To see the other types of publications on this topic, follow the link: Процес обчислень.

Journal articles on the topic 'Процес обчислень'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Процес обчислень.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Мінтій, Ірина Сергіївна, Світлана Вікторівна Шокалюк, and Михайло Михайлович Мінтій. "Засоби реалізації алгоритмів чисельних методів." Theory and methods of learning mathematics, physics, informatics 13, no. 3 (December 25, 2015): 170–81. http://dx.doi.org/10.55056/tmn.v13i3.999.

Full text
Abstract:
Метою даного дослідження є визначення педагогічних умов вибору засобів ІКТ навчання обчислювальної математики, основним завданням – демонстрація розроблених методичних рекомендацій для вступного лабораторного заняття з курсу методів обчислень, об’єкт дослідження – процес комп’ютерно-орієнтованого навчання студентів ЗВО, предмет – засоби реалізації чисельних алгоритмів. Методи дослідження: 1) теоретичні – вивчення праць вітчизняних авторів, присвячених проблемам використання засобів ІКТ при вивченні обчислювальної математики, 2) емпіричні – дослідження сучасного стану підготовки студентів ЗВО до використання засобів ІКТ у процесі вивчення обчислювальної математики, спостереження, узагальнення педагогічного досвіду. Результати: наведено практичні завдання для вступної лабораторної роботи з курсу обчислювальної математики для виконання у середовищі електронних таблиць (ЕТ) та систем комп’ютерної математики (СКМ), результати виконання завдань та робочий зміст курсу методів обчислень. Основні висновки і рекомендації: необхідно формувати у студентів навички ефективного поєднання засобів ІКТ та знати альтернативи використовуваним засобам.
APA, Harvard, Vancouver, ISO, and other styles
2

Потапова, Олександра Миколаївна. "Використання хмарних обчислень у дослідницькій діяльності майбутніх інженерів під час навчання вищої математики." New computer technology 17 (June 25, 2019): 187–91. http://dx.doi.org/10.55056/nocote.v17i0.964.

Full text
Abstract:
Метою дослідження є обґрунтування вибору хмаро орієнтованих засобів ІКТ та методики їх використання у дослідницькій діяльності майбутніх інженерів під час навчання вищої математики. Задачами дослідження є аналіз існуючих сучасних науково-методичних джерел та практики роботи у ЗВО з питання використання хмарних обчислень у процесі навчання математичних дисциплін студентів ЗВО, добір та експериментальне застосування хмаро орієнтованих засобів ІКТ у дослідницькій діяльності студентів інженерних спеціальностей ЗВО під час навчання вищої математики. Об’єктом дослідження є процес навчання вищої математики студентів інженерних спеціальностей ЗВО. Предметом дослідження є використання хмарних обчислень у навчальній дослідницькій діяльності студентів інженерних спеціальностей ЗВО. В роботі проведено аналіз галузевих стандартів вищої освіти України, наукових джерел з проблеми дослідження, аналіз хмаро орієнтованих засобів математичного призначення. Аргументовано необхідність в організації навчальної дослідницької діяльності студентів інженерних спеціальностей ЗВО у процесі навчання вищої математики з використанням хмаро орієнтованих засобів ІКТ. Обґрунтовано і експериментально реалізовано використання хмаро орієнтованих засобів ІКТ під час дослідницької діяльності студентів у процесі навчання вищої математики. Результати дослідження можуть бути використані для організації дослідницької діяльності студентів технічних спеціальностей ЗВО у процесі навчання вищої математики.
APA, Harvard, Vancouver, ISO, and other styles
3

Гедеон, А. О., and О. М. Гапак. "Апаратна реалізація модулів хешування на базі алгоритмів CRC-32 і Adler-32." Науковий вісник Ужгородського університету. Серія: Математика і інформатика 39, no. 2 (November 16, 2021): 145–51. http://dx.doi.org/10.24144/2616-7700.2021.39(2).145-151.

Full text
Abstract:
У статті представлені результати дослідження хеш-функцій. Для досягнення оптимальної швидкодії та надійності захисту інформації обрана апаратна реалізація алгоритмів хешування. Саме вона гарантує цілісність розробки та виключає можливість перехоплення інформації. Розроблено апаратний модуль хешування на основі алгоритмів CRC-32 і Adler-32, який відрізняється від існуючих розробок відсутністю мікропрограм та запрограмованих блоків. Роботою модуля керують спеціальні блоки керування, що базуються на автоматах Мура. Спроектований модуль представляє собою цілісну розробку, яка включає сукупність блоків, що відповідають за конкретні етапи обчислень. Перебачена можливість вдосконалення та додавання нових алгоритмів хешування. Запропоновані алгоритми хешування забезпечують швидкодію обчислення контрольної суми, що в сотні разів перевищує можливості програмних додатків. Імовірність злому апаратного блоку вважається мінімальною, адже передбачає процес повного розбору пристрою на складові та прорахунок всіх можливих значень, що поступають від складових модуля. Встановлено, що апаратна реалізація алгоритму Adler-32 виконує обчислення контрольної суми для вхідного повідомлення однакової довжини приблизно в 1,481 разів швидше, ніж апаратний модуль CRC-32. Практична цінність отриманих у роботі результатів полягає в тому, що запропонований спосіб реалізації алгоритмів дозволяє оцінити можливості та переваги апаратних розробок, забезпечити цілісність та захищеність пристрою хешування, дослідити різницю між програмними та апаратними розробками, в тому числі й у відношенні часових затрат на проектування, та забезпечити максимальну швидкодію в обчисленні хеш-сум.
APA, Harvard, Vancouver, ISO, and other styles
4

Іщук, А. А. "Розв’язування багатокритеріальних задач оптимізації за допомогою комп’ютера." Науковий часопис НПУ імені М.П. Драгоманова. Серія 2. Комп’ютерно-орієнтовані системи навчання, no. 21 (28) (January 29, 2019): 55–63. http://dx.doi.org/10.31392/npu-nc.series2.2019.21(28).10.

Full text
Abstract:
Розв’язування багатокритеріальних задач оптимізації з окремих розділів математичного програмування за практично прийнятний час можливе лише за допомогою комп’ютера з використанням відповідним чином дібраних чи спеціально розроблених програм. В статті проведено аналіз двох методів розв’язування задач багатокритеріальної оптимізації. Вибір методу визначається за постановкою конкретної оптимальної задачі й використовуваною математичною моделлю об’єкта оптимізації. Зазначено, що використання інформаційно-комунікаційних технологій робить процес розв’язування оптимізаційних задач досить ефективним та позбавляє користувача від трудомістких обчислень
APA, Harvard, Vancouver, ISO, and other styles
5

Михалевич, Володимир Маркусович, and Оксана Іванівна Тютюнник. "Інтелектуальні навчальні тренажери розв’язування задач лінійного програмування як елемент інформаційно-комунікаційних технологій навчання." Theory and methods of e-learning 3 (February 10, 2014): 195–99. http://dx.doi.org/10.55056/e-learn.v3i1.340.

Full text
Abstract:
Сьогодні, коли обсяг навчального матеріалу, що відповідає сучасному стану розвитку науки й техніки швидко зростає, немає можливості за короткий період навчання у ВНЗ ознайомити студентів з усіма відомостями, які знадобляться їм у професійній діяльності [1, 37]. Тому, на перший план виходить завдання навчити студента сучасної наукової мови, стилю мислення, швидкого сприйняття нових ідей, навичок самоосвіти, швидкого та якісного засвоєння знань – усього того, що передбачено навчальними програмами. Все це спонукує викладачів шукати та впроваджувати в практику нові методи інтенсифікації навчання, використання яких допоможе забезпечити ефективність навчального процесу і сприятиме розвитку творчих здібностей.Аналіз досліджень останніх десятиліть показує, що накопичено значний досвід використання ІКТ у навчальному процесі як середньої, так і вищої шкіл. Проблемі використання комп’ютера у навчанні присвячені роботи В. Ю. Бикова, М. І. Жалдака, В. І. Клочка, Н. В. Морзе, Ю. С. Рамського, С. А. Ракова, Ю. В. Триуса, С. О. Семерікова та ін.Так, на думку М. І. Жалдака, широке використання сучасних ІКТ в навчальному процесі дає можливість розкрити значний гуманітарний потенціал всіх дисциплін, завдяки формуванню наукового світогляду, розвитку аналітичного і творчого мислення, суспільної свідомості і свідомого ставлення до навколишнього світу [3].Впровадження ІКТ, зокрема системи комп’ютерної математики (СКМ), у процес вивчення дисциплін математичного спрямування надає можливість активізувати навчально-пізнавальну діяльність студентів, сприяє розвитку їх творчих здібностей, математичної інтуїції та навичок здійснення дослідницької діяльності, а проведення комп’ютерних експериментів у середовищі СКМ надає можливість організувати процес навчання з використанням елементів проблемного навчання та дослідницьких підходів у навчанні.СКМ надають змогу збагатити науки математичного спрямування, розширити їх застосування, суттєво вплинути на математичну діяльність (зміст, методи, засоби). Тому, головним чином, змістом математичної освіти стане не опанування певних алгоритмів розв’язання задач (вони, до речі, досить ефективно розв’язуються за допомогою комп’ютера), а математична компетентність, розуміння, застосування математичних методів дослідження [2, 5]. Все це повинно враховуватись при розробці методичних систем навчання математично спрямованих дисциплін у вищій школі.В методичних системах навчання багатьох математичних дисциплін, велику роль відіграють практичні аспекти – цикли практичних задач, лабораторних робіт та самостійна практична робота. Формування практичних навичок та умінь досягається саме тут, і ця частина навчального плану безперечно є центральною. Особливо слід звернути увагу на те, що непосильні завдання можуть підірвати віру учнів у свої сили і не дати позитивного ефекту. Тому робота викладача повинна будуватися із врахуванням поступового і цілеспрямованого розвитку творчих пізнавальних здібностей студента, розвитку його мислення.Метою статті є висвітлення технології застосування інтелектуальних навчальних тренажерів із розв’язування задач лінійного програмування як представника сучасних ІКТ навчання.На думку науковців, одним із основних принципів впровадження в навчальний процес СКМ є принцип нових задач, який полягає в тому, що на комп’ютер не перекладаються традиційно сформовані прийоми й методи, а вони перебудовуються у відповідності з новими можливостями, що відкриваються при використанні в навчальному процесі СКМ. На практиці це означає, що немає необхідності витрачати аудиторний час на набуття навиків обчислень, які можна виконати за допомогою комп’ютера [4]. Певною мірою ці принципи вкладаються в поняття ІКТ навчання (ІКТН) у відповідності з їх трактуванням автором [6]: «Під інформаційно-комунікаційною технологією навчання ми розуміємо дидактичну технологію, що забезпечує досягнення цілей навчання лише за умови обов’язкового використання інформаційно-комунікаційних технологій. ... Якщо за певною дидактичною технологією цілі навчання можна досягти, по-перше, без використання ІКТ або, по-друге, їх використання лише сприяє досягненню визначених дидактичних цілей (оптимізує, підвищує ефективність, результативність і т.п. навчального процесу, що доцільно розглядати в якості критеріїв оцінювання ІКТН), то таку технологію не варто вважати цілісною інформаційно-комунікаційною технологією навчання» [6].В роботі [5] запропоновано концепцію адаптації СКМ Maple до навчання вищої математики шляхом створення навчальних Maple-тренажерів (НМТ). НМТ – це процедури, які створюються та використовуються в середовищі СКМ Maple з метою автоматизованого відтворення покрокового ходу розв’язування типових задач вищої математики (ТЗВМ). До ТЗВМ відносять задачі, уміння розв’язання яких передбачається засвоєним студентами на рівні навичок у відповідності з навчальною програмою з вищої математики.До типових задач математичного програмування відноситься розв’язування задач лінійного програмування за допомогою симплекс-методу. Указаний метод передбачає громіздкі рутинні обчислення, пов’язані із розв’язанням загальних систем лінійних рівнянь. Симплекс-таблиці призначені для зручної реалізації ідей методу Жордана-Гаусса. Але, як показує практика останніх років, необхідність проведення громіздких рутинних обчислень, за умови зменшення аудиторних годин, що виділяються на окремі розділи вищої математики, перешкоджає студентам опанувати ключові ідеї симплекс-методу.Авторами створені та впродовж декількох років використовуються НМТ з автоматизованого відтворення покрокового ходу розв’язання задач лінійного програмування за симплекс-алгоритмом. Призначення НМТ полягає в організації самостійної роботи з метою формування практичних компетентностей з лінійного програмування у студентів технічних та економічних спеціальностей.Слід зазначити, що ІКТ, які засновані на використанні НМТ і які розглядаються, зокрема, в роботі [5], самі автори не вважають цілісними ІКТН, оскільки запропонована дидактична технологія лише сприяє досягненню визначених, у робочій навчальні програмі з вищої математики для технічних університетів дидактичних цілей, тобто оптимізує, підвищує ефективність і результативність навчання.Що ж стосується НМТ з автоматизованого відтворення покрокового ходу розв’язування задач лінійного програмування за симплекс-алгоритмом, то ця компонента може бути віднесена до цілісної ІКТН, оскільки пов’язана з проникненням ІКТ у навчальний процес і «створює передумови для кардинального оновлення як змістово-цільових, так і технологічних сторін навчання, що проявляється в суттєвому збагаченні системи дидактичних прийомів, засобів навчання і на цій основі формуванні нетрадиційних педагогічних технологій, заснованих на використанні комп’ютерів» [7]. У [8] зазначається, що засоби СКМ Maple надали можливість розробити методику викладання математичного програмування, яка акцентує увагу студентів на ключових ідеях понять і методів лінійного програмування, вивчення яких передбачене навчальним планом відповідних спеціальностей. Розроблені ІКТН розв’язування задач лінійного програмування симплекс-методом надали можливість уникнути застосування симплекс-таблиць разом з притаманними їм недоліками, а виконання рутинних обчислень реалізовано за допомогою стандартних команд цієї системи. У даному випадку оновлення змістово-цільових та технологічних сторін навчання проявляється у сприянні ІКТН перенесенню акцентів від формування у студентів навичок рутинних обчислень за формальними правилами до набуття навичок свідомого відтворення ключових етапів симплекс-методу.Засоби СКМ Maple надали можливість розробити ІКТН, що призначені для розкриття сутності поняття виродженості задачі лінійного програмування і проблем, які при цьому виникають [9].На кафедрі вищої математики ВНТУ, під час вивчення лінійного програмування практичні заняття проводяться в комп’ютерному класі. Розв’язування задач лінійного програмування студенти виконують у середовищі СКМ Maple. Але використовують не стандартні команди цієї системи, що призначенні для отримання розв’язку задачі (кінцевої відповіді), а використовують свої знання для відтворення симплекс-алгоритму і застосовують команди, які надають можливість позбавити студента від необхідності проведення рутинних обчислень на окремих етапах розв’язування задачі. Для свідомого відтворення всього ходу розв’язування типової задачі лінійного програмування студент має добре орієнтуватися в ключових етапах симплекс-методу. У разі виникнення певних труднощів студент у змозі використати НМТ і отримати весь хід розв’язання потрібної задачі з наявністю коментаря різного рівня деталізації. Важливо, що студент має можливість змінити умову задачі та прослідкувати за змінами в ході її розв’язування. Це, в свою чергу, відкриває нові можливості в реалізації проблемного навчання, дослідницького підходу та залучення ігрових форм навчання.Практика використання НМТ розв’язування задач лінійного програмування за симплекс-алгоритмом показала доцільність їх модернізації. Подібні педагогічні програмні засоби мають забезпечувати додаткові функціональні можливості:Надавати не тільки весь хід розв’язання, а й окремі етапи алгоритму, у відповідності до запиту користувача.Надавати відтворення покрокового ходу розв’язування з різним ступенем деталізації коментаря, в тому числі і без коментарів – для створення можливості формування компетентностей студента на рівні пояснення, що передує рівню відтворення.Надавати можливість студентам самостійно давати відповіді на ключових етапах алгоритму з подальшим їх аналізом та використанням.Висновок. Процес навчання розв’язування задач лінійного програмування за симплекс-алгоритмом доцільно здійснювати шляхом систематичного та педагогічно виваженого використанням засобів ІКТ, зокрема СКМ та створених на їх основі інтелектуальних тренажерів. Це, в свою чергу, суттєво впливає на зміст, методи, організаційні форми навчання методів обчислень та надає можливість підвищити рівень професійної підготовки та інформатичної культури студентів.
APA, Harvard, Vancouver, ISO, and other styles
6

Uzdenov, T. A. "Simulator of Task Sheduling in Geographically Distributed Computer Systems with Non-Alienable Resources." Èlektronnoe modelirovanie 43, no. 1 (February 1, 2021): 117–29. http://dx.doi.org/10.15407/emodel.43.01.117.

