінгвістичних моделей подання знань, відкриває широкі перспективи для створення інтелектуальних систем управління складними динамічними об'єктами, що діють в умовах неповної інформативності, прогнозувати по-ведінку системи, формувати множину альтернативних дій, виконувати форма-льний опис нечітких правил прийняття рішень. Оперативна ж зміна настроювальних параметрів регулятора дозволяє якісно перейти на більш високий рівень управління технологічними процесами, які супроводжують діяльність людини. У статті пропонується порівняльний аналіз моделі класичної 3-імпульсної автоматичної системи регулювання (АСР) рівню з ПІ-регулятором з одноконтурною АСР з нечітким регулятором у який введено додатковий сигнал по швидкості зміни відхилення регульованої величини.
APA, Harvard, Vancouver, ISO, and other styles
14

Гурський, О. О., О. Є. Гончаренко, and С. М. Дубна. "Розробка моделі газотурбінного двигуна на основі даних перерахування характеристик компресора динамічного принципу дії." Refrigeration Engineering and Technology 55, no. 2 (April 30, 2019): 132–40. http://dx.doi.org/10.15673/ret.v55i2.1362.

Full text
Abstract:
Метою роботи є підвищення ефективності функціонування газотурбінного двигуна шляхом використання координувальної системи автоматичного управління. Для досягнення поставленої мети необхідно розробити модель газотурбінного двигуна на базі моделі статичних режимів роботи компресора динамічного принципу дії, що реалізована засобами середовища MATLAB \ Simulink. Актуальність розробки відповідної моделі обумовлена необхідністю оцінки енергоефективності функціонування газотурбінного двигуна, а також можливістю побудови певної координувальної системи автоматичного управління, що використовує відхилення від співвідношення змінних системи при регулюванні технологічних параметрів. Автоматичні системи координувального управління дозволяють узгодити відповідні перехідні процеси і можуть забезпечити ряд позитивних особливостей при функціонуванні об'єкта управління. У даній роботі представляється розробка елементної моделі газотурбінного двигуна як об'єкта керування. Ця модель розробляється для синтезу різноманітних систем автоматичного управління, що забезпечують узгодження перехідних процесів при регулюванні. Надається структурно-параметрична схема газотурбінного двигуна з описом окремих її елементів. Відображається принцип перетворення вихідної моделі компресора у відповідну модель газотурбінного двигуна. При розробці математичної моделі, відповідно конструктивним особливостям, газотурбінний двигун розділяється на турбокомпресор, камеру згоряння, турбіну і реактивне сопло. Виходячи з такого поділу, безпосередньо розглядається математичний опис окремих елементів газотурбінного двигуна, а потім зв'язується в єдину математичну схему. У заключній частині роботи наведені результати моделювання. Це статичні характеристики компресора і перехідні характеристики турбіни за швидкістю обертання валу. Приводиться аналіз результатів моделювання на основі порівняння статичних характеристик моделі вихідного компресора і компресора газотурбінного двигуна.
APA, Harvard, Vancouver, ISO, and other styles
15

Ситнік, Борис Тимофійович, Володимир Олександрович Бриксін, Денис Вікторович Ломотько, Віолета Валеріївна Ситник, and Ілля Валерійович Давидов. "Моделі і методи створення систем реалізації графіків руху високошвидкісних поїздів з адаптивною корекцією швидкості за фактичними параметрами проїзду Частина 1. Структура автоматичної системи нечіткого задання графіка швидкості руху рухомого об'єкта з її." Інформаційно-керуючі системи на залізничному транспорті 26, no. 4 (December 14, 2021): 24–35. http://dx.doi.org/10.18664/ikszt.v26i4.247235.

Full text
Abstract:
Сформульовано основні вимоги до моделі системи автоматичного керування поїздом з нечітким заданням швидкості руху, запропоновано структуру моделі системи нечіткого задання швидкості з адаптивною корекцією помилки регулювання швидкості за фактичними параметрами проїзду на ділянках прямування, побудовано варіант нелінійного графіка зміни заданої швидкості руху для різних режимів проходження ділянок прямування
APA, Harvard, Vancouver, ISO, and other styles
16

Тарарака, Валерій Дмитрович, Юрій Олександрович Подчашинський, Ларіна Олексіївна Чепюк, Юрій Олександрович Шавурський, and Надія Юріївна Мазурчук. "Формулювання та аналіз вимог до метрологічного забезпечення інформаційно-вимірювальної системи обліку газу." Технічна інженерія, no. 2(88) (November 30, 2021): 86–94. http://dx.doi.org/10.26642/ten-2021-2(88)-86-94.

Full text
Abstract:
Застосування інформаційно-вимірювальних систем у нафтогазовій галузі допомагає покращити комерційний облік витрати газу, що подається споживачам з метою забезпечення взаєморозрахунків із споживачами. Газорозподільні станції (ГРС) є одними з основних об’єктів магістральних газопроводів. Газорозподільні станції призначені для виконання таких операцій: приймання газу з магістрального газопроводу; очищення газу від механічних домішок; зниження тиску до заданої величини; автоматична підтримка тиску на заданому рівні; розподіл газу по споживачах; вимірювання кількості газу. Крім того, на газорозподільній станції здійснюється вторинна одоризація газу. Незалежно від пропускної здатності, кількості споживачів, тиску на вході і виході, характеру зміни навантаження (витрати газу) технологічна схема газорозподільної станції складається з таких основних вузлів: схема підключення ГРС до газопроводів, очищення газу, регулювання тиску, вимірювання витрати газу і контрольно-вимірювальних приладів (КВП), одоризації газу. Вузол вимірювання витрати та кількості природного газу (далі вузол обліку газу) призначений для вимірювання, реєстрації результатів вимірювань і розрахунків обсягу газу, зведеного до стандартних умов, а також за необхідності визначення його показників якості, враховуючи компонентний склад, щільність, вологість, питому теплоту згоряння. Виконано аналіз різних типів витратомірів та обрано ультразвуковий витратомір.
APA, Harvard, Vancouver, ISO, and other styles
17

Salamin, O., and S. Poperechnuy. "Державне регулювання сільського господарства в умовах активізації міжнародних інтеграційних процесів." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 19, no. 81 (October 3, 2017): 64–69. http://dx.doi.org/10.15421/nvlvet8110.