Full text
Abstract:
Проаналізовано програмні засоби, які дозволяють моделювати та симулювати процес диспетчеризації завдань в великих комп’ютерних мережах та розподілених обчислю­вальних системах нового програмного комплексу. Запропоновано підхід до вирішення задачі планування та метод диспетчеризації потоків задач на основі невідчужуваності обчислювальних ресурсів від їх власника. В системі можуть бути використані різні за своїми властивостями та характеристиками программно-апаратні обчислювальні засоби, такі як кластери, суперкомп’ютери, персональні комп’ютери, ноутбуки та ін. Розроблено програмний комплекс, що дозволяє симулювати роботу GRID-системи з невідчужувани­ми ресурсами, а також спостерігати та досліджувати роботу різних алгоритмів в різних умовах. Описано архітектурну модель розробленого симулятора, його основні функції та можливості використання не тільки для аналізу алгоритмів диспетчеризації, але і в навчальному процесі, завдяки наявності інтуїтивно зрозумілого та інтерактивного гра­фічного інтерфейсу, що дозволяє спостерігати за процесом розподілених обчислень на вузлах системи.
APA, Harvard, Vancouver, ISO, and other styles
7

Ботузова, Юлія Володимирівна. "ДОСВІД ВИКОРИСТАННЯ ЗАСОБІВ ІКТ У НАВЧАННІ МАТЕМАТИЧНОГО АНАЛІЗУ МАЙБУТНІХ УЧИТЕЛІВ МАТЕМАТИКИ." Information Technologies and Learning Tools 75, no. 1 (February 24, 2020): 153–69. http://dx.doi.org/10.33407/itlt.v75i1.2530.

Full text
Abstract:
У статті висвітлено практичний досвід використання різних засобів ІКТ у навчанні математичного аналізу студентів математичних спеціальностей педагогічних університетів. Виділяється ряд проблем, які виникають у процесі впровадження ІКТ при вивченні математичного аналізу, зокрема: наявність доступного програмного забезпечення; відсутність сформованих навичок користування ІКТ у студентів; використання студентами смартфонів не в навчальних цілях; непідготовленість педагогів до широкого впровадження ІКТ у навчальний процес; відсутність методичної та навчальної літератури. Описано методичний підхід до викладання математичного аналізу, який передбачає використання засобів ІКТ на лекційних та практичних заняття, зокрема таких як GeoGebra, математичний пакет Maple, Wolfram|Alpha, різні онлайн-калькулятори, мобільний додаток MalMath. Наведено детальні приклади використання в навчальному процесі зазначених ІКТ. Продемонстровано використання на лекційному занятті динамічної моделі GeoGebra, яка дозволяє здійснити невеликий навчальний експеримент та проілюструвати геометричний зміст теореми Лагранжа про скінченні прирости. На практичних заняттях запропоновано використовувати ІКТ як засобів для перевірки самостійно отриманих розв’язків або як засобів для виконання проміжних обчислень. Також наведено приклади розв’язання задачі на розвинення функції в ряд Тейлора за допомогою Wolfram|Alpha, різних онлайн-калькуляторів та Maple. Вказано на доцільність використання цих засобів з метою виконання перевірки самостійно отриманих розв’язків. Запропоновано також приклад використання мобільного додатка MalMath для виконання проміжних обчислень в задачі на дослідження збіжності знакозмінного ряду. Представлені результати опитування викладачів та студентів, які були проведені в процесі здійснення дослідження, на підставі яких зроблено висновки щодо ефективності та необхідності використання ІКТ при вивченні математичних дисциплін. Також виділено ряд психолого-педагогічних проблем при застосуванні ІКТ у навчанні, зокрема: неможливість для викладача визначити рівень самостійності студентів при виконанні ними індивідуальних домашніх робіт; технологічні проблеми, які можуть виникати на заняттях чи вдома через застарілість техніки, відсутність мережі Інтернет чи недостатню його швидкість тощо.
APA, Harvard, Vancouver, ISO, and other styles
8

Gorokhovatskyi, V., A. Vasylchenko, K. Manko, and R. Ponomarenko. "ДОСЛІДЖЕННЯ МОДИФІКАЦІЙ МЕТОДУ ВСТАНОВЛЕННЯ РЕЛЕВАНТНОСТІ ЗОБРАЖЕНЬ ОБ’ЄКТІВ ЗА ОПИСАМИ У ВИГЛЯДІ МНОЖИНИ ДЕСКРИПТОРІВ КЛЮЧОВИХ ТОЧОК." Системи управління, навігації та зв’язку. Збірник наукових праць 5, no. 51 (October 30, 2018): 74–78. http://dx.doi.org/10.26906/sunz.2018.5.074.

Full text
Abstract:
Предметом досліджень статті є моделі для встановлення ступеня релевантності зображень у просторі дескрипторів ключових точок зображень для реалізації структурних методів розпізнавання зорових образів у системах комп’ютерного зору. Метою є проведення експериментального дослідження ефективних за параметром швидкодії модифікацій способів встановлення подібності описів у просторі дескрипторів ключових точок на підставі апарату аналізу бітових даних. Завдання: розроблення математичних та програмних моделей оброблення даних при обчисленні подібності структурних описів, вивчення властивостей та особливостей застосування цих моделей, оцінювання ефективності за результатами оброблення конкретних зображень. Застосовуваними методами є: детектор BRISK для формування дескрипторів ключових точок, інтелектуальний аналіз даних, метод кластеризації к-середніх, методи побітового оброблення та підрахунку частоти входження даних, теорія хешування бітових даних, програмне моделювання. Отримані такі результати. Методи класифікації зображень з використанням подібності описів у просторі дескрипторів ключових точок отримують подальший розвиток та застосування на підставі впровадження апарату аналізу бітових даних. Кластерне подання описів не тільки скорочує час оброблення, але й показує чутливість модифікації методу до незначних особливостей зображення і його можливість широкого застосування у системах комп’ютерного зору. Хешування опису без втрати даних суттєво прискорює (у експерименті у сотні разів) процес обчислення ступеня релевантності описів. Вибрана хеш-функція може впливати на результат і сприяти покращенню рівня розрізнення зображень. Побудова узагальненого опису у вигляді спільного дескриптора значно скорочує час обчислень, при цьому виникає потреба у попередньому обробленні опису з метою формування скороченого опису із списку значущих дескрипторів. Висновки. Наукова новизна дослідження полягає в удосконаленні методу структурного розпізнавання зображень на основі опису як множини дескрипторів ключових точок шляхом застосування апарату кластеризації, виявлення узагальнених властивостей та хешування даних для визначення модифікованих мір релевантності аналізованих та еталонних описів. Практична значущість роботи – досягнення суттєвого рівня підвищення швидкодії обчислення релевантності зображень, підтвердження результативності запропонованих модифікацій на прикладах зображень, отримання прикладних програмних моделей для дослідження та впровадження методів класифікації у системах комп’ютерного зору.
APA, Harvard, Vancouver, ISO, and other styles
9

Зозуля, В. А., С. І. Осадчий, and В. М. Каліч. "Інформаційна технологія ідентифікації моделі динаміки штанги платформи Стюарта." Automation of technological and business processes 13, no. 4 (February 3, 2022): 27–34. http://dx.doi.org/10.15673/atbp.v13i4.2200.

Full text
Abstract:
Метою даної статті є розробка зручної інформаційної технології ідентифікації моделі динаміки багатовимірного рухомого об'єкта та збурень, що діють на нього під час функціонування, за даними векторів сигналів керування та сигналів на виході об’єкту, направленої на підвищення надійності отримання результатів обчислення. Для створення інформаційної технології ідентифікації використано прикладне середовище Stateflow Matlab. Відмінною рисою інформаційної технології є підвищена точність та надійність виконання обчислень, які досягнуті за рахунок впровадження нового підходу до процесів факторизації поліноміальних матриць, удосконалення алгоритмів множення поліноміальних, дробово-раціональних матриць відповідно для зменшення втрати вірних значущих цифр за рахунок впорядкування і ранжирування елементарних операндів та для зменшення зростання порядків результатів на основі використання операцій видалення відповідних полюсів праворуч та ліворуч та вводу відповідних нулів праворуч та ліворуч. При виконанні дослідження було створено програмно-технічну систему збору експериментальних даних, для ідентифікації моделі динаміки штанги, що використовуються в платформі Стюарта, на основі LabVIEW з використанням модулів FPGA, SoftMotion та Real-Time. Також, в роботі була проведена ідентифікація моделі динаміки штанги платформи Стюарта та визначена її передаточна функція, а також передаточна функція формуючого фільтра, який при вхідному сигналі у вигляді білого шуму має на виході випадковий процес з заданими статичними характеристиками.
APA, Harvard, Vancouver, ISO, and other styles
10

Попель, Майя Володимирівна. "Хмарні технології у навчанні майбутніх учителів математики." New computer technology 12 (December 25, 2014): 301–8. http://dx.doi.org/10.55056/nocote.v12i0.725.

Full text
Abstract:
Стаття присвячена сучасним підходам до трактування поняття «хмарні технології», розглянуті типи хмарних обчислень, напрямки використання хмарних технологій у підготовці майбутніх учителів. Проведено порівняльний аналіз застосування Web-СКМ SAGE та The Sagemath Cloud у процесі навчання математичних дисциплін. Мета: провести теоретичний аналіз педагогічного використання Web-СКМ SAGE та The Sagemath Cloud у навчанні математичних дисциплін. Задачі: 1) аналіз сучасних підходів стосовно трактування поняття «хмарні технології»; 2) розглянути Web-СКМ в аспекті хмаро орієнтованого середовища; 3) порівняти Web-СКМ SAGE та The Sagemath Cloud як засоби навчання математичних дисциплін. Об’єкт дослідження: процес навчання студентів у ВНЗ із застосуванням хмарних технологій. Предмет дослідження: особливості використання The Sagemath Cloud у навчанні математичних дисциплін. Методи дослідження: вивчення праць вітчизняних авторів, присвячених проблемам впровадження та використання сучасних хмарних технологій, СКМ та Web-СКМ, зокрема Web-СКМ SAGE та The Sagemath Cloud. Результати: виявлено переваги та недоліки The Sagemath Cloud в порівнянні з Web-СКМ SAGE. Висновки: розглянуто різні трактування стосовно поняття «хмарні технології», виявлено перспективи використання хмаро орієнтованих систем навчання, зокрема The Sagemath Cloud у навчанні математичних дисциплін.
APA, Harvard, Vancouver, ISO, and other styles
11

Kovalenko, A., О. Lyashenko, and О. Danilenko. "ПОВЕДІНКА ЧЕРГ ПІД ЧАС ВИКОРИСТАННЯ ІЄРАРХІЧНОЇ МОДЕЛІ." Системи управління, навігації та зв’язку. Збірник наукових праць 2, no. 54 (April 11, 2019): 110–13. http://dx.doi.org/10.26906/sunz.2019.2.110.

Full text
Abstract:
Процеси, які мають довгострокові залежності, можуть породити набагато важчий хвіст у трафіковому процесі, ніж традиційний вхідний Пуассонівський процес. Мета статті – дослідження поведінки черг комп'ютерних мереж при використанні ієрархічної моделі на прикладі черги до сервера. Базова модель. Для дослідження поведінки одиничної черзі мультифрактального трафіку, згенерованого ієрархічною моделлю, розглянуто дворівневу ієрархічну модель, в якій процес відновлення проходить через періоди генерації трафіку і періоди, коли генерація трафіку відсутня. Кожен період генерації трафіку складається, в свою чергу, з кількох аналогічних періодів менших рівнів і періодів недоступності трафіку. Результати дослідження. Запропонована модель використана на вході черзі сервера для обчислення розподілу хвоста контентного процесу черзі, тобто промодельовані ON-OFF процеси генерації трафіка. За допомогою збудованої моделі проаналізований контентний процес при часі, який наближається до нескінченності. Його асимптотична поведінка моделюється на відліках, котрі отримані в контрольних точок відновлення. З використанням отриманих результатів доведено, що контент ний процес проявляє ступеневу залежність поведінки в часових контрольних точок відновлення. Виходячи з цього, за допомогою перетворення Лапласа отримані вирази для розрахунку розвитку у часі важкого хвоста трафікового процесу. Висновки. Розроблено підхід до визначення поведінки черг під час використання ієрархічної моделі. Напрям подальших досліджень – дослідити взаємодію процесів формування черг з важкими хвостами.
APA, Harvard, Vancouver, ISO, and other styles
12

Шишкіна, Марія Павлівна. "Перспективи підвищення якості засобів ІКТ у хмаро орієнтованих системах навчання." Theory and methods of learning mathematics, physics, informatics 13, no. 3 (December 25, 2015): 255–62. http://dx.doi.org/10.55056/tmn.v13i3.1008.

Full text
Abstract:
Стаття присвячена проблемам інформатизації освітніх систем із використанням технології хмарних обчислень. Об’єктом дослідження є процес впровадження хмарних технологій у закладах освіти України. Предметом дослідження є чинники підвищення якості хмаро орієнтованих систем навчання. Отримані висновки дослідження обґрунтовані за допомогою методів аналізу психолого-педагогічних теорій та концепцій з проблеми дослідження, вітчизняних та зарубіжних підходів до організації навчання із використанням хмарних послуг, систематизації та узагальнення теоретичних та експериментальних даних. Висвітлено тенденції розвитку хмарних технологій в Україні і закордоном. Окреслено перспективи поліпшення якості і доступності навчання завдяки використанню хмарних технологій. Встановлено, що дані питання тісно пов’язані зі специфічними науково-методичними підходами до оцінювання якості хмаро орієнтованих систем навчання із урахуванням останніх результатів у галузі стандартизації інформаційних технологій. Надано рекомендації щодо підвищення якості засобів ІКТ.
APA, Harvard, Vancouver, ISO, and other styles
13

Колгатін, Олександр Геннадійович, and Лариса Сергіївна Колгатіна. "Інтерпретація тестових результатів на основі логістичної моделі в табличному процесорі." Theory and methods of learning mathematics, physics, informatics 13, no. 2 (April 13, 2018): 338–39. http://dx.doi.org/10.55056/tmn.v13i2.795.