Full text
Abstract:
Розглядаються проблеми організації, спрямування та здійснення державної регуляторної політики в аграрному секторі економіки України. Показано особливості вітчизняного сільського господарства, через які не можуть автоматично застосовуватись поширені в економічно розвинутих країнах підходи до державного регулювання галузі. Основною з них є неналежний рівень сформованості аграрного ринку та його інфраструктури, що призводить до високої мінливості цін. За результатами здійсненого аналізу державного регулювання цін показано, що жоден з підходів, який застосовувався після 1991 року, не забезпечив належних результатів. В умовах активізації міжнародних інтеграційних процесів проблеми посилюються обмеженням міжнародними організаціями державного впливу на ціну. Через високу мінливість цін прискорено розвиваються особливо великі за розмірами суб’єкти господарювання голдингового типу, зорієнтовані на виробництво сировинної продукції та її поставки на зовнішній ринок, де ціни стабільніші. Зростання експортного потенціалу поєднується з посиленням монокультурної спрямованості вітчизняного сільського господарства, посиленням соціальних проблем у селах, значної ізоляції від ринків збуту малих і середніх за розмірами господарств. В цих умовах не відмічаються закономірні процеси диференціації особистих селянських господарств, трансформації їх у товарні господарства фермерського типу. Для забезпечення належної конкурентоспроможності переробленої продукції сільського господарства пропонується формувати інтегровані системи з участю різних за розмірами суб’єктів господарювання, що займаються виробництвом, переробкою і збутом продукції, а державну фінансову підтримку спрямовувати на ті інтегровані структури, які зорієнтовані на виробництво конкурентоспроможної на зовнішньому ринку продукції. Необхідною умовою такої підтримки може бути розробка бізнес плану виробництва такої продукції. Підтримку слід спрямовувати на придбання засобів виробництва, необхідних для реалізації бізне-плану. Для здійснення контролю за цільовим характером витрачання коштів державної підтримки її слід здійснювати на засадах приватно-державного партнерства. Держава може залишатись власником засобів виробництва, придбаних за кошти державної підтримки до виходу на проектну потужність визначену бізнес планом. Після цього дані засоби можуть бути передані на баланси підприємств. Переваги такої підтримки порівняно з нинішньою полягають у її вищій результативності, спрямованості на реалізацію потенціалу вітчизняного сільського господарства в умовах міжнародної інтеграції України. Позитивний досвід сприятиме поширенню інтегрованих систем на основі залучення децентралізованих коштів.
APA, Harvard, Vancouver, ISO, and other styles
18

Левінський, М. В., and В. М. Левінський. "Моделювання системи регулювання в Step 7 TIA Portal з використанням функціональних блоків бібліотеки «LSim»." Automation of technological and business processes 12, no. 4 (December 30, 2020): 42–47. http://dx.doi.org/10.15673/atbp.v12i4.1934.

Full text
Abstract:
Актуальність. Моделювання систем регулювання в середовищі розробки програмного забезпечення контролерів, наприклад в Step 7 TIA Portal, дозволяє провести налагодження параметрів функціональних блоків ПІД-регуляторів, перевірку грубості САР до варіацій параметрів об’єкта керування та безударність переходів між ручним та автоматичним режимом роботи. Мета. Показати приклади корекції програмного коду функціональних блоків бібліотеки “LSim”, які фірма Siemens рекомендує для моделювання об’єкта керування, що забезпечують встановлення довільних початкових умов в цифрових аналогах диференційних рівнянь динамічних ланок. Метод. Аналіз оригінального коду функціональних блоків бібліотеки “LSim” та його подальша корекція, моделювання скоригованих функціональних блоків в середовищі Step 7 TIA Portal. Результати. Наведені фрагменти кодів функціональних блоків, які дозволяють моделювати ланку запізнення, інерційну ланку першого порядку, інтегруючу ланку з довільними початковими умовами. Проведено моделювання скоригованих функціональних блоків в середовищі Step 7 TIA Portal та співставлення результатів із результатами моделювання аналогічних динамічних ланок в середовищі Simulink/MATLAB. Проведено моделювання САР із використанням зазначених блоків. Висновки. Запропоновані зміни коду функціональних блоків бібліотеки “LSim”, які реалізують ланку запізнення, інерційну ланку першого порядку, інтегруючу ланку, дозволяють врахувати довільні початкові умови в цих ланках, що забезпечує моделювання динамічно сталих режимів САР в середовищі Step 7 TIA Portal.
APA, Harvard, Vancouver, ISO, and other styles
19

Юрченко, О. Ю., and Г. В. Барсукова. "ВИКОРИСТАННЯ ЧАСТОТНОГО ПЕРЕТВОРЮВАЧА – ДІЄВИЙ ТА ЗРУЧНИЙ СПОСІБ РЕГУЛЮВАННЯ ШВИДКОСТІ НАСОСНОГО АГРЕГАТУ." Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes 45, no. 3 (February 21, 2022): 57–63. http://dx.doi.org/10.32845/msnau.2021.3.8.

Full text
Abstract:
У статті розглянуто систему, що дає можливість автоматизованого керування роботою насосного агрегату за різних режимів роботи. Системою забезпечуються ручний та автоматичний режими керування, що дає змогу переважно за автоматичного режиму керування виключити відсоток відмов через людський фактор. Робота системи базується головним чином на використанні перетворювача частоти, що є основним елементом у системі, яка розглядається, та допоміжних структурних елементів, таких як реле захисту від «сухого ходу», реле для захисту від перепаду тиску в основному та резервному насосах, датчики температури та тиску. Потреба у постійній високоточній зміні швидкості обертання насосного агрегату здатна бути вирішена за рахунок такої системи, принцип роботи якої полягає у надходженні періодичних, коли це необхідно буде здійснювати, сигналів до перетворювача частоти, який залежно від того, яку швидкість обертання насосного агрегату потрібно досягти, буде регулювати частоту, яка безпосередньо має вплив на швидкість обертання електричного двигуна, що є приводним двигуном для насосного агрегату. У разі наприклад зменшення тиску води у системі через датчики температури та реле перепаду тиску буде подано сигнал до частотного перетворювача, яким буде збільшено частоту електромагнітного поля. За рахунок збільшення частоти і при цьому незмінного числа пар полюсів у електричному двигуні буде досягнуто більшу швидкість обертання електродвигуна, що призведе до збільшення продуктивності насосного агрегату, яким накачується певна кількість рідини, тиск якої заздалегідь визначений та запрограмований як стандартне значення тиску у системі. Збільшивши частоту, а відповідно, і продуктивність насосного агрегату, тиск у системі буде піднято до стандартного значення, після чого насосний агрегат буде здійснювати роботу на звичній для себе швидкості. Таким чином, будь-які відхилення параметрів системи від робочих є контрольованими та регулюються за рахунок датчиків та реле температури, а також перетворювача частоти, який за рахунок зміни частоти здійснює зміну швидкості обертання і, як наслідок, зміну продуктивності роботи насосного агрегату, що може бути використаний у системах тепло- або водопостачання як житлових будинків, так і промислових підприємств окремо взятих груп споживачів.
APA, Harvard, Vancouver, ISO, and other styles
20