Full text
Abstract:
У середині ХХ сторіччя видатними вченими було розроблено нову на той час теорію інтерпретації результатів педагогічного тестування. В основу цієї теорії покладено ідею моделювання імовірності правильної відповіді на завдання тесту за допомогою функції спеціального виду. Аргументами цієї функції є показник підготовленості тестованого й параметри, що характеризують завдання. В англомовній літературі теорія відома під назвою IRT (Item Response Theory), що може бути дослівно перекладено як теорія відгуку (характеристики) тестового завдання. У вітчизняній тестологічній термінології цю теорію часто називають сучасною або математичною, але частіше за все застосовують абревіатуру IRT. Означена теорія внесла неоцінний внесок у розвиток тестових технологій. Завдяки застосуванню IRT з’явилася можливість порівнювати результати тестування за варіантами тесту з різними завданнями, навіть з різною кількістю завдань. По-перше, це відкрило перспективи для розвитку комп’ютерного адаптивного тестування. По-друге, сприяло розвитку технології психометричного зрівнювання варіантів класичних тестів. Поширене впровадження тестових технологій у систему освіти потребує всебічного ознайомлення майбутніх педагогів із досягненнями світової тестології. Враховуючі значення IRT, її вивчення має бути одним із ключових питань фахової підготовки студентів. Але повноцінне викладення теорії спирається на спеціальні розділи обчислювальної математики, і це стримує впровадження IRT у навчальний процес педагогічних університетів. Безумовно, існує безліч програмних засобів, які реалізують обчислення, пов’язані із застосуванням IRT, але ці засоби – вузько спеціалізовані, їх застосування передбачає ознайомлення з специфічним інтерфейсом і потребує багато навчального часу. Тому ми пропонуємо здійснити навчальне моделювання процедури інтерпретації тестових результатів на основі IRT за допомогою табличного процесора загального призначення Microsoft Excel. Під час виконання обчислень студенти власноруч створюють відповідну модель інтерпретації, що сприяє поглибленому розуміння методології IRT. Застосування вбудованого засобу Microsoft Excel «Пошук розв’язку» звільняє студентів від необхідності будувати й налагоджувати алгоритми обчислювальної математики для визначення параметрів логістичної моделі та показників підготовленості тестованих. Виконання лабораторної роботи сприяє розвитку навичок володіння інформаційними технологіями загального призначення, що також є одним із завдань фахової підготовки майбутніх учителів. Розроблені навчально методичні матеріали впроваджено нами в процес підготовки спеціалістів за спеціальностями 7.04010101 «Хімія» (спеціалізація «Інформатика»), 7.04030201 «Інформатика» (спеціалізація «Англійська мова»), 7.04030201 «Інформатика» (спеціалізація «Математика») і магістрів за спеціальністю 8.04030201 «Інформатика» в Харківському національному педагогічному університеті імені Г. С. Сковороди.
APA, Harvard, Vancouver, ISO, and other styles
14

Андрейцев, А., Ю. Вяла, А. Гейлик, Т. Клецька, and О. Ляшко. "ПОРІВНЯННЯ МЕТОДІВ РОЗВ’ЯЗАННЯ ЗАДАЧІ ОПТИМАЛЬНОГО ЗАВАНТАЖЕННЯ ТРАНСПОРТНОГО ЗАСОБУ." Vodnij transport, no. 2(30) (February 27, 2020): 59–70. http://dx.doi.org/10.33298/2226-8553/2020.2.30.07.

Full text
Abstract:
Дана стаття присвячена порівнянню методів розв’язання задачі про оптимальне завантаження транспортного засобу. Ця задача є однією з тих, що наочно демонструють переваги математичного моделювання в процесах вироблення та прийняття рішень при плануванні транспортних перевезень. Крім того, дана задача є однією з істотних складових логістичної програми при плануванні доставки вантажів. Метою дослідження було порівняння різних методів розв’язання на прикладі задачі про оптимальне завантаження одного транспортного засобу.Задача про оптимальне завантаження належить до класу задач цілочисельного лінійного програмування. Існує ряд методів її розв’язання. У статті розглянуто деякі з них. Графічний метод є найпростішим і наочним. Але його застосування стає неможливим, якщо кількість найменувань вантажів більша трьох.Метод відтинаючих площин базується на відтинанні від області допустимих розв’язків задачі з послабленими обмеженнями частин, що не містять цілочисельних розв’язків. Однак, в разі наявності декількох розв’язків, він не дозволяє знайти всі оптимальні плани. Метод гілок та границь дозволяє знайти всі розв’язки. Однак він вимагає розв’язання великої кількості задач лінійного програмування.Метод динамічного програмування є одним з найпростіших в застосуванні і не вимагає громіздких обчислень при розв’язанні задач невеликої розмірності. Для демонстрації переваг і недоліків зазначених методів розглянуто приклад задачі оптимального завантаження, що має декілька розв’язків. Описано процес розв’язання даної задачі кожним з методів. Застосування методу відтинаючих площин не дозволяє знайти всі оптимальні рішення. Метод гілок та границь приводить до необхідності розв’язання одинадцяти задач лінійного програмування. Використання методу динамічного програмування показує, що він є ефективним і найбільш простим у застосуванні. На завершення, зазначено, що при збільшенні кількості найменувань вантажів, метод динамічного програмування вимагає істотного збільшення обсягу обчислень. Крім того, застосування даного методу ускладнюється при розв’язанні задачі про оптимальне завантаження більш ніж одного транспортного засобу. Ключові слова. цілочисельне програмування, метод гілок та границь, метод відтинаючих площин, метод динамічного програмування
APA, Harvard, Vancouver, ISO, and other styles
15

Купіна, О. А., М. Г. Лорія, О. Б. Целіщев, and Гезеві Абдалхалех Гома Ахмед. "Iдентифікація динамічних характеристик об`єктів керування." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 6 (270) (November 10, 2021): 129–34. http://dx.doi.org/10.33216/1998-7927-2021-270-6-129-134.

Full text
Abstract:
У роботі запропоновано спосіб отримання математичної моделі об`єкту керування, у якому в якості початкових даних обирається перехідний процес об`єкту керування. Переваги такого підходу наступні: він грунтується на об’єктивних даних, що формує сам об`єкт керування; достатньо проста реалізація такого підходу; отримання адекватної і точної математичної моделі, оскільки для її отримання використовується глобальна інформація динамічної характеристики об`єкта керування. Дослідження проводиться для оптимізації технологічного процесу, що розглядається. В результаті досліджень встановлено, що якщо при виводі математичної моделі обмежитися ступенем диференціального рівняння (ступенем передатної функції) і прийняти його таким, що дорівнює двом, то розробка математичної моделі значно спрощується.У деяких випадках є можливість звести модель високого порядку до моделі більш низького, іноді навіть першого або другого порядку і при цьому істотно не програти в точності оцінки її характеристик, тобто будь-яку фізичну систему завжди можна описати моделлю порівняно невисокого порядку, нехтуючи деякими її характеристиками. Це можливо завдяки наступним факторам:завдання аналізу та синтезу набагато простіше розв`язати для моделей невисокого порядку;точність обчислень на ЕОМ зворотно пропорційна величині порядку моделі;якщо модель має перший або другий порядок, ми володіємо інформацію, необхідну для аналізу та синтезу;незважаючи на те, що моделі високого порядку і самі по собі ніколи не були абсолютно точними, в ряді випадків зниження їх порядку може дати результати, які не поступаються в точності моделі високого порядку. Дуже часто збільшення порядку моделі не підвищує її точність. Отримана в результаті розрахунків похибка ідентифікації є припустимою для розрахунків такого типу. Під час вирішення поставленої задачі в статті розв’язується такі питання:кількість точок на кривій розгону об`єкту керування, яку необхідно обрати;який обрати алгоритм ідентифікації;спосіб розміщення точок на кривій розгону об`єкту керування;вплив кількості і місця розташування точок на похибку апроксимації. Запропонований спосіб отримання математичної моделі дозволяє за рахунок регулювання вхідних величин отримати оптимальні вихідні параметри зокрема й підвищити ефективність технологічного процесу в цілому.
APA, Harvard, Vancouver, ISO, and other styles
16

Mochurad, L. I., and N. I. Boyko. "Використання технології OpenMp для розрахунку електростатичного поля систем електронної оптики." Scientific Bulletin of UNFU 29, no. 3 (April 25, 2019): 125–28. http://dx.doi.org/10.15421/40290326.

Full text
Abstract:
Проаналізовано особливості використання технології OpenMP у розпаралеленні розрахунку електростатичного поля для класів систем електронної оптики, граничні поверхні електродів яких володіють абелевою групою симетрії скінченного порядку. У процесі математичного моделювання потенціальних полів виникає необхідність розв'язувати системи лінійних алгебричних рівнянь великих розмірностей. Задачі розрахунку електростатичних полів вдається значно спростити шляхом максимального врахування наявної геометричної симетрії в конфігурації поверхонь електродів. Використання апарату теорії груп дає змогу забезпечити стійкість обчислень, створює усі передумови до розпаралелення процедур розв'язування складних тривимірних задач електростатики загалом. Таким способом зменшено обчислювальну складність у роз'язуванні систем лінійних алгебричних рівнянь, які апроксимують відповідні інтегральні. Для зменшення часу на обчислення запропоновано аплікацію методів математичного моделювання електростатичних полів із сучасними тенденціями розвитку комп'ютерної системи. Для реалізації паралельних алгоритмів використано мультиядерну архітектуру процесорів та таку властивість, як багатопотоковість. Оптимізація обчислювального процесу у розв'язуванні задач електронної оптики, що зумовлена бурхливим розвитком сучасних нанотехнологій та новими вимогами щодо швидкодії обчислень, реалізована з використанням технології паралельного програмування OpenMP. Проведено низку чисельних експериментів. Розглянуто класи систем із симетріями восьмого та шістнадцятого порядків. Використовуючи восьми- та шістнадцятиядерний процесори, шляхом варіації кількості паралельних потоків вдалось істотно зменшити час обчислень. Цим самим вдалось збільшити прискорення та ефективність паралельного алгоритму порівняно з послідовним. Підтверджено доцільність застосування пакету OpenMP для розпаралелення обчислень і вказано на можливість подальшої оптимізації програмного забезпечення для розв'язування класів задач зі симетріями скінченних порядків за критерієм мінімізації часу розрахунків за рахунок варіації кількості паралельних потоків та процесорних ядер комп'ютера.
APA, Harvard, Vancouver, ISO, and other styles
17

Ощипок, І. М. "СПЕЦИФІКА ФУНКЦІОНУВАННЯ ПІДПРИЄМСТВ ГОТЕЛЬНО-РЕСТОРАННОГО БІЗНЕСУ В УМОВАХ D-ГОСПОДАРЮВАННЯ." Herald of Lviv University of Trade and Economics Economic sciences, no. 59 (June 18, 2020): 83–89. http://dx.doi.org/10.36477/2522-1205-2020-59-11.

Full text
Abstract:
Розглянуто поняття цифрового d-господарювання (digital- господарювання) як складне і бага-тогранне. Цифрове господарювання слід визначати тією частиною економічної діяльності, яка спирається на використання цифрових технологій, очевидний є її прямий вплив на процеси в готельно-ресторанному бізнесі. Розвиток наукових досліджень і прогресивних цифрових технологій привели до цивілізаційних змін світового господарського розвитку та зумовили виникнення нового типу господарювання, в межах якого відбувається трансформація моделей бізнес-процесів конкурентоспроможних підприємств. Інтернет-бронювання в готелях та замовлення місць в ресторанах дасть змогу підвищити якість обслуговування, зробить міську інфраструк-туру більш “розумноюˮ та енергоефективною. Розглянуто визначення цифрової економіки та виділено три ключові компоненти цифрового господарювання. Зосереджено увагу на розвитку деяких ефективно функціонуючих компонентів d-господарювання. Важливим напрямком розвитку підприємств готельно-ресторанного бізнесу може стати платформний бізнес, який надає суттєві конкурентні права в порівнянні з організаціями традиційних моделей. Цифрові платформи все частіше з’являються в традиційних сферах діяльності і послуг та призводять до швидких інновацій, до зміни ліній, складу галузевих ринків і норм конку-рування на них. Показана роль функціонування соціально-виробничих систем (СВС) на сучасному етапі, вияв-лені особливості і закономірності відтворювального функціонування СВС підприємств готельно-ресторанного господарства. Процес формування високих технологій за допомогою перетворення інновацій і можливостей цифровізації в ключовий фактор d-господарювання є невід’ємним базисом ефективного розвитку і зростання. Вивчаючи деякі властивості розглядуваних систем, встановлено, що при зміні однієї складової відбуваються впливи на інші елементи і все це надалі призводить до перетворення всієї сукупності, що свідчить про її цілісність. Використання хмарних обчислень і загальної віртуалізації дозволяє не тільки досягти цільових зна-чень надійності, продуктивності і гнучкості платформи підприємств готельно-ресторанного господарства, але і значно полегшити процедури її експлуатації, а також знижувати витрати на обладнання за рахунок більш високого ступеня уніфікації деталей машин.
APA, Harvard, Vancouver, ISO, and other styles
18

ТРАСКОВЕЦЬКА, Лілія, and Олександр РУДИК. "КОМП’ЮТЕРНІ МЕТОДИ СТАТИСТИЧНОЇ ОБРОБКИ СИГНАЛІВ." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 81, no. 3 (September 17, 2020): 517–34. http://dx.doi.org/10.32453/3.v81i3.491.

Full text
Abstract:
Робота присвячена важливій темі теорії інформаційних систем – теорії і практиці виявлення сигналів у завадах. У будь-якому середовищі на поширення сигналів діють завади, що спотворюють структуру сигналів і, відповідно, інформацію, яку вони несуть. Загальною властивістю сигналів є їх випадковий характер, тому для математичного опису сигналів використовують апарат теорії ймовірностей. Сигнал – носій інформації, якої немає в точці приймання до моменту його прийняття. Оскільки інформація про об’єкт кодується в одному або декількох параметрах сигналу – амплітуді, частоті, фазі, часі затримки, то принаймні один з цих параметрів невідомий для спостерігача. Крім того, наявність завад і шумів, що є випадковими процесами, а також випадкові параметри каналу поширення сигналу зумовлюють потребу в застосуванні методів теорії ймовірностей, теорії випадкових процесів та методів математичної статистики під час проведення досліджень з обробки сигналів. Для математичного опису сигналів і завад використовують ті чи інші моделі випадкових процесів – гауссівські випадкові процеси, негауссівські випадкові процеси із складеним розподілом, негауссівські марковські випадкові процеси. Моделюють випадковий процес заданою багатовимірною щільністю розподілу ймовірностей. В роботі обґрунтовано методологічні принципи обробки сигналів за умов апріорної невизначеності, коли щільність розподілу ймовірностей невідома. В основу статистичної обробки інформаційних параметрів сигналів покладено знаходження таких інформаційних ознак: середніх значень інтервалів, статистичний розподіл вибірки, дисперсії амплітуд. Використовуючи комп’ютерне моделювання в системі Matlab, за допомогою адаптивних алгоритмів проведено генерацію сумішей радіотехнічних завад різних видів. У процесі оброблення за цими алгоритмами також визначено статистичні оцінки параметрів суміші сигналу і завад. Обчислені параметри сигналу використовуються для з’ясування наскільки узгоджена з дослідними даними гіпотеза про те, що невідома характеристика має саме те значення, яке отримане в результаті її оцінювання. Для візуалізації досліджень створено програмний код в системі Matlab з використанням спеціального середовища візуального програмування GUIDE, який дозволяє: генерувати випадкові сигнали з різними формами спектрів завад, демонструвати їх, будувати гістограми та підбирати закони розподілу, що якнайкраще описують випадковий процес. Крім того, в програмі обчислено ймовірність виявлення сигналу і побудовано графік залежності ймовірності виявлення сигналу від ймовірності хибної тривоги і відношення сигналу до шуму при різних обсягах вибірки.
APA, Harvard, Vancouver, ISO, and other styles
19

Колгатін, Олександр Геннадійович. "Вимірювання якостей знань за допомогою тестів." Theory and methods of learning fundamental disciplines in high school 5 (November 26, 2013): 04–08. http://dx.doi.org/10.55056/fund.v5i1.208.