Васильєв, М. "РОЗРОБКА МАТЕМАТИЧНОЇ МОДЕЛІ КОМПРЕСОРНОЇ УСТАНОВКИ ДЛЯ ЗРІДЖЕННЯ ПРИРОДНОГО ГАЗУ." MEASURING AND COMPUTING DEVICES IN TECHNOLOGICAL PROCESSES, no. 1 (May 27, 2021): 11–15. http://dx.doi.org/10.31891/2219-9365-2020-67-1-2.

Full text
Abstract:
Перш за все, така тема як компресори для зрідження природного газу на превеликий жаль не дуже добре вивчена. І тому, в даній публікації буде представлене детальне дослідження даного об’єкта. Насамперед, перш за все буде розглянуто сам об’єкт, з чого він складається, які його властивості, як в ньому проходять процеси зрідження природного газу. Так спочатку треба повністю вивчити сам об’єкт, а вже потім переходити до побудови його математичної моделі яку в майбутньому можна застосувати для більш детального аналізу, спочатку теоретично а вже потім і в практичних цілях. Це дозволить досягти великих результатів при побудові автоматичної системи керування компресора для зрідження природного газу. Отже буде спочатку вивчений вже сам об’єкт а вже потім на основі отриманих знань ми будемо будувати математичну модель яка в майбутньому знадобиться для розробки автоматичної системи керування. В даній публікації розглядаються загальні положення як про самий об’єкт так і про аспекти керування ним. Перш за все звертається увага на побудові математичної моделі, адже саме вона і є основною метою даного дослідження. Були розроблені параметричні схеми, які вказують на те, які вхідні параметри є у компресорної установки, яке збурення наноситься та які параметри є на виході з цієї компресорної установки. Детально розглянута математична модель в основу якої і була закладена параметрична схема та виведено загальні положення по будові даного об’єкта в іншому середовищі, де можливо більш детально вивчити всі переваги і недоліки компресорної установки для зрідження природного газу. Викладені всі основні формули які були описані для даного об’єкта і які були використані для будування математичної моделі. Була побудована математична модель яка відповідає окремо виділеній параметричній схемі і яка повністю відповідає даній параметричній схемі. а основі отриманих математичних формул була створена математична модель яка була перенесена в спеціальне середовище, де вже більш детально можливо дослідити в майбутньому різні схеми регулювання даним об’єктом.
APA, Harvard, Vancouver, ISO, and other styles
21

Dudchak, T. "Ways to increase the wear resistance of pistons of internal combustion engines (review)." Problems of tribology 102, no. 4 (December 24, 2021): 20–27. http://dx.doi.org/10.31891/2079-1372-2021-102-4-20-27.

Full text
Abstract:
В статті зроблен аналіз матеріалів, з яких виготовляють поршня для двигунів внутрішнього згоряння. Для автомобільних і тракторних двигунів, зокрема, застосовують евтектоїдні суміші типу АЛ25 і заевтектоїдні, які містять мідь, нікель, магній та марганець. Приведений хімічний склад алюмінієвих сплавів. Поршні для швидкохідних, форсованих тепловозних, середньообертових двигунів виготовляють з сірого або ковкого чавуну (СЧ24-44, СЧ28-48,СЧ32-53), а також легованого присадками ванадію, хрому, титану, міді (ВЧ45-5). Для комбінованих поршнів застосовують жаростійкі сталі типу 20Х3МВФ. Проводяться дослідні роботи над поршнями з титану і вуглепластиків. Поршні з автоматичним регулюванням ступеню стиску дозволяють обмежити теплову і механічну напруженість деталей циліндро-поршневої групи, форсувати двигун по середньому ефективному тиску в 1,5-2 рази, покращити пускові якості, забезпечити можливість використання різних марок палива. Для двигунів внутрішнього згорання, компресорів, насосів та інших поршневих машин пропонується комбінований поршень з мідно-фторопластовими вставками. Вставки з мідно-фторопластової композиції забезпечують нанесення тонкої плівки міді на поверхні тертя на протязі всього ресурсу роботи двигуна, що значно прискорює припрацювання, зменшує задири і натири, збільшує зносостійкість і довговічність деталей ЦПГ. Дані основні недоліки і переваги експлуатаційних характеристик поршнів, виготовленних з різних матеріалів. Зроблен аналіз конструкцій поршнів. Представлені основні вимоги при конструюванні поршнів, це:простота конструкції, і по можливості забезпечення симетричності відносно осі циліндра;мінімальна маса, максимальна міцність і жорсткість, зносостійкість матеріалу;ефективний відвід тепла (охолодження); мінімальна собівартість виготовлення.
APA, Harvard, Vancouver, ISO, and other styles
22

Чемерис, І. М. "Використання спеціальних знань, призначення експертиз та арешт безготівкових коштів як засіб забезпечення подальших слідчих дій." Прикарпатський юридичний вісник, no. 1(30) (July 13, 2020): 213–17. http://dx.doi.org/10.32837/pyuv.v0i1(30).548.