Full text
Abstract:
На основi поняття про рiвнi навчальних досягнень i якостi знань запропоновано систему параметрiв педагогiчної моделi студента як складову загальної моделi навчального процесу. Розглянуто методику обчислення цих параметрiв за результатами педагогiчного тестування. Визначено атрибути тестових завдань i склад iнформацiї про перебiг тестування, як необхiднi умови для здiйснення обчислень.
APA, Harvard, Vancouver, ISO, and other styles
20

Трасковецька, Лілія. "КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ ЕЛЕКТРОДИНАМІЧНИХ ПРОЦЕСІВ." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 86, no. 4 (April 16, 2022): 204–19. http://dx.doi.org/10.32453/3.v86i4.945.

Full text
Abstract:
Робота присвячена комп’ютерному моделюванню систем, що змінюються з часом. У процесі пізнання та практичної діяльності людство широко використовує різноманітні моделі. Моделювання – це універсальний метод наукового пізнання, який базується на побудові, дослідженні та використанні моделей об’єктів і явищ. Найбільш важливим різновидом моделей є математичні моделі. До їхньої основи покладено припущення про те, що всі параметри досліджуваного об’єкта можна подати у кількісному вигляді й описати математичними співвідношеннями. Унаслідок широкого впровадження обчислювальної техніки і відповідного програмного забезпечення методи математичного моделювання поширилися в повсякденній практиці. Комп’ютерна реалізація дослідження складних математичних моделей ґрунтується на основі чисельних методів. Тому сучасне математичне моделювання завжди передбачає застосування чисельних методів аналізу та комп’ютерних обчислювальних експериментів. Водночас значення аналітичних методів з розвитком ЕОМ і обчислювальної математики ніяк не зменшується. Великі можливості проведення математичного моделювання відкриває, наприклад, матрична система комп’ютерної математики MATLAB у дослідженні складних технічних процесів, які характеризуються нелінійністю та багатогранністю зв’язків між елементами. Система пристосована до будь-якої галузі науки й техніки,міст ить засоби, які особливо зручні для електро- і радіотехнічних обчислень (операції з комплексними числами, матрицями, векторами й поліномами, опрацювання даних, аналіз сигналів, моделювання динамічних процесів і цифрова фільтрація). У роботі обґрунтовано динаміку процесів у лінійному колі (електричному фільтрі), побудовано математичну модель, що відображає процес протікання електричного струму в колі, у вигляді системи диференціальних рівнянь другого порядку. Отриману систему диференціальних рівнянь розв’язано аналітичним методом. Крім того, на основі вбудованих в MATLAB чисельних алгоритмів розв’язування звичайних диференціальних рівнянь побудовано наближений розв’язок математичної моделі, що відображає зміну струму в колі залежно від часу. Поряд з цим, використовуючи пакет імітаційного моделювання Simulink, складено структурну модель, яка повністю імітує роботу електричного фільтру. Розв’язок диференціального рівняння можна побачити на віртуальному осцилографі, який дозволяє представити результати моделювання у вигляді часових графіків або у вигляді чисел, графіків, таблиць.
APA, Harvard, Vancouver, ISO, and other styles
21

Гриб’юк, Олена Олександрівна. "Перспективи впровадження хмарних технологій в освіті." Theory and methods of e-learning 4 (February 17, 2014): 45–58. http://dx.doi.org/10.55056/e-learn.v4i1.368.

Full text
Abstract:
Будь-яка, навіть найефективніша, логічно обґрунтована і корисна інновація (чи то теорія геліоцентризму Коперника або «походження видів» Дарвіна), якщо вона суперечить існуючій на даний момент догмі, приречена на ірраціональний скепсис, тривале і навмисне замовчування, обумовлене специфікою суспільних процесів і включеність людської психіки в ці процеси.Томас Семюел Кун Існуюча система освіти перестала влаштовувати практично всі держави світу і піддається активному реформуванню в наші дні. Перспективним напрямом використання в навчальному процесі є нова інформаційна технологія, яка дістала назву хмарні обчислення (Cloud computing). Концепція хмарних обчислень стала результатом еволюційного розвитку інформаційних технологій за останні десятиліття.Без сумніву, результати досліджень російських вчених: А. П. Єршова, В. П. Зінченка, М. М. Моісєєва, В. М. Монахова, В. С. Лєдньова, М. П. Лапчика та ін.; українських вчених В. Ю. Бикова, В. М. Глушкова, М. І. Жалдака, В. С. Михалевича, Ю. І. Машбиця та ін.; учених Білорусії Ю. О. Бикадорова, А. Т. Кузнєцова, І. О. Новик, А. І. Павловського та ін.; учених інших країн суттєво вплинули на становлення та розвиток сучасних інформаційних технологій навчання [1], [2], але в організації освітнього процесу виникають нові парадигми, наприклад, хмарні обчислення. За оцінками аналітиків Гартнер груп (Gartner Group) хмарні обчислення вважаються найбільш перспективною стратегічною технологією майбутнього, прогнозується міграція більшої частини інформаційних технологій в хмари на протязі найближчих 5–7 років [17].Згідно з офіційним визначенням Національного інституту стандартів і технологій США (NIST), хмарні обчислення – це система надання користувачеві повсюдного і зручного мережевого доступу до загального пулу інформаційних ресурсів (мереж, серверів, систем зберігання даних, додатків і сервісів), які можуть бути швидко надані та гнучко налаштовані на його потреби з мінімальними управлінськими зусиллями і необхідністю взаємодії з провайдером послуг (сервіс-провайдером) [18].У США в університетах функціонують віртуальні обчислювальні лабораторії (VCL, virtual computing lab), які створюються в хмарах для обслуговування навчального та дослідницьких процесів. В Південній Кореї запущена програма заміни паперових підручників для середньої школи на електронні, які зберігаються в хмарі і доступні з будь-якого пристрою, який може бути під’єднаний до Інтернету. В Росії з 2008 року при Російській академії наук функціонує програма «Університетський кластер», в якій задіяно 70 університетів та дослідних інститутів [3], в якій передбачається використання хмарних технологій та створення web-орієнтованих лабораторій (хабів) в конкретних предметних галузях для надання принципово нових можливостей передавання різноманітних інформаційних матеріалів: лекцій, семінарів, лабораторних робіт і т. п. Є досвід певних російських вузів з використання цих технологій, зокрема в Московському економіко-статистичному інституті вся інфраструктура переводиться на хмарні технології, а в навчальних програмах включені дисципліни з навчання технологій.На сьогодні в Україні теж почалося створення національної освітньої інформаційної мережі на основі концепції хмарних обчислень в рамках національного проекту «Відкритий світ», який планується здійснити протягом 2010-2014 рр. Відповідно до наказу Міністерства освіти та науки України від 23.02.2010 р. №139 «Про дистанційне моніторингове дослідження рівня сформованості у випускників загальноосвітніх навчальних закладів навичок використання інформаційно-комунікаційних технологій у практичній діяльності» у 2010 році було вперше проведено дистанційне моніторингове дослідження з метою отримання об’єктивних відомостей про стан інформатичної освіти та розроблення стратегії її подальшого розвитку. Для цих цілей було обрано портал (приклад гібридної хмари), створений на основі платформи Microsoft Azure [4].Як показує зарубіжний досвід [8], [11], [12], [14], [15], вирішити названі проблеми можна шляхом впровадження в навчальний процес хмарних обчислень. У вищих навчальних закладах України розроблена «Програма інформатизації і комп’ютеризації навчального процесу» [1, 166]. Але, проаналізувавши стан впровадження у ВНЗ хмарних технологій, можна зробити однозначний висновок про недостатню висвітленість цього питання в літературних та Інтернет-джерелах [1], [7].Переважна більшість навчальних закладів лише починає впроваджувати хмарні технології в навчальний процес та включати відповідні дисципліни для їх вивчення. Аналіз педагогічних праць виявив недостатнє дослідження питання використання хмарних обчислень у навчальному процесі. Цілком очевидно, що інтеграція хмарних сервісів в освіту сьогодні є актуальним предметом для досліджень.Для навчальних закладів все більшого значення набуває інформаційне наповнення та функціональність систем управління віртуальним навчальним середовищем (VLE, virtual learning environment). Не існує чіткого визначення VLE-систем, та й в самих системах в міру їх заглиблення в Інтернет постійно удосконалюються наявні і з’являються нові інструменти (блоги, wiki-ресурси). VLE-системи критикують в основному за слабкі можливості генерації та зберігання створюваного користувачами контенту і низький рівень інтеграції з соціальними мережами.Існує кілька полярних підходів до способів надання освіти за допомогою сучасних інформаційно-комунікаційних технологій та інформаційних ресурсів. З одного боку – навчальні заклади з віртуальним навчальним середовищем VLE, а з іншого – персональне навчальне середовище, створене з Web 2.0 сайтів та кероване учнями. Але варто звернути увагу на нову модель, що може зруйнувати обидва наявні підходи. Сервіси «Google Apps для навчальних закладів» та «Microsoft Live@edu» включають в себе широкий набір інструментів, які можна налаштувати згідно потреб користувача. Описувані системи розміщуються в так званій «обчислювальній хмарі» або просто «хмарі».Хмара – це не просто новий модний термін, що застосовується для опису Інтернет-технологій віддаленого зберігання даних. Обчислювальна хмара – це мережа, що складається з численної кількості серверів, розподілених в дата-центрах усього світу, де зберігаються безліч копій. За допомогою такої масштабної розподіленої системи здійснюється швидке опрацювання пошукових запитів, а система є надзвичайно відмовостійка. Система побудована так, що після закінчення тривалого періоду при потребі можна провести заміну окремих серверів без зниження загальної продуктивності системи. Google, Microsoft, Amazon, IBM, HP і NEC та інші, мають високошвидкісні розподілені комп’ютерні мережі та забезпечують загальнодоступність інформаційних ресурсів.Хмара може означати як програмне забезпечення, так і інфраструктуру. Незалежно від того, є сервіс програмним чи апаратним, необхідно мати критерій, для допомоги визначення, чи є даний сервіс хмарним. Його можна сформулювати так: «Якщо для доступу до інформаційних матеріалів за допомогою даного сервісу можна зайти в будь-яку бібліотеку чи Інтернет-клуб, скористатися будь-яким комп’ютером, при цьому не ставлячи ніяких особливих вимог до операційної системи та браузера, тоді даний сервіс є хмарним».Виділимо три умови, за якими визначатимемо, чи є сервіс хмарним.Сервіс доступний через Web-браузер або за допомогою спеціального інтерфейсу прикладної програми для доступу до Web-сервісів;Для користування сервісом не потрібно жодних матеріальних затрат;В разі використання додаткового програмного забезпечення оплачується тільки той час, протягом якого використовувалось програмне забезпечення.Отже, хмара – це великий пул легко використовуваних і доступних віртуалізованих інформаційних ресурсів (обладнання, платформи розробки та/або сервіси). Ці ресурси можуть бути динамічно реконфігуровані для обслуговування мінливого навантаження (масштабованості), що дозволяє також оптимізувати використання ресурсів. Такий пул експлуатується на основі принципу «плати лише за те, чим користуєшся». При цьому гарантії надаються постачальником послуг і визначаються в кожному конкретному випадку угодами про рівень обслуговування.Існує три основних категорії сервісів хмарних обчислень [10]:1. Комп’ютерні ресурси на зразок Amazon Elastic Compute Cloud, використання яких надає організаціям можливість запускати власні Linux-сервери на віртуальних комп’ютерах і масштабувати навантаження гранично швидко.2. Створені розробниками програми для пропрієтарних архітектур. Прикладом таких засобів розробки є мова програмування Python для Google Apps Engine. Він безкоштовний для використання, однак існують обмеження за обсягом даних, що зберігаються.3. Сервіси хмарних обчислень – це різноманітні прикладні програмні засоби, розміщені в хмарі і доступні через Web-браузер. Зберігання в хмарі не тільки даних, але і програм, змінює обчислювальну парадигму в бік традиційної клієнт-серверної моделі, адже на стороні користувача зберігається мінімальна функціональність. Таким чином, оновлення програмного забезпечення, перевірка на віруси та інше обслуговування покладається на провайдера хмарного сервісу. А загальний доступ, управління версіями, спільне редагування стають набагато простішими, ніж у разі розміщення програм і даних на комп’ютерах користувачів. Це дозволяє розробникам постачати програмні засоби на зручних для них платформах, хоча необхідно переконатися, що програмні засоби придатні до використання при роботі з різними браузерами.З точки зору досконалості технології, програмне забезпечення в хмарах розвинуте значно краще, ніж апаратна складова.Особливу увагу звернемо на програмне забезпечення як послугу (SaaS, Software as a Servise), що позначає програмну складову у хмарі. Більшість систем SaaS є хмарними системами. Для користувачів системи SaaS не важливо, де встановлене програмне забезпечення, яка операційна система при цьому використовується та якою мовою воно описане. Головне – відсутня необхідність встановлювати додаткове програмне забезпечення.Наприклад, Gmail представляє собою програму електронної пошти, яка доступна через браузер. Її використання забезпечує ті ж функціональні можливості, що Outlook, Apple Mail, але для користування нею необхідно «thick client» («товстий клієнт»), або «rich client» («багатий клієнт»). В архітектурі «клієнт – сервер» це програми з розширеними функціональними характеристиками, незалежно від центрального сервера. При такому підході сервер використовується як сховище даних, а вся робота з опрацювання і подання даних переноситься на клієнтський комп’ютер.Системи SaaS наділені деякими визначальними характеристиками:– Доступність через Web-браузер. Програмне забезпечення типу SaaS не потребує встановлення жодних додаткових програм на комп’ютер користувача. Доступ до систем SaaS здійснюється через Web-браузер з використанням відкритих стандартів або універсальний плагін браузера. Хмарні обчислення та програмне забезпечення, яке є власністю певної компанії, не поєднуються між собою.– Доступність за вимогою. За наявності облікового запису можна отримувати доступ до програмного забезпечення в будь-який момент та з будь-якої географічної точки земної кулі.– Мінімальні вимоги до інфраструктури ІТ. Для конфігурування систем SaaS потрібен мінімальний рівень технічних знань (наприклад, для управління DNS в Google Apps), що не виходить за рамки, характерні для звичайного користувача. Висококваліфікований IT-адміністратор для цього не потрібний.Переваги хмарної інфраструктури. Наявність апаратних засобів у власності потребує їх обслуговування. Планування необхідної потужності та забезпечення ресурсами завжди актуальні. Хмарні обчислення спрощують вирішення двох проблем: необхідність оцінювання характеристик обладнання та відсутність коштів для придбання нового потужного обладнання. При використанні хмарної інфраструктури необхідні потужності додаються за лічені хвилини.Зазвичай на кожному сервері передбачено резерв, що забезпечує вирішення типових апаратних проблем. Наприклад, резервний жорсткий диск, призначений для заміни диска, що вийшов з ладу, в складі масиву RAID. Необхідно скористатися послугами для встановлення нового диску на сервер. Для цього потрібен час та висока кваліфікація спеціаліста, щоб роботу виконати швидко з метою уникнення повного виходу сервера з ладу. Якщо сервер остаточно вийшов з ладу, використовується якісна, актуальна резервна копія та досконалий план аварійного відновлення. Тільки тоді є можливість провести відновлення системи в короткий термін, причому завжди в ручному режимі.При використанні хмар немає потреби перейматись проблемами стосовно апаратних засобів, що використовуються. Користувач може і не дізнатися про те, що фізичний сервер вийшов з ладу. Якщо правильно дібрано інструментарій, можливе автоматично відновлення даних після надскладної аварійної ситуації. При використанні хмарної інфраструктури у такому випадку можна відмовитись від віртуального сервера і отримати інший. Немає потреби думати про утилізацію та перейматися про нанесену шкоду навколишньому середовищу.Хмарне сховище. Абстрагування від апаратних засобів в хмарі здійснюється не тільки завдяки заміні фізичних серверів віртуальними. Віртуалізації підлягають і системи фізичного зберігання даних.При використанні хмарного сховища можна переносити дані в хмару, не переймаючись, яким чином вони зберігаються та не турбуючись про їх резервне копіювання. Як тільки дані, переміщені в хмару, будуть потрібні, достатньо буде просто звернутись в хмару і отримати їх. Існує кілька підходів до хмарного сховища. Йдеться про поділ даних на невеликі порції та зберігання їх на багатьох серверах. Порції даних наділяються індивідуально обчисленими контрольними сумами, щоб дані можна було швидко відновити в критичних ситуаціях.Часто користувачі працюють з хмарним сховищем так, ніби мають справу з мережевим накопичувачем. Щодо принципу функціонування хмарне сховище принципово відрізняється від традиційних накопичувачів, оскільки у нього принципово інше призначення. Обмін даними при використанні хмарного сховища повільніший, воно більш структуроване, внаслідок чого його використання як оперативного сховища даних непрактичне. Зазначимо, що використання хмарного сховища недоцільне для транзакцій в хмарних прикладних програмах. Хмарне сховище сприймається, як аналог резервної копії на стрічковому носієві, хоча на відміну від системи резервного копіювання зі стрічковим приводом в хмарі не потрібні ні привід, ні стрічки.Grid Computing (англ. grid – решітка, грати) – узгоджене, відкрите та стандартизоване комп’ютерне середовище, що забезпечує гнучкий, безпечний, скоординований розподіл обчислювальних ресурсів і ресурсів збереження інформації, які є частиною даного середовища, в рамках однієї віртуальної організації [http://gridclub.ru/news/news_item.2010-08-31.0036731305]. Концепція Grid Computing представляє собою архітектуру множини прикладних програмних засобів – найпростіший метод переходу до хмарної архітектури. Програмні засоби, де використовуються grid-технології, є програмним забезпеченням, при функціонуванні якого інтенсивно використовуються ресурси процесора. В grid-програмах розподіляються операції опрацювання даних на невеликі набори елементарних операцій, що виконуються ізольовано.Використання хмарної інфраструктури суттєво спрощує та здешевлює створення grid-програм. Якщо потрібно опрацювати якісь дані, використовують сервер для опрацювання даних. Після завершення опрацювання даних сервер можна призупинити, або задати для опрацювання новий набір даних.На рисунку 1 подано схему функціонування grid-програми. На сервер, або кластер серверів, поступає набір даних, які потрібно опрацювати. На першому етапі дані передаються в чергу повідомлень (1). На інших вузлах аналізується чергою повідомлень (2) про нові набори даних. Коли набір даних з’являється в черзі повідомлень, він аналізується на першому комп’ютері, де його виявлено, а результати надсилаються назад в чергу повідомлень (3), звідки вони зчитуються сервером або кластером серверів (4). Обидва компоненти можуть функціонувати незалежно один від одного, а кожен з них може функціонувати навіть в тому випадку, якщо другий компонент не задіяний на жодному комп’ютері. Рис. 1. Архітектура grid-програм У такій ситуації використовуються хмарні обчислення, оскільки при цьому не потрібні власні сервери, а за відсутності даних для опрацювання не потрібні сервери взагалі. Таким чином можна масштабувати потужності, що використовуються. Інакше кажучи, щоб комп’ютер не використовувався «вхолосту», важливо опрацьовувати дані за мірою їх надходження. Сервери включаються, коли потік даних інтенсивний, а виключаються в міру ослаблення інтенсивності потоку. Grid-програми мають дещо обмежену область застосування (опрацювання великих об’ємів наукових і фінансових даних). В переважній частині таких програм використовуються транзакційні обчислення.Транзакційна система – це система, де один і більше вхідних наборів даних опрацьовуються одночасно в рамках однієї транзакції та в
APA, Harvard, Vancouver, ISO, and other styles
22

Князєва, Н. О., С. В. Шестопалов, and Т. В. Кунуп. "Аналітична модель інтелектуальної надбудови NGN з урахуванням самоподібності трафіку." Refrigeration Engineering and Technology 54, no. 4 (August 30, 2018): 72–79. http://dx.doi.org/10.15673/ret.v54i4.1175.

Full text
Abstract:
З появою мультисервісних мереж з’явилися інтелектуальні сервіси (INS) і, відповідно, новий тип трафіку. Протягом довгого часу вважалося, що мережний трафік відповідає пуасонівським процесам, але подальші дослідження довели, що в трафіку деяких мереж наявний ефект самоподібності. Через властивості самоподібного трафіку традиційні методи розрахунку характеристик функціонування мереж дають занадто оптимістичні результати і призводять до недооцінки реального навантаження. Виникає актуальне питання визначення наявності ефекту самоподібності трафіку, що містить заявки на INS, а також урахування цього ефекту при формуванні аналітичної моделі інтелектуальної надбудови NGN (Next Generation Network). Саме цим питанням присвячена дана робота. На основі аналізу існуючих методів розрахунку показника Херста, що надає можливість визначити характер трафіку, обрано R/S метод, оскільки його використання дозволяє аналізувати велику кількість даних, а також не містить занадто великого обсягу обчислень. Даний метод реалізований за допомогою програми AutoSignal. Виходячи з аналізу отриманих результатів можна стверджувати, що трафік, що містить заявки на INS – це самоподібний процес. Ефект самоподібності проявляється в широкому діапазоні часу – від декількох годин до року. Проведені дослідження характеру трафіку визначили можливість вирішення актуальної задачі – розробки аналітичної моделі інтелектуальної надбудови NGN, яка відповідає за управління наданням INS, з урахуванням самоподібності трафіку. Для побудови аналітичної моделі інтелектуальної надбудови було використано апарат теорії масового обслуговування. Запропонована аналітична модель інтелектуальної надбудови, яка ураховує самоподібність потоку заявок на INS, надає можливість визначити потрібні мережні ресурси для забезпечення необхідного значення ефективності управління наданням INS.
APA, Harvard, Vancouver, ISO, and other styles
23

Мар'єнко, Майя, Юлія Носенко, and Марія Шишкіна. "ЗАСОБИ І СЕРВІСИ ЄВРОПЕЙСЬКОЇ ХМАРИ ВІДКРИТОЇ НАУКИ ДЛЯ ПІДТРИМКИ НАУКОВО-ОСВІТНЬОЇ ДІЯЛЬНОСТІ." Physical and Mathematical Education 31, no. 5 (November 18, 2021): 60–66. http://dx.doi.org/10.31110/2413-1571-2021-031-5-009.

Full text
Abstract:
В статті проаналізовано сучасні тенденції європейського простору відкритої науки, сутність і переваги хмаро орієнтованих засобів і сервісів відкритої науки. Розглянуто приклади сервісів Європейської хмари відкритої науки. Надано рекомендації щодо якісного й ефективного запровадження засобів і сервісів відкритої науки в науково-освітню діяльність. Формулювання проблеми. Актуальність роботи обумовлена необхідністю покращення якості та результативності впровадження в науково-освітню діяльність засобів і сервісів відкритої науки, підвищення ефективності їх використання у вітчизняній науці та системі освіти, поліпшення рівня підготовки фахівців освітньої галузі, зокрема вчителів. Матеріали і методи. Для розв’язування поставлених у роботі завдань використано теоретичні методи: аналіз науково-педагогічних теорій та концепцій з проблеми дослідження; аналіз та узагальнення тенденцій європейського простору відкритої науки; аналіз функціоналу хмаро орієнтованих сервісів відкритої науки. Результати. Розглянуто сутність поняття хмаро орієнтованої системи відкритої науки. Проаналізовано сутність і значення Європейської хмари відкритої науки. Визначено основні тенденції, що наразі превалюють в Європейському просторі відкритої науки: відкритий доступ, архівування статей, обмін даними. Розглянуто приклади сервісів Європейської хмари відкритої науки. Надано рекомендації щодо запровадження засобів і сервісів відкритої науки в науково-освітню діяльність. Висновки. Врахування сучасних тенденцій європейського простору відкритої науки, використання переваг хмаро орієнтованих засобів і сервісів відкритої науки з урахуванням авторських рекомендацій сприятиме покращенню якості, ефективності та результативності науково-освітньої діяльності у вітчизняних закладах науки й освіти, ефективності впровадження в освітній процес засобів і сервісів хмарних обчислень, ширшому використанню сервісів відкритої науки на різних рівнях навчання, поліпшенню рівня підготовки фахівців освітньої галузі.
APA, Harvard, Vancouver, ISO, and other styles
24

Коваль, Максим Валерійович, and Андрій Миколайович Стрюк. "Аналіз доцільності використання хмарних технологій у комбінованому навчанні магістрів з програмної інженерії." Theory and methods of e-learning 4 (February 28, 2014): 134–39. http://dx.doi.org/10.55056/e-learn.v4i1.381.

Full text
Abstract:
Підготовка магістрів з програмної інженерії ведеться на базі освітньо-кваліфікаційного рівня бакалаврів з програмної інженерії. У зв’язку з цим майбутні магістри вже володіють навичками з розробки та тестування програмного забезпечення [4] і повинні отримати професійні компетентності, що дозволяють виконувати роботу наукового співробітника, як у галузі програмування, так і у інших галузях обчислень, та інженера у інших галузях інженерної справи, займаючи первинні посади: інженера з впровадження нової техніки та технологій; керівника виробничого або функціонального підрозділу; асистента вищого навчального закладу або викладача професійного навчального закладу.Таким чином, при підготовці магістрів з програмної інженерії передбачається посилення таких виробничих функцій, як організаційна, навчально-виховна, науково-дослідна та проектувальна. Кожна функція вимагає володіння певними вміннями згідно відповідної освітньо-кваліфікаційної характеристики. В табл. 1 показано зв’язок між виробничими функціями, типовими задачами в рамках кожної функції та уміннями, якими має оволодіти магістр з програмної інженерії.Таблиця 1Розподіл умінь магістрів з програмної інженерії згідно функцій ФункціяТипова задачаЗміст умінняОрганізаційнаКерівництво роботою виконавців та підрозділів по автоматизації обробки данихСпираючись на нормативні документи вміти: планувати та організувати роботу виконавців та підрозділів; виконувати контроль виконаних робіт по автоматизації обробки данихНавчально-виховнаОволодіння формами, методами та принципами організації навчального процесу у ВНЗСпираючись на відповідні підручники та методичне забезпечення вміти: підібрати потрібний зміст навчального матеріалу; використати оптимальні форми, методи і засоби навчання відповідно до програмиОволодіння основними дидактичними принципами педагогічних тех­нологій і процесів педагогічного проектуванняНа основі педагогічних знань вміти: контролювати і корегувати здобуті знання; застосовувати дидактичні принципи педагогічних технологійНа основі педагогічних знань вміти: застосовувати основні принципи комунікативної культури; застосовувати одержану інформацію у практичній і творчій діяльності; використовувати найновіші форми методи та прийоми у навчально-виховній діяльності на основі наукових знань, рекомендацій і комп’ютерної технікиНауково-досліднаДослідження існуючих технологій в ІС, розробка заходів по їх удосконаленню, та нових компонентівНа основі аналізу інформаційних систем (ІС) вміти: формулювати задачу дослідження; володіти методикою системного аналізу; моделювати та оптимізувати інформаційні системиВизначення актуальності наукового дослідженняВикористовуючи знання та результати аналізу наукових досліджень предметної області, вміти: обґрунтувати проблему дослідження; сформулювати парадигму, та границі дослідження; визначити мету та задачі дослідженняВизначення предмету і об’єкту дослідженняНа основі визначеної мети, задач дослідження вміти обґрунтувати предмет та об’єкт дослідженняПроектувальнаПрограмування прикладних задач мовами високого рівняУміти знаходити спільні і від’ємні риси різних систем програмування, розуміти основи побудови мов програмування високого рівня, використовувати ретроспективний аналіз для прогнозування розвитку і впровадження власних програмНавчальний план підготовки магістрів прийнято розділяти на окремі дисципліни. Так, наведені в табл. 1 уміння частково формуються під час вивчення дисциплін гуманітарної та соціально-економічної підготовки («Філософські проблеми наукового пізнання», «Вища освіта і Болонський процес», «Основи наукових досліджень»), а також при вивченні наступних дисциплін професійної та практичної підготовки:1. Інженерія ПЗ для паралельних та розподілених систем.2. Технології проектування та створення сучасних корпоративних мереж.3. Експертні технології для систем підтримки прийняття рішень.4. Розробка і дослідження інформаційних систем.5. Проектування, моделювання та аналіз інформаційних систем.6. Методи обробки експериментальних даних та планування експерименту.У той же час визначені у освітньо-кваліфікаційній характеристиці вміння є міждисциплінарними і формування їх відбувається під час вивчення не окремих дисциплін, а всього циклу підготовки. Міждисциплінарна інтеграція в рамках навчальної програми магістрів може відбуватися за наступними напрямками:1) посилення професійної зорієнтованості дисциплін гуманітарної та соціально-економічної підготовки;2) посилення діяльнісного підходу до вивчення дисциплін циклу професійної та практичної підготовки, активне застосування методів проектів та контекстного навчання, елементів проблемного навчання та навчання у співпраці [6];3) фундаменталізація підготовки магістрів програмної інженерії.В роботі С. О. Семерікова [7] підкреслюється, що подальша фундаменталізація підготовки фахівців повинна бути спрямована на педагогічну інтеграцію, подолання розриву між знаннями, отриманими студентами при вивченні різних навчальних дисциплін за рахунок істотного розвитку міжпредметних зв’язків, а одним із факторів фундаменталізації професійної підготовки фахівців з інформаційних технологій є фундаменталізація засобів навчання через надання їм властивостей мобільності. Підвищення мобільності можна досягти шляхом технологічного насиченням навчального процесу мобільними засобами ІКТ та шляхом уніфікації структури навчального матеріалу – подання його у вигляді окремих незалежних блоків, що називають навчальними об’єктами [9].Інтенсивне використання засобів ІКТ у вищій школі доцільне в умовах комбінованого навчання [8], яке передбачає системну інтеграцію традиційних та інноваційних технологій, зокрема, технологій електронного, дистанційного та мобільного навчання. Прагнення зробити навчальний процес більш гнучким, відкритим та мобільним зумовило зростання інтенсивності використання хмарних технологій у навчанні.Хмарні технології – найбільш перспективний на сьогодні напрям розвитку мобільних ІКТ [10] – передбачають доступ окремих користувачів до великого масиву легкодоступних віртуальних ресурсів (апаратних, програмних платформ та послуг) незалежно від пристрою, що використовується для доступу [2]. Обсяг хмарних ресурсів, що надається користувачу, може динамічно змінюватись, пристосовуючись до його потреб, що робить хмарні технології оптимальним інструментом забезпечення повсюдного та повсякчасного доступу до освітніх послуг.Детальному огляду впливу на вищу освіту тих змін, що пов’язані з поширенням хмарних технологій в сучасній ІТ-індустрії, присвячено дослідження авторів дослідницького об’єднання EDUCASE [1]. В дослідженні [5] розглянута реалізація ІТ-інфраструктури університету на основі хмарних технологій (рис. 1). Рис. 1. Архітектура хмари для університетів (за З. С. Сейдаметовою) Дослідження М. Ю. Кадемії та В. М. Кобисі [3] підтверджують, що технології хмарних обчислень є розвиненим засобом реалізації проектного методу навчання та формування у студентів навичок колективної роботи. В роботі Ю. В. Триуса [11] підкреслено, одним з реальних шляхів підвищення якості підготовки майбутніх ІТ-фахівців є розробка та впровадження у навчальний процес ВНЗ інноваційних технологій навчання, в основу яких покладено органічне поєднання традиційних та комп’ютерно орієнтованих форм, методів і засобів навчання, зокрема й хмарних технологій.Таким чином, аналіз доступних на сьогодні методичних підходів до використання хмарних засобів подання навчальних матеріалів та організації спільної роботи суб’єктів навчального процесу показав, що вони найбільш природно реалізують принципи комбінованого навчання та надають можливість приділити додаткову увагу формуванню специфічних професійних умінь магістрів з програмної інженерії. Хмарні технології мають стати провідним засобом підготовки магістрів з програмної інженерії з урахуванням їх доцільності для системної реалізації принципів комбінованого навчання та об’єктно-орієнтованого підходу до подання навчального матеріалу.Фундаменталізація навчання магістрів з програмної інженерії відбувається за рахунок інтеграції різних навчальних дисциплін, розвитку міжпредметних зв’язків та посилення діяльнісного підходу до вивчення дисциплін циклу професійної підготовки, активного застосування інноваційних методів навчання у співпраці на основі хмарних технології.Проведений аналіз надає можливість визначити такі напрями подальших досліджень:1. Виділити засоби і методи хмарних технологій навчання, використання яких спрямоване на реалізацію комбінованого навчання магістрів з програмної інженерії з урахуванням особливостей їх підготовки.2. Розробити методику використання хмароорієнтованих засобів у процесі комбінованого навчання магістрів з програмної інженерії.3. Локалізувати та допрацювати хмароорієнтоване програмне забезпечення для реалізації методики комбінованого навчання магістрів з програмної інженерії.4. Дослідити методи проектування та застосування навчальних об’єктів у комбінованому навчанні магістрів з програмної інженерії з використанням хмароорієнтованих засобів.5. На основі методики використання хмароорієнтованих засобів у процесі комбінованого навчання магістрів з програмної інженерії розробити методичне забезпечення дисциплін «Технології проектування та створення корпоративних мереж» та «Інженерія програмного забезпечення паралельних та розподілених систем».6. Експериментально перевірити вплив організації навчального процесу за методикою комбінованого навчання з використанням хмароорієнтованих засобів на рівень сформованості професійних компетентностей магістрів з програмної інженерії.
APA, Harvard, Vancouver, ISO, and other styles
25