Full text
Abstract:
У статті розглянуто процесуальні джерела доказів, що найбільше притаманні досудовому розслідуванню кримінальних проваджень про злочини, вчинені із вико-ристанням безготівкових операцій, а саме висновок екс-перта та речові докази. Досліджено комп’ютеро-техніч-ні експертизи як такі, що найчастіше призначаються у провадження цієї категорії. Розкрито зміст експерти-зи комп’ютерної техніки, експертизи програмних про-дуктів, інформаційно-комп’ютерної експертизи, вивче-но відмінності між ними. Звернуто увагу на потенціал розвитку відносно нового виду експертного досліджен-ня – телекомунікаційної експертизи, методика та ме-тодологія якої розроблені ще недостатньо. Проаналізо-вано статус речей, зумовлений визнанням їх речовими доказами та накладенням арешту на них. У дослідженні проводиться аналіз механізмів пово-дження із речовими доказами та арештованим майном, звертається увага на суперечності нормативно-право-вого регулювання щодо визначення долі речових дока-зів, на які накладено арешт. У статті акцентується ува-га на наявних практичних проблемах, які виникають при реалізації ухвал суду про арешт майна, неможли-вості забезпечити повернення майна, набутого внаслі-док вчинення кримінального правопорушенням, по-терпілому на стадії досудового розслідування. В умовах обмежених строків досудового розслі-дування запропонований механізм реалізації права потерпілого на відшкодування шкоди, завданої кри-мінальним правопорушенням. З урахуванням прак-тики інших держав висловлено необхідність запрова-дження системи автоматичної реалізації ухвал суду про накладення арешту на майно. На підставі прове-деного вивчення запропоновано розширити перелік суб’єктів, уповноважених на звернення із клопотан-ням про скасування арешту майна. Істотно удосконалено порядок припинення арешту при закритті кримінального провадження та скасуван-ня арешту майна у кримінальних провадженнях щодо злочинів, вчинених із використанням безготівкових операцій. Зокрема, наводяться пропозиції щодо закрі-плення порядку визначення долі речей, які не міс-тять слідів кримінального правопорушення, як в ході досудового розслідування, так і при прийнятті остаточ-ного рішення у кримінальному провадженні.
APA, Harvard, Vancouver, ISO, and other styles
23

Безуглий, Анатолій Васильович, and Олександр Матвійович Петченко. "Комп’ютерне моделювання механічного руху в фізичному практикумі." New computer technology 5 (November 2, 2013): 10–11. http://dx.doi.org/10.55056/nocote.v5i1.52.

Full text
Abstract:
Методичні розробки, які реалізуються за допомогою ПК, збагачують віртуальний фізичний практикум та надають можливість засвоєння фізичних явищ та їх законів при реалізації дистанційного навчання.В даній роботі пропонується дві віртуальні лабораторні роботи з вивчення механічного руху: “Визначення прискорення вільного падіння” та“Вимірювання коефіцієнта в’язкості рідини за методом Стокса”, що реалізуються за допомогою однієї комп’ютерної програми.Прискорення вільного падіння g визначається за прямими вимірюваннями часу t та висоти падіння h. Відстань H, яке тіло проходить за час t, визначається за кінематичним законом руху:H=gt2/2, (1)Якщо виміряти час падіння кульки з різної висоти та побудувати графік залежності від t, то згідно з (2) отримаємо пряму, тангенс кута нахилу якої до вісі t буде дорівнювати .Графік залежності від t дає можливість обчислити значення g за формулоюПрограма моделює рух тіла, який користувач спостерігає на екрані, в широких межах зміни густини середовища ρ та коефіцієнта в’язкості , а також в частинному випадку, коли , , тобто, у вакуумі. Одновимірний рух тіла (кульки) описується за допомогою модифікованого метода Ейлера з урахуванням всіх сил, які діють на кульку: сили тяжіння, сили Архімеда та сили внутрішнього тертя. Шлях падіння кульки вимірюється за шкалою, на якій нанесені поділки в метрах. Час падіння кульки вимірюється секундоміром. На екрані дисплею виведені кнопки регулювання секундоміра для ввімкнення, вимкнення та скидання до нуля. Програма дозволяє зупинити процес падіння в будь-який момент, а потім або продовжити із збереженими значеннями величин на цей момент часу, або повернутися до початкового моменту.При виконанні роботи користувач встановлює у вікні інтерфейсу (рис. 1) значення густини та в’язкості, скидає секундомір, встановлює висоту, згідно з номером варіанту. Одразу ж після запуску програми, вмикає секундомір. В момент досягнення кулькою дна судини, вимикає секундомір і заносить в таблицю значення висоти та часу падіння для кожного значення висоти падіння. Побудувавши графік залежності від t, обчислюють величину g за формулою (3).Метою наступної роботи є вивчення особливостей руху кульки у в’язкій рідині та визначення в‘язкості рідини за методом Стокса. При моделюванні руху кульки для обчислення сили внутрішнього тертя використовується формула Стоксаде r – радіус кульки,  – коефіцієнт в‘язкості рідини, V – швидкість кульки відносно рідини.Оскільки вимірювання часу треба виконувати для рівномірного руху, програмою передбачено виведення на екран риски в момент, коли всі сили, що діють на кульку, врівноважуються. З цього моменту рух кульки стає рівномірним. На екран виведено два секундоміри. Один вмикається з початком руху кульки і вимикається автоматично, коли кулька досягає дна судини. Другий можна вмикати і вимикати від руки, клацаючи мишкою на кнопки вмикання та вимикання. Радіус, масу кульки, висоту судини можна змінювати як завгодно, маючи тільки на увазі, що радіус кульки повинен залишатися меншим за діаметр судини. Але якщо ви й забудете про це, програма нагадає, висвітить зауваження. На панелі інтерфейсу також виведені параметри зображення, які можна змінювати, такі, як кольори рідини і кульки та радіус зображення кульки.
APA, Harvard, Vancouver, ISO, and other styles
24

Атаманчук, Петро Сергійович. "Менеджмент якості підготовки майбутнього вчителя фізики." Theory and methods of learning mathematics, physics, informatics 9 (November 22, 2013): 217–24. http://dx.doi.org/10.55056/tmn.v9i1.176.