Лакида, П. І., Д. І. Бідолах, and В. С. Кузьович. "Просторова база даних урболандшафтів на прикладі зелених насаджень міста Бережани." Scientific Bulletin of UNFU 30, no. 4 (September 17, 2020): 51–56. http://dx.doi.org/10.36930/40300409.

Full text
Abstract:
Наведено загальні принципи створення просторової бази даних обліку урболандшафтів для формування геоінформаційної моделі даних зелених насаджень. Встановлено доцільність використання в цьому процесі матеріалів дистанційного зондування Землі, зокрема отриманих за результатами зйомки з безпілотного літального апарата, що інтерпретуються в геоінформаційній системі. Розроблено архітектуру тематичних шарів інформації для просторової бази даних зелених насаджень та схему структури геоінформаційної моделі урболандшафтів. Встановлено, що запропонована архітектура тематичних шарів просторової бази даних зелених насаджень дає змогу компанувати їх у довільному поєднанні, оперувати ними відповідно до завдань, які ставляться у процесі їх впорядкування, та забезпечувати просторове подання потрібного аспекту наявної у базі даних інформації. Визначено, що запропонована структура геоінформаційної моделі урболандшафтів створює умови для покращення якості та удосконалення процесу впорядкування зелених насаджень. Опрацьовано процес інтерпретації бази просторових і атрибутивних даних зелених насаджень у геоінформаційній системі QGis 3 зі з'ясуванням можливостей їх візуалізації. З'ясовано, що структура даних подібних моделей, завдяки використанню засобів оброблення інформації геоінформаційних систем, дає змогу виконувати різні обчислення, фільтрування, геометричні перетворення та інші операції за потрібними параметрами всередині кожного тематичного шару. Здійснені дослідження дали змогу також опрацювати теоретичні та прикладні аспекти процесу формування геоінформаційної моделі зелених насаджень, а також провести перевірку можливості поєднання різних типів і видів даних в єдину взаємопов'язану систему. Встановлено, що розроблені підходи до геоінформаційного моделювання зелених насаджень дають змогу покращити процес їх впорядкування, а також об'єднати різні типи і види даних в єдину взаємопов'язану систему.
APA, Harvard, Vancouver, ISO, and other styles
26

Teslyuk, V. M., and A. G. Kazarian. "Вибір оптимального типу штучної нейронної мережі для автоматизованих систем "розумного" будинку." Scientific Bulletin of UNFU 30, no. 5 (November 3, 2020): 90–93. http://dx.doi.org/10.36930/40300515.

Full text
Abstract:
Розроблено метод вибору оптимального типу ШНМ, ідеєю якого є практичне використання декількох типів ШНМ, подальшого обчислення похибок роботи кожного типу з використанням ідентичних наборів даних для навчання ШНМ, що унеможливлює вплив на результати роботи алгоритму і специфіки даних у навчальній вибірці. Запропонований метод дає змогу визначити оптимальний тип ШНМ для керування побутовими приладами у будинку. Розглянуто особливості процесу розроблення програмного забезпечення, що дає змогу провести процеси навчання, випробування та отримати вихідні результати роботи алгоритму штучної нейронної мережі. Вибір штучної нейронної мережі використовують для автоматизації обчислення значень оптимальних температурних режимів у кімнатах будинку, налаштувань параметрів освітлювальних приладів та режимів роботи системи безпеки "розумного" будинку. Наведено результати дослідження взаємозв'язку між різними типами нейронних мереж, кількістю внутрішніх шарів штучної нейронної мережі і кількістю нейронів на кожному внутрішньому шарі та зміни похибки обчислень параметрів налаштувань відносно очікуваних результатів роботи. Вирішення кожної окремої поставленої задачі за допомогою систем "розумного" будинку потребує використання різних алгоритмів машинного навчання. Великі обсяги даних, що генеруються у системах "розумного" будинку, та різноманітність типів і форматів цих даних не дає змоги створити універсальний автоматизований механізм з використанням алгоритмів штучного інтелекту, який вирішував би проблеми безпеки, енергоефективності та підтримки комфортних умов проживання користувачів. Тому використання запропонованого методу вибору оптимального типу нейронної мережі, що найкраще підходить для вирішення кожної окремої задачі, забезпечує високі показники ефективності роботи систем "розумного" будинку з мінімальними значеннями похибки отриманих автоматизованих рішень порівняно з рішеннями, що прийняла людина.
APA, Harvard, Vancouver, ISO, and other styles
27

Havryltsiv, S. T., Yu V. Vovk, and O. I. Hrushka. "ВИВЧЕННЯ АКТИВНОСТІ БІОХІМІЧНИХ ПОКАЗНИКІВ КІСТКОВОГО МЕТАБОЛІЗМУ В НИЖНІХ ЩЕЛЕПАХ, УРАЖЕНИХ РАДИКУЛЯРНИМИ КІСТАМИ, У ХВОРИХ ІЗ РІЗНИМ СТАНОМ МІНЕРАЛЬНОГО ОБМІНУ." Вісник наукових досліджень, no. 2 (April 16, 2019): 72–77. http://dx.doi.org/10.11603/2415-8798.2019.2.10017.

Full text
Abstract:
У відповідь на підвищення компресії обсягу, що зростає збоку радикулярних кіст на прилеглу кісткову тканину щелеп, у ній відбувається компенсаторна перебудова морфологічної структури губчастої речовини – її ущільнення, що є морфологічним проявом місцевої адаптаційної реакції організму. Однак при порушенні мінерального обміну (остеопорозі) в кістковій тканині відбуваються морфологічні зміни. В жінок у післяменопаузальному періоді на тлі дефіциту естрогену зменшується експресія лужної фосфатази, знижується інгібуюча активність цього гормону на остеокласти, що супроводжується зростанням активності кислої фосфатази і, як наслідок, збільшення резорбції кістки. Мета дослідження – провести порівняльну оцінку активності біохімічних показників кісткового метаболізму в ділянках нижніх щелеп, уражених радикулярними кістами, у хворих із різним станом мінерального обміну. Матеріали і методи. Усіх пацієнтів із радикулярними кістами нижньої щелепи залежно від стану мінерального обміну було поділено на дві клінічні групи: у першу клінічну групу увійшли 21 хворий (13 чоловіків та 8 жінок), в яких не було виявлено вікових порушень збоку мінерального обміну; в другу клінічну групу увійшло 19 хворих (14 жінок та 5 чоловіків), в яких виявлено вікові порушення мінерального обміну – остеопороз. У хворих визначали мінеральну щільність кісткової тканини за допомогою кісткової ультразвукової денситометрії. На ортопантомограмах лицевого скелета виявляли локалізацію та розміри радикулярних кіст. Стан мінерального обміну в нижніх щелепах оцінювали на рентгенограмах за мандибулярно-кортикальним індексом (MCI) за Е. Klemetti et al. Матеріали для біохімічного дослідження (визначення активності лужної і кислої фосфатаз, індексу мінералізації) отримували шляхом забору фрагментів кісткової тканини із ділянок, прилеглих до оболонок радикулярних кіст нижніх щелеп під час операцій цистектомій. Статистичну обробку отриманих результатів досліджень проводили за допомогою комп’ютерної програми статистичних обчислень Statistica 8. Результати досліджень та їх обговорення. У хворих, в яких не виявлено порушень мінерального обміну, в кісткових біоптатах, взятих із ділянок, уражених радикулярними кістами нижніх щелеп, встановлено статистично значуще (р<0,05) зростання активності лужної фосфатази (ЛФ), що прямо корелювало із розмірами цих пухлиноподібних новоутворень. Також виявлено статистично значуще зростання активності кислої фосфатази (КФ) в цих ділянках. При радикулярних кістах великих розмірів активність КФ була найбільшою – (0,82±0,09) МО/г (р<0,005). Однак процес остеогенезу переважав над резорбцією кістки. Індекс мінералізації у ділянках щелеп, які зазнавали хронічної компресії збоку пухлиноподібних новоутворень, зростав порівняно із інтактною кісткою. У хворих із остеопорозом в нижніх щелепах переважали процеси резорбції над остеогенезом. В уражених ділянках нижніх щелеп спостерігали статистично значуще зростання активності КФ. У кісткових тканинах, які зазнавали впливу радикулярних кіст великих розмірів, активність цього ферменту зростала в 2,4 раза порівняно з інтактними кістками – (1,27±0,13) МО/г (р<0,001). Активність ЛФ також збільшувалась, але менш інтенсивно порівняно з аналогічними клінічними випадками у хворих без порушень мінерального обміну. Індекс мінералізації кісткової тканини зростав лише в ділянках нижніх щелеп, прилеглих до радикулярних кіст малих розмірів. У кісткових тканинах, прилеглих до одонтогенних кіст середніх та великих розмірів, цей показник прогресивно зменшувався від (14,60±1,33) у.о. до (11,84±1,27) у.о., що, на нашу думку, свідчить про недостатній рівень адаптаційного потенціалу в щелепних кістках хворих із порушеним мінеральним обміном. Висновки. У хворих без порушень мінерального обміну в кісткових тканинах нижніх щелеп у відповідь на деструктивний вплив радикулярних кіст переважають процеси активації остеогенезу (статистично значуще зростання активності лужної фосфатази), що є місцевим проявом адаптаційної реакції організму при цьому захворюванні. У хворих на тлі остеопорозу в щелепних кістках відбувається зниження процесу остеогенезу, під впливом радикулярних кіст прогресують резорбційні процеси, статистично значуще зростає активність кислої фосфатази, що прямо корелює із розмірами цих пухлиноподібних новоутворень.
APA, Harvard, Vancouver, ISO, and other styles
28

Андрієвська, Віра Михайлівна, and Надія Василівна Олефіренко. "Використання хмарних технологій у процесі підготовки майбутнього вчителя." New computer technology 13 (December 25, 2015): 78–87. http://dx.doi.org/10.55056/nocote.v13i0.886.

Full text
Abstract:
Мета дослідження: висвітлити основні можливості й переваги використання хмарних технологій у процесі підготовки майбутнього учителя. Завдання дослідження: впровадження хмарних технологій до навчального процесу та включення відповідних дисциплін для опанування навичками роботи із ними. Об’єкт дослідження: використання хмарних технологій в освіті. Предмет дослідження: педагогічно-доцільне використання хмарних технологій у процесі підготовки майбутнього вчителя. Використані методи дослідження: аналіз наукових публікацій. Результати дослідження. Розкрито значущість використання хмарних технологій у процесі підготовки майбутніх учителів. Висвітлено окремі веб-сервіси, які спрощують взаємодію учасників спільної навчальної діяльності. Підкреслено актуальність проблеми підготовки майбутнього учителя до створення 3D-книг у подальшій професійній діяльності. Основні висновки і рекомендації: технології хмарних обчислень у навчально-виховному процесі освітнього закладу сьогодні надають можливості вільно користуватися додатками (програмами) й дозволяють створити оптимальні умови для підвищення мотивації майбутніх педагогів до навчально-дослідницької діяльності.
APA, Harvard, Vancouver, ISO, and other styles
29

Сіренко, В., and Є. Демченко. "Деякі особливості хронологічних обчислень." Озброєння та військова техніка 23, no. 3 (September 26, 2019): 84–98. http://dx.doi.org/10.34169/2414-0651.2019.3(23).84-98.

Full text
Abstract:
Викладена суть проблеми перерахування календарних дат в часові інтервали між ними і навпаки, що виникає у процесі комп’ютерного оброблення результатів наукових досліджень, в яких задіяний часовий фактор та використовуються машинні методи обчислювальної математики. Формалізовані основні закономірності григоріанського календаря. Сформульовані й доведені чотири теореми щодо вибору потрібного варіанту хронологічних обчислень. Запропоновані алгоритми вирішення дев'яти основних та двох допоміжних хронологічних завдань.
APA, Harvard, Vancouver, ISO, and other styles
30

Чумак, Дмитро Олександрович, and Сергій Олексійович Семеріков. "Розробка програмного комплексу для метакомп’ютерних обчислень." New computer technology 5 (November 10, 2013): 102–3. http://dx.doi.org/10.55056/nocote.v5i1.106.