Full text
Abstract:
Безсумнівно, що якість підготовки майбутнього вчителя фізики – феномен панорамний. Однак, дидактика фізики, як теорія навчання з предмету, може з достатньою мірою передбачуваності та дієвості орієнтувати на визначальні пріоритети та ефективні технології становлення фахівця. Якщо дидактику фізики трактувати як науку про оптимізацію та закономірності організації контролю в навчанні, управління цим процесом (управління навчально-пізнавальною діяльністю, предмет котрої співвідноситься з процесами задавання корисних установок, прогнозованої міри обізнаності, власної системи цінностей, професійного компетентнісного та світоглядного досвіду), то одразу спливає на перший план доречність впровадження менеджменту якості підготовки майбутнього вчителя фізики.Категорія якості навчання тісно пов’язана з методологічним та світоглядним аспектами категорії знання і несе у собі ознаки особистісної забарвленості: тільки власна навчально-пізнавальна діяльність виступає одночасно і джерелом, і засобом формування особистісних набутків (різної якості знань, компетентностей, світогляду) людини [1–4]: ЗЗ – заучування знань; НС – наслідування; РГ – розуміння головного; ПВЗ – повне володіння знаннями; УЗЗ – уміння застосовувати знання; Н – навичка; П – переконання; Зв – звичка.У світовій та вітчизняній практиці спостерігаються тенденції поступового переходу від інформаційно-виконавських до пошуково-креативних схем навчання. За цих обставин проблема управління пізнавальною діяльністю у навчанні набуває особливої ваги: далекі до своєї досконалості матриці управління у традиційному навчанні, стають все менш придатними для використання в умовах інноваційних схем навчання, сучасні ж матриці управління – уже потрібно створювати, орієнтуючись на Національну рамку кваліфікацій України [7].Як відомо, концепція TQM (категорія всеохопного управління якістю (Total Quality Management – TQM) орієнтує на впровадження менеджменту якості (стандарт ISO 8402-94) на основі системного підходу [9]). З іншого ж боку, у традиційному навчанні, проблема управління особистісними набутками учнів здебільшого ставилась і розвивалась опосередковано, шляхом своєрідної її трансформації у проблему контролю пізнавальної діяльності, а внаслідок такої «мутації» проблем, цілеспрямоване регулювання та коригування у конкретному пізнавальному акті значною мірою унеможливлювалося з причин наявного суб’єктивізму в оцінюванні якості знань, «монополії» викладача на це оцінювання та зорієнтованості процедури контролю переважно на кінцевий результат навчальної діяльності, а не процес її протікання.Становлення майбутнього вчителя проходить через поєднання у собі двох взаємопов’язаних процесів: організацію діяльності студента та контроль цієї діяльності. Об’єктом управління тут виступає студент (як керована і самокерована система); об’єктом контролю – педагогічна діяльність цієї особистості; предметом управління є процес досягнення майбутнім фахівцем проектованого результату навчання [1]; предметом контролю – протікання процесу оволодіння запланованими професійними набутками. Успіх у навчанні є наслідком вдалих управлінських дій [1–4], коли гарантовано формуються предметні та професійні компетентності.Коригувати, регулювати, управляти професійними якостями майбутнього фахівця можливо лише в умовах узгодження і одночасної стандартизації як змісту, так і освітнього середовища стосовно конкретної освітньої галузі [2]. Вказаній проблемі було присвячено проект, мета якого полягала (проект виконується в Кам’янець-Подільському національному університеті імені Івана Огієнка в рамках діяльності наукової школи впродовж 1993–2011 років (науковий керівник – Атаманчук П. С.)) в теоретичному обґрунтуванні, апробації та практичному впровадженні методології управління фаховою підготовкою майбутніх учителів фізики в умовах особистісно орієнтованого навчання [1–4]. При цьому надто важливо, щоб започатковуваний нині перехід на принципи організації Національної системи кваліфікацій [7] стимулював вітчизняну освіту до забезпечення якісної професійної підготовки фахівців та збагачення наявних пріоритетів (рис. 1).За таких умов головним результатом досліджень було теоретичне обґрунтування та технологічна інтерпретація концепції цілеспрямованого управління якістю підготовки майбутніх фахівців [9] з акцентом на особистісно орієнтоване навчання та ступеневу освіту [2–4]. Узагальнені результати наших досліджень частково відображено в поданих нижче публікаціях (рис. 2).При цьому отримані нами результати дослідження пройшли широку апробацію на міжнародних, всеукраїнських, регіональних і міжвузівських науково-методичних конференціях та ході впровадження в навчальний процес середніх та вищих навчальних закладів. Однак, сьогодні ще мало уваги використанню впливу ультранових наукових досягнень і технологічних винаходів на плин світових соціальних процесів, освіту й науку, на основи побудови антропосфери та щоденне буття людини: значних напрацювань аналогічного характеру ні в Україні, ні на світовому рівні поки-що не видно.Основою формування професійних якостей майбутнього фахівця є його залучення (давня мудрість гласить: «Скажи мені – і я забуду; покажи мені – і я запам’ятаю; залучи мене – і я навчусь») до активної навчально-пізнавальної діяльності, причому такої, щоб «теоретик» більше практикував, а «емпірик» більше теоретизував [1; 2]; дієвий рівень обізнаності, професійних компетентностей та світогляду фахівця формується тільки через належне навіювання відношень до об’єкта пізнання; принцип динамічного балансу раціонально-логічного і почуттєво-емоційного (рис. 3), покладений в основу навчання, сприяє формуванню у студентів власного авторського кредо [2].На даний час нами обґрунтовано, доведено та репрезентовано [1–4] наступні технологічні та методичні можливості:– побудови освітнього прогнозу та розробки структурно-логічної схеми змісту моделі освіти;– створення схеми-матриці цільової навчальної програми та використання її як засобу цілеорієнтацій відповідної освітньої моделі навчання (рис. 4);– результативності системи управління навчально-пізнавальною діяльністю, що обслуговується різними галузями знань (психологія, педагогіка, нейрофізіологія, кібернетика, філософія тощо), яка виявляється у поступовому переведенні цього процесу в режим саморегульованого протікання (рис. 5);– значущості освітнього (навчального) середовища у навчанні за дидактичною схемою, що орієнтує на фіксований результат-еталон, яка зумовлюється адресною інформаційно-технологічною та матеріально-технічною підтримкою навчально-пізнавальної діяльності тощо.В цілому нами встановлено, що за умови компетентно заданих установок (належного вмотивування), якщо професійну підготовку здійснювати на основі цільової освітньо-професійної програми, побудованої за бінарним принципом, суть якого полягає у чіткому визначенні і забезпеченні досягнення еталонних рівнів змістової (з конкретного навчального предмету) і професійної (методичної) обізнаності, то це спричинює до формування таких фахових якостей майбутнього учителя, які вдовольняють потребу розбудови суспільства знань.Еталон контролю можна розглядати і як ступінь досягнення мети, і як стимул діяльності, і як критерій оцінки, і як ціннісні здобутки особистості. Також він характеризує контрольно-стимулюючий компонент процесу навчально-пізнавальної діяльності, що реалізується на етапах об’єктивізації контролю та проектування наступної діяльності (табл. 1). Таблиця 1.Ціннісні здобутки особистості РівеньЕталонПозначенняЦіннісні новоутворення(якість знань)НижчийЗавчені знання33Студент механічно відтворює зміст пізнавальної задачі в обсязі та структурі її засвоєнняНаслідуванняНСТой, хто навчається копіює головні моторні чи розумові дії, пов’язані із засвоєнням пізнавальної задачі, під впливом внутрішніх чи зовнішніх мотивівРозуміння головногоРГСтудент свідомо відтворює головну суть у постановці і розв’язуванні пізнавальної задачіОптимальнийПовне володіння знаннямиПВЗМайбутній спеціаліст не тільки розуміє головну суть пізнавальної задачі, а й здатний відтворити весь її зміст у будь-якій структурі викладуВищийНавичкаНТой, хто навчається здатний використовувати зміст конкретної пізнавальної задачі на підсвідомому рівні, як автоматично виконувану операцію (ця якість знань регламентується в часі)Уміння застосовувати знанняУЗЗЗдатність свідомо застосовувати набуті знання у нестандартних навчальних ситуаціях (творче перенесення)ПереконанняПЦе знання, незаперечні для особистості, які вона свідомо долучає у свою життєдіяльність, в істинності яких вона упевнена і готова їх обстоювати, захищати В умовах реформування освіти, прогнозовані рівні навчальних досягнень набувають одразу ж ознак самочинності, якщо вступає в дію механізм цілеспрямованого впливу на функціонування як раціонально-логічного, так і емоційно-ціннісного мислительних начал того, хто навчається. Дія механізму формування прогнозованих навчальних досягнень [4–8] в особистісно орієнтованому навчанні (на рис. 6 – штриховий контур) полягає в поступовому підвищенні рівня обізнаності. Задані у наведеній схемі орієнтири дають підстави для виділення п’яти можливих рівнів навчально-пізнавальних досягнень: буденного знання, нижчого, оптимального, вищого, об’єктивно нового наукового знання.Репродуктивна активність студентів у вивченні природничо-технологічних дисциплін ще якось здатна себе виявляти на раціонально-логічному рівні пізнавальної діяльності, однак пошукова та креативна активність немислима без поєднання обох сторін пізнавального акту – раціонально-логічного та емоційно-ціннісного (духовного). Тільки внаслідок такого поєднання впливів на активність студента у навчанні маємо шанс формувати його обізнаність від рівня буденних знань до відповідних вищих рівнів компетентності та світогляду.Отже, за умови компетентно заданих установок (належного вмотивування), якщо професійну підготовку здійснювати на основі цільової освітньо-професійної програми, побудованої за бінарним принципом, суть якого полягає у чіткому визначенні і забезпеченні досягнення еталонних рівнів змістової (з конкретного навчального предмету) і професійної (методичної) обізнаності [5; 6], то це спричинює до формування таких фахових якостей майбутнього учителя, які вдовольняють потребу розбудови суспільства знань.Тільки об’єктивний контроль результатів навчання та управління якістю цього процесу й процесом формування компетентностей (предметних та професійних) здатні забезпечити прогнозованість у фаховому становленні майбутнього вчителя фізики. Трактуючи якість як системну методологічну категорію, що відображає ступінь відповідності результату поставленій меті, легко окреслити траєкторію розв’язання вказаної проблеми. Відомо, що в процесі формування професійних якостей фахівця підручник є надійним засобом трансляції змісту та ідеології конкретного освітнього стандарту. Автори проекту підручників (рис. 7, 8) вперше у вітчизняній і світовій практиці обґрунтували та впровадили технологію бінарних цілеорієнтацій (фізика, методика викладання фізики), що є надійною передумовою дієвості навчання (формування компетентнісно-світоглядних якостей майбутнього фахівця) та основою формування цілісного педагогічного кредо майбутнього учителя фізики.Отже, за умови компетентно заданих установок (належного вмотивовування), якщо професійну підготовку здійснювати на основі цільової освітньо-професійної програми, побудованої за бінарним принципом, суть якого полягає у чіткому визначенні і забезпеченні досягнення еталонних рівнів змістової (з конкретного навчального предмету – фізики) і професійної (методичної) обізнаності, то це спричинює до формування таких фахових якостей майбутнього учителя фізики, які вдовольняють потребу розбудови суспільства знань.Дослідження варто продовжити в аспекті вироблення управлінських технологій та менеджменту формування цілісного педагогічного кредо майбутнього учителя фізики.
APA, Harvard, Vancouver, ISO, and other styles
25

Колчук, Тетяна Василівна. "Принципи розробки навчальних матеріалів дистанційного курсу." Theory and methods of e-learning 2 (February 3, 2014): 291–96. http://dx.doi.org/10.55056/e-learn.v2i1.288.

Full text
Abstract:
Перспективність і ефективність дистанційного навчання багато в чому залежить від його проектування. Це досить складний і довготривалий процес, який потребує великої кількості матеріальних і людських ресурсів.Як основу для створення навчальних матеріалів для дистанційного курсу можна використовувати раніше розроблені дидактичні матеріали, які призначені для безпосередньої роботи в класі чи аудиторії. Це конспекти уроків, презентації, тести, тексти самостійних і контрольних робіт тощо. Але перед цим треба впевнитися, чи даний матеріал:узгоджений з поставленими навчальними цілями курсу;відповідає обраній темі навчання;написано на тому рівні, який необхідний для категорії слухачів курсу (чи не дуже він простий чи навпаки складний);містить приклади й рисунки, які відповідають тому, що ви бажаєте донести до слухачів;залучає учня в активну навчально-пізнавальну діяльність;має зручні супроводжуючі елементи.Електронні навчальні матеріали дистанційного курсу повинні виконувати роль «порадника» при самостійній роботі слухачів. Спираючись на дослідження Є. С. Полат [], В. П. Бокалова [], Ю. В. Триуса [] розглянемо принципи, які повинні бути покладені в основу створення подібних «порадників».Модульність. Весь навчальний матеріал розбивається на декілька, по можливості, автономних модулів. Кожен модуль ділиться, в свою чергу, на ще менші модулі – теми. Таке структурування матеріалу дозволяє розкласти його по поличкам і вивчати цей матеріал крок за кроком, концентруючи увагу кожен раз на окремій темі.Чітке визначення навчальних цілей. Часто дуже важко визначити в кожному модулі і в кожній темі реальну навчальну мету. Але донести цю мету до слухачів курсу можна, або вказавши, на що націлений даний модуль чи тема, або перерахувавши, що вони будуть знати і вміти, які навички здобудуть, працюючи з ними.Когнітивність. Зміст кожної навчальної одиниці повинен стимулювати пізнавальну активність учня, пробуджувати в нього інтерес до подальшого вивчення предмету. Для цього можна використовувати різні методи: постановка проблемних ситуацій, вказування на зв’язок з практичною діяльністю. Непотрібно пропонувати слухачам матеріал, який ніколи не буде використаний ними в подальшій навчальній роботі чи в практичній діяльності.Самодостатність. Цей принцип означає, що наданий навчальний матеріал повинен бути підготовлений таким чином, щоб дозволити слухачам виконати всі види навчальної роботи і досягти поставлених навчальних цілей без залучення додаткових інформаційних джерел.Орієнтація на самоосвіту. Якщо традиційна модель навчання будується за принципом «навколо викладача», то дистанційна модель, навпаки, реалізує принцип «навколо учня». Тому дуже важливо, щоб учні мали можливість проводити різні розрахунки, розв’язувати будь-які задачі, займатися практичними вправами. Велику роль в цьому відіграють додаткові мультимедійні навчальні засоби, які наряду з основними матеріалами дозволяють активно залучати учнів в процес навчання, вносити в нього різноманіття, вказувати на ключові аспекти теми, надавати практичні підходи до розв’язання актуальних проблем і реальних життєвих ситуацій, і, навіть вчити самостійно навчатися. Потрібно мати на увазі, що практичні дії являються ключовими елементами навчання, саме через них слухачі будуть спроможні повторювати потім те, чому вони навчились, розв’язувати конкретні практичні задачі, тобто використовувати вивчений матеріал в реальних умовах.Інтерактивність. Структура навчального матеріалу повинна сприяти інтерактивній діяльності слухачів курсу. По-перше, це організація «діалогу» учня з навчальним матеріалом, по-друге, це забезпечення можливості вести діалог по ходу вивчення матеріалу з викладачем, т’ютором і колегами по роботі чи навчанню.Способів побудови діалогових навчальних комп’ютерних програм існує доволі багато: підказка при відповіді учня на сформульоване питання; можливість змінення їм параметру процесу, зображеного на рисунку в тексті уроку, і наступного спостереження за зміною самого процесу або його характеристик і т.п.Необхідно, щоб при вивченні матеріалу в учня виникала необхідність отримати пораду, викласти свої думки, відправити на перевірку свою роботу, словом, обмінятися даною інформацією з зовнішнім оточенням. Спілкування з зовнішнім світом, присутність почуття самореалізації, наявність постійного опрацьованого зв’язку роблять навчальну роботу більш цікавою, осмисленою, формує почуття відповідальності за неї. Технічні ж можливості для подібного спілкування легко надаються за допомогою електронної пошти, Web-сервера, різних телеконференцій, причому вихід на будь-який вид електронного спілкування може бути організований прямо з навчального матеріалу, так же як і повернення в нього після спілкування.Оцінка прогресу в навчанні. Будь-якій людині властиво цікавитися, наскільки вона просунулася в справі, яку виконує. Це відноситься і до навчання. Учню важливо мати якісь індикатори свого успіху. Таким індикатором можуть стати його відповіді на запитання, завдання і тести для самоперевірки знань. Тому кожна навчальна одиниця повинна супроводжуватися контролюючими матеріалами. Результатом самоперевірки знань (тобто індикатором успіху, прогресу у навчанні) являються кількісні показники (оцінки, бали), що виставляються учневі після виконання будь-якого завдання.Не менш важливу роль відіграє зовнішній контроль знань учня, тобто оцінка його прогресу зі сторони викладача або т’ютора. Виконується такий контроль шляхом спеціального моніторингу, тестування, перегляду виконаних робіт, прийняття екзаменів і т.п.Наявність супроводжуючих елементів. Щоб робота з навчальними матеріалами не перетворювалась в постійне розгадування ребусів, а приносила задоволення і відчуття комфорту, необхідно супроводжувати цей матеріал додатковими елементами:інструкція по використанню електронних навчальних матеріалів («путівник» для учня);програма дисципліни (курсу);запропонована т’ютором (викладачем) послідовність вивчення матеріалу, навчальний графік здачі на перевірку завдань, оптимальні режими консультацій у спеціалістів, графіки т’юторіалів, телеконференцій і т.