Full text
Abstract:
Метакомп’ютінг (розподілені обчислення в Інтернет) – одна з «модних» технологій останніх десятиліть, призначена насамперед для рішення задач, що вимагають розподіленої обробки великих масивів даних. Для розв’язання на метакомп’ютерах найбільш придатні задачі пошукового і переборного характеру. Класичним прикладом таких задач є задачі теорії чисел. Огляд існуючих розподілених систем показує, що, за рідким винятком, вони є вузькоспеціалізованими (призначеними для розв’язання однієї задачі). Тому розробка архітектури універсальної метакомп’ютерної системи, призначеної для розв’язання вказаного класу переборних задач, має високу актуальність.Основна мета роботи полягала в розробці архітектури універсальної розподіленої системи для розв’язання теоретико-числових проблем та її програмної реалізації. В результаті аналізу літератури та існуючого програмного забезпечення було встановлено, що:Найбільш придатними для розв’язання в розподілених системах є задачі, що вимагають обробки великих обсягів слабко корельованих даних, зокрема теоретико-числові проблеми.Для реалізації розподіленої системи доцільно використовувати класичні технології: інтерфейс сокетів та багатопоточність.Аналіз існуючих метакомп’ютерних систем показує практично повну відсутність оболонок для створення таких систем при високому попиті на даний клас програмного забезпечення.Засоби, використані при побудові розподіленої системи: pthread – застосовується для багатопоточної роботи програмного комплексу; Boost – використовується для створення надійної, розширюваної та простої архітектури програмного комплексу; log4cxx – застосовується для реєстрації процесу роботи програмного комплексу; GMP – використовується для математичних обчислень з високою точністю; OpenSSL, на прикладі якої розглядається можливість організації захищеного зв’язку у програмних засобах за архітектурою “клієнт-сервер”.Функціональна схема роботи створеного в процесі дослідження комплексу Metacomputing Framework (http://sf.net/projects/mcframework/):один сервер займається розв’язанням однієї задачі;при старті сервер одержує діапазон і бібліотеку, що він буде надсилати клієнту;агент одночасно виконує тільки одну задачу (бібліотеку) і з’єднується тільки з одним сервером, але може обробляти кілька діапазонів одночасно (у різних потоках);на одній машині може бути запущено кілька серверів для розв’язання різних задач, так само і з клієнтами;після видачі клієнту конкретного діапазону, сервер чекає на результат протягом визначеного часу, за який цей діапазон нікому іншому не видається; у випадку одержання результату від клієнта, даний діапазон позначається відповідним чином; якщо клієнт не виходив на зв’язок протягом визначеного терміну, даний діапазон вважається неопрацьованим і розподіляється заново;сервер є відмовостійким та періодично зберігає отримані результати у файл, використовуючи який, можна поновити роботи після збою системи чи тимчасової зупинки сервера;агент є кросплатформеним, підтримувані платформи – POSIX (Linux, FreeBSD і т.д.), Windows;агент щораз відкриває і закриває з’єднання із сервером під час звітування та повернення результатів;агент зберігає завантажені бібліотеки. При старті клієнт перевіряє наявність яких-небудь файлів у визначених директоріях, обчислює хеш кожного зі знайдених файлів і намагається по черзі завантажити їх як динамічну бібліотеку. Якщо це вдається, то клієнт одержує версію бібліотеки, викликавши відповідну інтерфейсну функцію;зв’язок між агентом і сервером здійснюється по двох каналах: 1) керуючий (передача команд); 2) канал даних (передача даних, таких як файли бібліотек, результати обчислень тощо).Обчислювальний експеримент проводився на ПП «Апріоріт» (м. Дніпропетровськ). Тривалість експерименту склала двоє доби (49 годин 23 хвилини 55 секунд). В ході експерименту було обчислено 27 перших простих числа Мерсенна, що зайняло 28 годин 7 хвилин і 5 секунд.Усі розрахунки є вірними і відповідають уже відомим числам Мерсенна. Під час експерименту не було отримано помилкових даних, внаслідок чого можна зробити висновок про те, що розроблений програмний комплекс успішно справляється з задачами, для виконання яких він призначений та повністю відповідає технічному завданню.Подальший розвиток дослідження передбачає розширення функціональності програмного комплексу Metacomputing Framework шляхом створення допоміжних програмних утиліт, що надають статистику про хід виконання обчислень в режимі реального часу та дозволяють прозоро додавати і видаляти в працюючій системі нові завдання, а також розподіляти обчислювальні ресурси агентських машин між різними задачами по пріоритетах.
APA, Harvard, Vancouver, ISO, and other styles
31

Hryniuk, V. I. "ДОСЛІДЖЕННЯ ПРОЦЕСІВ САМООЧИЩЕННЯ ПРАВИХ ПРИТОК РІЧКИ СВІЧІ БАСЕЙНУ ДНІСТРА." Scientific Bulletin of UNFU 28, no. 3 (April 26, 2018): 77–82. http://dx.doi.org/10.15421/40280316.

Full text
Abstract:
Представлено результати досліджень процесу розбавлення стічних вод, які надходять до правих приток річки Свічі басейну Дністра. Описано проблеми забруднення малих річок у межах впливу нафтогазової промисловості. Визначено чинники впливу на природний процес самоочищення річок. Обґрунтовано методику визначення кратності та інтенсивності процесу розбавлення стічних вод у річках Тур'янка, Саджава та Лущава. Проаналізовано статистичні дані екологічного моніторингу Долинського підприємства нафтогазової промисловості за період 2007–2016 рр. На основі щоквартальних даних відбору проб води обчислено середнє значення концентрацій хімічних елементів за рік у місці скиду стічних вод, 500 м вище та 500 м нижче випусків № 1, 2, 3, 4 Долинського підприємства нафтогазового комплексу. Внаслідок виявлено перевищення гранично допустимої концентрації за такими забруднювальними речовинами: хлориди, амоній сольовий, нітрити, азот амонійний та біохімічне споживання кисню (БСК5), за якими здійснено подальший розрахунок показника інтенсивності розбавлення стічних вод у річках Тур'янка, Саджава та Лущава. Зображено та проаналізовано динаміку зміни біохімічного споживання кисню на ділянці 500 м вище та 500 м нижче від місця чотирьох випусків стічних вод. Проведені розрахунки підтверджують закономірність: із збільшенням швидкості течії річки підвищується кратність розбавлення, а також свідчать про забруднення правих приток річки Свічі, природний процес самоочищення яких відбувається дуже повільно.
APA, Harvard, Vancouver, ISO, and other styles
32

Лукашова, Тетяна, and Марина Друшляк. "ПРО РОЛЬ І МІСЦЕ КУРСУ «АЛГЕБРА І ТЕОРІЯ ЧИСЕЛ» В СИСТЕМІ ПІДГОТОВКИ МАЙБУТНЬОГО ВЧИТЕЛЯ МАТЕМАТИКИ." Physical and Mathematical Education 33, no. 1 (April 2, 2022): 20–25. http://dx.doi.org/10.31110/2413-1571-2022-033-1-003.

Full text
Abstract:
Формулювання проблеми. На користь імплементації курсу «Алгебра і теорія чисел» в систему професійної підготовки майбутніх учителів математики свідчать наступні аргументи: даний курс забезпечує необхідну теоретичну та практичну підготовку учителя математики та сприяє розумінню наукових основ шкільного курсу математики; окремі поняття і теми курсу алгебри представлені у програмі з математики закладів загальної середньої освіти (прості і складені числа, ділення з остачею, найбільший спільний дільник та найменше спільне кратне, ознаки подільності, основна теорема арифметики, многочлени та дії над ними), а також у програмі для класів з поглибленим вивченням математики (подільність цілих чисел, конгруенції за модулем, ділення многочленів з остачею, корені многочленів і теорема Безу, раціональні корені многочленів від однієї змінної тощо). Більшість із тем даного курсу є основою програм факультативів та математичних гуртків; а задачі алгебри і теорії чисел широко використовуються на олімпіадах і турнірах різних рівнів. Окрім того, знання та уміння, які набувають студенти при вивченні даного курсу, формують необхідну базу для вивчення інших фундаментальних та прикладних математичних дисциплін (математичного аналізу, дискретної математики, комплексного аналізу, методів обчислень, числових систем), а також курсу елементарної математики та методики навчання математики. Матеріали і методи. Основою дослідження стали наукові здобутки вітчизняних і закордонних учених, які займаються вивченням питань підготовки майбутніх вчителів математики та інформатики. Для досягнення мети були використані методи теоретичного рівня наукового пізнання: аналіз наукової літератури, синтез, формалізація наукових джерел, опис, зіставлення, узагальнення власного досвіду. Результати. У статті детально описано досвід викладання курсу «Алгебра і теорія чисел» на кафедрі математики Сумського державного педагогічного університету імені А. С. Макаренка, починаючи з 90-х років минулого століття і по теперішній час, виходячи з модифікацій у змістовому наповненні курсу, змін у кількості годин, відведених на опанування курсу, на перенесенні окремих тем до змісту інших фундаментальних дисциплін. Висновки. Базуючись на власному досвіді, вважаємо, що в умовах подальшого зменшення кількості аудиторних годин та відсутності Державного стандарту освіти, проблеми, що виникають у зв’язку з необхідністю якісної професійної підготовки майбутніх учителів математики, можуть і повинні бути розв’язані шляхом впровадження в навчальний процес вибіркових курсів, що розширюють і поглиблюють зміст основного курсу «Алгебри і теорії чисел» (зокрема, з теорії чисел або елементів сучасної алгебри).
APA, Harvard, Vancouver, ISO, and other styles
33

Морозов, М. Ю., Є. В. Левус, Р. О. Моравський, and П. Я. Пустельник. "Генерування ландшафтів для сферичних поверхонь: аналіз завдання та варіанти вирішення." Scientific Bulletin of UNFU 30, no. 1 (February 27, 2020): 136–41. http://dx.doi.org/10.36930/40300124.

Full text
Abstract:
Проаналізовано проблему генерування ландшафтів за наявними методами для порівняння їх можливостей, виділено основні переваги і недоліки. Розглянуто програмні інструменти, які дають змогу генерувати ландшафти для різних поверхонь. Запропоновано власний метод на підставі поєднання методів, описаних у науковій літературі, який дає змогу гнучко керувати кількісними та якісними показниками моделювання ландшафтів для сферичних поверхонь завдяки введенню параметрів впливу. Зміст методу полягає у застосуванні програмних агентів для відповідного створення складових моделі, а саме – генерування планетоїда, клімату та моделі ландшафту загалом. Для попереднього оброблення моделі планетоїда здійснюють генерування опуклої оболонки та виконують вибір програмних агентів з алгоритмами для оброблення ландшафтів, а також створення бази даних для зберігання всіх результатів. Програмні агенти під час оброблення використовують маски, які потрібні для контролю впливу кожного програмного агента на модель ландшафту загалом. На відміну від відомих рішень, де шари є неподільні і їхня зміна щоразу вимагає повного перерахунку всього ландшафту, запропонований метод дає змогу вільно модифікувати вплив одних агентів на інші на підставі задавання різних масок, а також ділити створені шари на підрівні. Завдяки введенню програмних агентів і масок метод автоматизовано здійснює параметризацію процесу генерування ландшафтів деталізованих планетоїдів з подальшою їх серіалізацією та обробленням. Застосування програмних агентів дає змогу забезпечити гнучкість методу (урахування різних параметрів моделі планетоїда за різного порядку застосування програмних агентів), економічність виконання обчислень (для різної деталізації сегментів сферичної поверхні не потрібні обчислення з "нуля"). Перевагами запропонованого рішення є врахування різних деталей для забезпечення високої реалістичності результату та уникнення зайвих обчислень для різних рівнів зближення огляду поверхонь.
APA, Harvard, Vancouver, ISO, and other styles
34

Бондаренко, Тетяна Вікторівна, and Іван Іванович Дмитренко. "Інформаційні технології на уроці математики." Theory and methods of learning mathematics, physics, informatics 1, no. 1 (November 16, 2013): 29–30. http://dx.doi.org/10.55056/tmn.v1i1.154.

Full text
Abstract:
“Інформаційне суспільство – це не вигадка вчених, це об’єктивна реальність. Це та даність, та необхідність, яка рано чи пізно, буде в будь-якій з країн…… Питання стоїть так – або ми сьогодні сто процентів молодого, підростаючого покоління залучаємо до світу інформаційних технологій, або ні про яке інформаційне співтовариство в Україні говорити не доведеться…… Воно повинно навчатися всім шкільним предметам, усім спеціальностям з використанням мультимедійних технологій. Його повинні вчити вчителі, які не з-під палиці будуть це робити, а серцем і душею проникнуться необхідністю використання сучасних комп’ютерних мультимедійних технологій у процесі викладання всіх дисциплін.” [1]“Стрижнем учбового процесу стає комп’ютерний експеримент, який проводиться у спеціальних навчальних пакетах – діяльнісних середовищах (ДС) або мікросвітах (англ. “microworld”). Значна частина вчителів прихильників такого навчання, як підтверджує міжнародна практика, бачить в мікросвітах можливість концентрувати увагу учнів на основній лінії (стратегії) розв’язання задач. Конструктивізм у навчанні, зокрема проведення комп’ютерних експериментів, не принижує ролі вчителя, а навпаки підіймає її на більш високий рівень – вчитель повинен так змоделювати пізнавальні процеси учнів, так організувати комп’ютерні експерименти і навчальний процес, щоб учні самостійно робили “відкриття” і будували свої власні когнітивні моделі.ДС – це інтерактивні програми, які дозволяють учням виконувати комп’ютерні експерименти у предметній області, причому від учня вимагається тільки обізнаність у самій предметній області, а не в програмуванні. Методологічний зміст такої роботи з ДС полягає у тому, що вона, по-суті, перетворює навчальний процес у самоспрямоване навчання, при якому учень має найбільшу свободу у виборі самої стратегії навчання. З існуючих педагогічних програмних засобів до ДС можна віднести, наприклад, пакет GRAN, розроблений під керівництвом академіка М.І. Жалдака (Київський ДПУ), який набув широкого розповсюдження у навчальних закладах України.” [2]“Важко переоцінити ефективність використання програм зазначеного типу і в разі поглибленого вивчення математики. Можливість провести необхідний чисельний експеримент, швидко виконати потрібні обчислення чи графічні побудови, перевірити ту чи іншу гіпотезу, випробувати той чи інший методи розв’язування задачі, вміти проаналізувати та пояснити результати, отримані за допомогою комп’ютера, з’ясувати межі можливостей застосування комп’ютера чи обраного методу розв’язання задачі має надзвичайне значення у вивченні математики.” [3]У посібнику для вчителів “Комп’ютер на уроках математики” Жалдак М.І. показав можливість використання засобів сучасних інформаційних технологій під час вивчення алгебри і початків аналізу та геометрії в середніх навчальних закладах із різними ухилами.Наш досвід використання пакету GRAN при вивченні математики в школі та на курсах підвищення кваліфікації вчителів засвідчує про підвищення зацікавленості до проведення досліджень та результатів навчання математиці.
APA, Harvard, Vancouver, ISO, and other styles
35

Zghoba, M. I., and Yu I. Hrytsiuk. "Прогнозування попиту на пасажирські перевезення таксі методами нейронної мережі." Scientific Bulletin of UNFU 31, no. 3 (April 29, 2021): 109–19. http://dx.doi.org/10.36930/40310317.

Full text
Abstract:
Розглянуто особливості прогнозування попиту на пасажирські перевезення таксі методами нейронної мережі за різних наборів вхідних даних, складу параметрів архітектури мережі, конфігурації апаратного забезпечення та його потужності. З'ясовано, що для зменшення тривалості очікування нових замовлень та відстані до клієнтів доцільно використовувати відповідні інформаційно-аналітичні системи, робота яких ґрунтується на штучному інтелекті. Це дасть змогу вирішити проблему попиту на перевезення таксі у відповідний період доби з врахуванням погодних умов, святкових, вихідних і робочих днів, а також пори року. Врахування ж наявних транспортних об'єктів – авіарейсів, потягів чи автобусів значно покращують роботу такої дорадчої системи. Використана в роботі гібридна архітектура нейро-фаззі мережі дає змогу одночасно вирішувати завдання короткотермінового прогнозування попиту на пасажирські перевезення таксі, а також проводити діагностику самої мережі, що полягає у виявленні різких змін властивостей обчислювального процесу. Для досягнення відповідної точності прогнозу в роботі опрацьовано набори вхідних даних у кількості 4,5 млн поїздок таксі. Для зменшення тривалості процедури навчання нейронної мережі організовано паралельні обчислення між різними вузлами мережі за допомогою графічних процесорів. Проведено навчання нейронної мережі на центральному процесорі, одному та двох графічних процесорах відповідно. З'ясовано, що організація паралельних обчислень на декількох графічних процесорах не завжди зменшує тривалість процедури навчання мережі, оскільки витрати на синхронізацію градієнтів між активними процесами значно перевищують користь від паралельних розрахунків. Встановлено, що за умови великого обсягу даних для організації паралельних обчислень та відповідної архітектури нейронної мережі можна досягти деякого зменшення тривалості процедури її навчання. Визначено, що зменшення тривалості процедури навчання нейронної мережі залежить від таких чинників: її архітектури, кількості параметрів навчання, конфігурації апаратного забезпечення та організації паралельних розрахунків.
APA, Harvard, Vancouver, ISO, and other styles
36

Хоцкіна, Валентина Борисівна, and Жанна Володимирівна Цимбал. "Методичні аспекти викладання дисципліни «Робота в пакеті MATLAB»." New computer technology 15 (May 2, 2017): 250–53. http://dx.doi.org/10.55056/nocote.v15i0.652.