п.;відомості про необхідні попередні знання;навчальні цілі модуля (навчальної одиниці);короткий огляд вивченого матеріалу;висновки по вивченому матеріалу;запитання, завдання і тести для самоперевірки;контрольні завдання (різноманітної складності) для моніторингу прогресу навчання;різноманітні доповнення;глосарій (словник термінів);різноманітні вказівники.Дані принципи були використані для розробки навчальних матеріалів дистанційного курсу «Геометрія, 7 клас» []. Теоретичний матеріал курсу відповідає діючому підручнику з геометрії []. В основу розв’язування задач покладено ідею залучення учнів до самостійного активного оволодіння геометрією через виконання комп’ютерних експериментів у середовищі педагогічного програмного засобу GRAN-2D. Після інсталяції ППЗ GRAN-2D кожний рисунок курсу «Геометрія, 7 клас» можна «оживити», оскільки він оснащений гіперпосиланням на відповідний файл програми, який завантажується автоматично після клацання кнопкою миші, коли її вказівник розміщений над рисунком.Розглянемо, які супроводжуючі матеріали дозволяють налагодити навчальний процес та зворотній зв’язок між вчителем (т’ютором) і слухачами дистанційного курсу «Геометрія, 7 клас».Теоретичний матеріал. Вибір необхідного теоретичного матеріалу для вивчення тієї чи іншої теми здійснює вчитель (користуючись календарним плануванням) і заносить його до плану вивчення курсу для учнів. При цьому чітко вказується час, який виділяється учневі на його опрацювання і дата перевірки його засвоєння (тестування, виконання завдань тощо). Перед цим також пропонуються питання для самоперевірки та тренувальні навчальні тести.Задачі практичного та дослідницького характеру супроводжуються різноманітними підказками і порадами. Завдяки їх виконанню в ППЗ GRAN-2D учень вчиться оригінально розв’язувати запропоновані задачі, розвиває навички творчої діяльності, вміння успішно конструювати й реалізовувати власні прийоми і методи в навчальній практиці.Презентації. За допомогою презентацій намагаємося продемонструвати прикладну спрямованість виучуваного матеріалу. Причому учням пропонується самостійно доповнювати їх слайди, а, отже, знайти ще одну свою власну причину для вивчення тієї чи іншої теми.Тести. Під час вивчення кожної теми, учням пропонується пройти навчальні та контролюючі тести. Результати тестування подаються за дванадцятибальною шкалою. Таким чином учень отримує відомості про ступінь успішності засвоєного ним навчального матеріалу. У разі невдалого проходження тесту, учень має право повернутися до початку теми, яку вивчив недостатньо добре і скласти тест повторно.Кросворди використовуємо для активізації пізнавальної діяльності учнів з перевіркою їх розв’язання. При відкритті кросворду учню пропонується інструкція щодо розгадування кросворду та відправлення його на дистанційний курс.Уроки розроблені відповідно до календарного планування вчителя, дужі зручні для використання учнями, які пропустили велику кількість уроків в школі. Тоді вчитель може рекомендувати пройти пропущені шкільні уроки в дистанційному курсі.Логічна послідовність сторінок уроку має розгалужений характер. Для її створення враховуються всі можливі варіанти проходження учнями уроку, залежно від їх рівня знань та здібностей. Тому послідовність сторінок, продумана вчителем, і сторінок, які переглянув кожен учень може дуже сильно відрізнятися, причому як для різних учнів, так і для одного учня в рамках різних турів його проходження. Все залежить від того, наскільки активно використовуються абсолютні і особливо спеціальні переходи. Один тур проходження уроку триває з моменту початку учнем уроку і до тих пір, поки не буде досягнутий кінець уроку (тобто до моменту відображення сторінки з результатами учня).Самостійні та контрольні роботи є ще одним інструментом для перевірки та корекції знань учнів. При цьому розроблені тренувальні та два варіанти для безпосереднього виконання на оцінку.Навчально-творчі проекти. Новизна роботи з проектом та регулювання складності поставлених завдань сприяє підвищенню інтересу до навчання геометрії, розкриває практичну значимість матеріалу, що вивчається. Розв’язування задач в різноманітних умовах і якщо показано неоднозначні шляхи розв’язування поставленої задачі надає можливість учню проявити оригінальність. Все це вносить у навчання елементи емоційного піднесення, надає роботі учня дослідницького характеру.Сторінки з історичними відомостями створені з метою ознайомлення з етапами розвитку геометрії як науки, для всебічного розвитку школярів, формування пізнавальної активності, а також реалізації міжпредметних зв’язків історії і математики.Предметний покажчик, який об’єднано зі словником, до якого учень може звернутися в той момент. Якщо учень хоче знайти означення деякого геометричного поняття і не знаходить його в словнику, то він може додати його до словника самостійно (знайшовши його означення в параграфі підручника чи в додатковій літературі).Форум та чат. При виникненні питань чи проблем під час роботи з матеріалами дистанційного курсу налагоджено чат та форум. Дату та час проведення чату узгоджуємо з учнями на форумі (у відповідній його темі), вказуючи причину його проведення. При цьому часто буває так, що інші учасники курсу, побачивши дану причину, можуть самі допомогти одне одному.О. М. Хара у своєму дослідженні стверджує, що неможливо просто перенести навчальний курс у дистанційне середовище, розраховуючи тільки на ефективність технічних засобів [, 37]. Тому особливу увагу необхідно приділяти налагодженню зворотного зв’язку між вчителем і учнями. В даному випадку вчитель має виступати у ролі наставника та здійснювати постійний контроль за виконанням поставлених завдань. При цьому ефективність роботи учня буде залежати їх характеру, тобто виконання завдання має забезпечувати активізацію його пізнавальної діяльності та творчої самостійності.Впровадження розробленого нами дистанційного курсу «Геометрія, 7 клас» в школах Кривого Рогу показало підвищення зацікавленості учнів до вивчення геометрії, розв’язування задач, самостійної діяльності з набуття нових знань з предмету. Потребує подальшого дослідження створення відеофрагментів уроків для дистанційного курсу «Геометрія, 7 клас» та налагодження зворотного зв’язку між слухачами курсу через SKYPE.
APA, Harvard, Vancouver, ISO, and other styles
26