Full text
Abstract:
Метою дослідження є виклад методичних аспектів дисципліни «Робота в пакеті MATLAB» для студентів спеціальності 121 Інженерія програмного забезпечення. Об’єктом дослідження є процес побудови графіків складних поверхонь, представлених функцією двох змінних. Предметом дослідження є використання можливостей пакету (генерація сітки; обчислення значень у вузлах сітки; побудова графіка поверхні з використанням лінійного та квадратичного сплайну). Організація вивчення дисципліни передбачає оволодіння основними методами, способами та засобами отримання, збереження, опрацювання даних; здатність до використання пакетів прикладних програм; ознайомлення з рішенням систем лінійних рівнянь із використанням різних методів; ознайомлення з високорівневою графікою, поліномами й інтерполяцією, сплайнами та формами їх реалізації. У роботі здійснено аналіз, узагальнення та систематизацію досліджень щодо використання можливостей пакету MATLAB у процесі підготовки магістерської роботи студентів спеціальності 121 Інженерія програмного забезпечення.
APA, Harvard, Vancouver, ISO, and other styles
37

Bojko, T. Gh, M. V. Ruda, M. M. Paslavskyi, S. O. Sokolov, S. V. Petrenko, and S. I. Skakovskiy. "Кібернетична природа складних ландшафтних комплексів та супра-оптимізація механізмів самовідновлення та самозбереження." Scientific Bulletin of UNFU 29, no. 5 (May 30, 2019): 134–40. http://dx.doi.org/10.15421/40290527.

Full text
Abstract:
Описано кібернетичну сутність і методи керування екологічними процесами в екосистемі, що визначають її прагнення до самозбереження і самовдосконалення, а отже, неможливі без самовідтворення і самовідновлення. Опрацьовано системно-організаційні зв'язки у природі та охарактеризовано біосферу як географічну, термодинамічну, хімічну, біотичну та кібернетичну систему. На основі аналізу вітчизняних і зарубіжних літературних джерел визначено особливості самоорганізації, самозбереження і саморегуляції біотичних систем, розкрито механізми саморегуляції екосистем, що дало змогу підійти до обґрунтування складного ландшафтного комплексу (СЛК), як системи. Системність – це загальна властивість об'єктивно існуючої єдності СЛК, їх структурованості та взаємозв'язку. Основну регуляторну функцію, яка забезпечує стійкість і надійність екосистеми, тобто її гомеостазис і гомеорезис, виконує зворотний зв'язок, в основі якого знаходяться внутрішні процеси, внутрішньосистемні зв'язки і відносини (трофічні, інформаційні та ін.), особливо зворотні зв'язки як дія у відповідь одного із внутрішніх компонентів на сильний вплив на нього з боку іншого компонента. Ієрархічність будови біосфери зумовлює й ієрархічність систем регуляції рівноваги (гомеостазу) її ландшафтних комплексів, компартментів, підсистем та ярусів. Саме ієрархічність просторово-часових характеристик живої матерії дає змогу змоделювати в просторі і часі весь спектр процесів, що забезпечують адаптацію біологічних систем. Вихідні специфічні змінні компартментів формують, з одного боку, деяку сумарну специфічну змінну об'єкта (супра-контуру), а з іншого – є входами для блоку обчислення його цільової функції, вихід якого є визначальним для організації адаптивної поведінки кожного з компартментів. Отже, схема ієрархічної оптимізації притаманна для організації насамперед природних систем (за цільовими критеріями енергоструктурного характеру). Визначивши процес "супра-оптимізації" як процес безперервної еволюції супра-систем, виділено фундаментальні особливості такого процесу, чітко сформульовано завдання функціональної організації СЛК, а також визначено яруси і зв'язки супра-контуру компартменту. Запропонована концептуальна схема може бути використана як базова модель під час постановки і вирішення найрізноманітніших проблем, що супроводжують надійність біологічної системи, зокрема – модель механізму реалізації процесів адаптації та еволюції СЛК.
APA, Harvard, Vancouver, ISO, and other styles
38

Grudkina, N. S. "Оцінка формоутворення порожнистих деталей з фланцем у процесі радіально-зворотного видавлювання енергетичним методом." Обробка матеріалів тиском, no. 2(49) (December 22, 2019): 41–46. http://dx.doi.org/10.37142/2076-2151/2019-2(49)41.

Full text
Abstract:
Грудкіна Н. С. Оцінка формоутворення порожнистих деталей з фланцем у процесі радіально-зворотного видавлювання енергетичним методом // Обробка матеріалів тиском. – 2019. – № 2 (49). - С. 41-46. Проведено математичне моделювання силового режиму процесу комбінованого радіально-зворотного видавлювання порожнистих деталей з фланцем. Використаний енергетичний метод верхньої оцінки, що дозволяє отримати дані щодо енергосилових параметрів процесу та поетапного формоутворення напівфабрикату. У розрахунковій схемі процесу комбінованого радіально-зворотного видавлювання використаний кінематичний модуль з похилою прямокутною границею. Для спрощення потужності сил деформування у зоні трапецеїдального модуля використано верхню оцінку за Коші-Буняковським. Вперше проведений порівняльний аналіз приведеного тиску деформування як функції швидкості витікання металу у вертикальному напрямку із застосуванням верхньої оцінки та в загальному вигляді. Проаналізовано вплив на величину оптимального кінематичного параметру спрощення складових приведеного тиску деформування. Встановлено, що характер теоретично отриманих кривих приведеного тиску в загальному вигляді та з використанням спрощеної оцінки зберігається для різних наборів геометричних параметрів процесу. Відмінність у отриманих оптимальних значеннях відносної швидкості витікання металу у вертикальному напрямку для прямих та спрощених обчислень може вважатися несуттєвою. Відхилення теоретично отриманих розмірів стінки стакану за ходом процесу від експериментально отриманих точкових значень не перевищує 3–7 %. Незначна взаємно розбіжність теоретично отриманих результатів пояснюється зміщенням оптимального значення відносного кінематичного параметра, який відповідає за величину приросту напівфабрикату у вертикальному напрямку. Підтверджено, що використання верхньої оцінки істотно не впливає на отримання даних щодо формоутворення та може вважатися ефективним прийомом спрощення складових приведеного тиску та прогнозування розмірів отримуваної деталі.
APA, Harvard, Vancouver, ISO, and other styles
39

Шишенко, Інна, Тетяна Лукашова, and Олександр Страх. "ФУНДУВАННЯ ЗНАНЬ У ПРОЦЕСІ ВИВЧЕННЯ МАТЕМАТИЧНИХ ПОНЯТЬ ЗАСОБАМИ ЦИФРОВИХ ТЕХНОЛОГІЙ У ФАХОВІЙ ПІДГОТОВЦІ МАЙБУТНІХ УЧИТЕЛІВ МАТЕМАТИКИ." Physical and Mathematical Education 32, no. 6 (January 27, 2022): 57–63. http://dx.doi.org/10.31110/2413-1571-2021-032-6-009.

Full text
Abstract:
Формулювання проблеми. Урахування під час навчання фахових математичних навчальних дисциплін принципу фундування знань у процесі вивчення основних математичних понять надає можливість студенту вибирати індивідуальну освітню траєкторію та специфіку майбутньої професійної діяльності. У зв'язку з цим математична освіта майбутнього вчителя математики в даний час потребує якісних змін. Цифрові технології надають широкі можливості модернізації підготовки майбутніх учителів математики. Матеріали і методи. Системний аналіз наукової, навчальної та методичної літератури; порівняння та синтез теоретичних положень; узагальнення власного педагогічного досвіду та досвіду колег з інших закладів вищої освіти, деякі загально математичні та спеціальні методи різницевого числення. Результати. У статті розглянуто особливості реалізації фундування знань у процесі вивчення математичних понять під час освоєння математичної діяльності у різних математичних курсах засобами цифрових технологій у фаховій підготовці майбутніх учителів математики на прикладі одного із досить універсальних методів знаходження скінченних сум, в основі якого лежать поняття та інструменти різницевого числення, що є дискретним аналогом інтегрування. Наведений метод проілюстровано достатньою кількістю прикладів знаходження скінченних сум, які підтверджують універсальність застосування даного методу для досить широких класів послідовностей. Важливим є саме опанування студентами наскрізної ідеї застосування універсальних методів знаходження скінченних сум, а не їх конкретна реалізація та проведення громіздких обчислень. Вважаємо, що доцільно доповнити технології навчання фахових математичних дисциплін у вищій школі провідним спеціалізованим програмним забезпеченням з математики. Висновки. Реалізація такого підходу дозволить сформувати у майбутніх учителів математики знання та уявлення про міжпредметні зв'язки у шкільному курсі математики, про можливості використання цифрових технологій в процесі вивчення шкільного курсу математики, розвивати уміння самостійно збирати, аналізувати, передавати математичну інформацію, використовувати програмні засоби та апаратні пристрої для здійснення збору, обробки, зберігання та передачі інформації, оцінювати та обирати засоби цифрових технологій для організації навчального процесу з математики, усвідомлення можливостей інформаційного середовища для забезпечення якості навчально-виховного процесу в умовах Нової української школи.
APA, Harvard, Vancouver, ISO, and other styles
40

Дияк, В. В. "АНАЛІЗ РЕЗУЛЬТАТІВ ЕКСПЕРИМЕНТАЛЬНОГО ДОСЛІДЖЕННЯ СИСТЕМИ СОЦІАЛЬНО-ЕКОНОМІЧНОЇ ПІДГОТОВКИ КУРСАНТІВ І СЛУХАЧІВ У ПРОЦЕСІ БЕЗПЕРЕРВНОЇ ОСВІТИ У НАЦІОНАЛЬНІЙ АКАДЕМІЇ ДЕРЖАВНОЇ ПРИКОРДОННОЇ СЛУЖБИ УКРАЇНИ." Духовність особистості: методологія, теорія і практика 92, no. 5 (November 29, 2019): 68–76. http://dx.doi.org/10.33216/2220-6310-2019-92-5-68-76.

Full text
Abstract:
У статті висвітлено логіку здійснення аналізу результатів експериментального дослідження впровадження системи соціально-економічної підготовки курсантів та слухачів у процесі безперервної освіти у Національній академії Державної прикордонної служби України (НАДПСУ). Узагальнено результати формувального етапу експериментального дослідження; внесено доповнення та уточнення у зміст концепції соціально-економічної підготовки курсантів і слухачів у процесі безперервної освіти у НАДПСУ; резюмовано авторські науково-дослідницькі матеріали, метою яких є формування соціально-економічної компетентності курсантів і слухачів у процесі безперервної освіти у НАДПСУ. Підсумовано, що з метою аналізу результатів експеримен­тального дослідження проводилося порівняння сформованості всіх чотирьох компонентів (мотиваційно-світоглядного, інформаційно-змістового, конативно-деонтологічного, особистісно-рефлексив­ного) та загалом соціально-економічної компетентності (СЕК) у курсантів та слухачів НАДПСУ за чотирма рівнями (високий, достатній, задовільний, низький). У процесі розподілу учасників експерименту на контрольні та експериментальні групи враховано приблизно однаковий рівень сформованості всіх компонентів і загалом СЕК на етапі вхідного контролю та можливість охопити експериментальним дослідженням курсантів і слухачів усіх напрямів підготовки в НАДПСУ. Перевірка достовірності отриманих результатів підтверджу­ється статистичними показниками обчислення критерію Фішера. Резюмовано, що досягнення високого рівня соціально-економічної компетентності майбутнього персоналу Державної прикордонної служби України можливе за умов, якщо процес соціально-економічної підготовки курсантів і слухачів орієнтувати на реалізацію розробленої системи, педагогічних умов та структурно-функціональної моделі безперервної освіти в НАДПСУ. Ключові слова: курсанти, слухачі, соціально-економічна підготовка, соціально-економічна компетентність, Державна прикордонна служба України.
APA, Harvard, Vancouver, ISO, and other styles
41

Соловйов, С. О., І. В. Дзюблик, and О. П. Мінцер. "ПРОГНОСТИЧНА МОДЕЛЬ ЕПІДЕМІЧНОГО ПРОЦЕСУ КОРОНАВІРУСНОЇ ІНФЕКЦІЇ COVID-19 В УКРАЇНІ." Medical Informatics and Engineering, no. 2 (July 13, 2020): 70–78. http://dx.doi.org/10.11603/mie.1996-1960.2020.2.11176.

Full text
Abstract:
Представлено визначення особливостей і розроблення моделі прогнозування епідемічного процесу COVID-19 в Україні на основі наявних епідеміологічних даних та існуючих тенденцій. Моделювання епідемічного процесу COVID-19 базувалося на класичній епідеміологічній моделі. Основний параметр моделі — параметр передавання SARS-COV2 був визначений чисельно з використанням наявних епідеміологічних даних: щоденних звітів Міністерства охорони здоров'я України про абсолютну кількість хворих на COVID-19. Числове визначення параметра передавання SARS-COV2 за абсолютною кількістю хворих на COVID-19 у кожному регіоні та в Україні показало тенденцію до зменшення з часом. Апроксимація отриманих числових значень параметру передавання SARS-COV2 здійснювалась між 07 квітня та 02 травня 2020 року за допомогою експоненціальної функції. Результати прогностичного моделювання показали, що до кінця літа 2020 року очікується близько 25 тис. випадків COVID-19, а пік захворюваності припадає на час дослідження (28 квітня — 05 травня 2020 року). Крім того, дослідження дозволили проаналізувати інтенсивність епідемічного процесу в різних регіонах України на підставі обчислених середніх значень передавання SARS-COV2 у період з 07 квітня по 02 травня 2020 року. Було визначено, що найбільш інтенсивний епідемічний процес у Харківській, Луганській і Миколаївській областях, який може бути корисною інформацією для прийняття відповідних управлінських рішень щодо поглиблення заходів карантину в цих регіонах. Прогнозування можливих наслідків впровадження різних програм контролю COVID-19 передбачає комплексне вивчення епідемічного процесу захворювання в цілому та протягом певних періодів часу з подальшою побудовою адекватної моделі прогнозування. Нами запропоновано просту прогностичну модель, але ефективний інструмент для прогнозування епідемічного процесу COVID-19, що може бути корисним у практичній роботі медичних працівників.
APA, Harvard, Vancouver, ISO, and other styles
42

Кислова, Марія Алімівна, and Катерина Іванівна Словак. "Використання хмарних офісних засобів у викладанні вищої математики." Theory and methods of e-learning 4 (February 28, 2014): 115–21. http://dx.doi.org/10.55056/e-learn.v4i1.379.

Full text
Abstract:
Інтеграція України у Європейський і світовий освітній простір ставить перед національною системою освіти завдання, пов’язані з необхідністю модернізації змісту освіти, і організації її адекватно світовим тенденціям і вимогам ринку праці, впровадження нових освітніх технологій з метою підвищення якості підготовки та конкурентоспроможності майбутніх фахівців, здатних до навчання протягом всього життя. Відображенням вказаних