Khudetskyy, I. Yu, Yu V. Antonova-Rafi, N. M. Khudetska, and I. V. Pushchyna. "АПАРАТ ОЦІНКИ КУКСИ ДЛЯ ПРОТЕЗУВАННЯ КІНЦІВОК." Здобутки клінічної і експериментальної медицини, no. 4 (January 26, 2018). http://dx.doi.org/10.11603/1811-2471.2017.v0.i4.8236.

Full text
Abstract:
Вступ. Розроблено та віпробувано необхідні зонди, Які поєднують в Собі здатність візначаті форму та стан тканини Кукса. Зонди ма ють шкалу регулювання відносно "нульового" рівня Кукса та об'єднані з датчиками руху. На Основі Отримання Даних програмне забезпечення формує форму протеза. Це дает можлівість Здійснювати автоматичні вимірювання, Забезпечує метрологічні вимоги во время Калібрування пристрою. Для визначення механічніх властівостей тканин зонди оснащені датчиками тиску та прибудований для создания конкретного механічного НАВАНТАЖЕННЯ на зонди, что відповідає реальному, дБА на куксу в цілому. Є кілька режімів для вимірювання механічніх властівостей тканини Кукса.Мет ою дослідження Було Розробити прилад для визначення 3-D форми та механічніх характеристик тканин Кукса, что взаємодіють з гільзою протеза.Матеріали и методи. У процесі дослідження були проаналізовані матеріали про основні найбільш пошірені технології протезування кінцівок. Медичні, реабілітаційні та ерготерапевтічні проблеми пацієнтів в процесі протезування и ЕКСПЛУАТАЦІЇ протезів. Для проектування були вікорістані пакети MatCad, SolidWorks та технології метрологічної ОЦІНКИ датчіків.Визначили такоже вимоги до автоматизації Втрата Даних та сумісності з технологіямі CAD-CAM. У конструкції пристрою враховуються економічні та технологічні возможности его реализации. Технологія может буті частина технології CAD / CAM для виробництва протезів кінцівок.Висновки. Розроблення Пристрій дозволяє розробляті форму та стан залішкової кінцівкі тканини. Автоматизована система дозволяє зніматі та збіраті дані з вимірювальних зондів и передаваті ЦІ дані на комп'ютер для Подальшого АНАЛІЗУ. Це дозволяє використовуват розроблення Пристрій як CAD-CAM технологічний елемент при формуванні оптімальної-протезної системи "протезування кінцівок".
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography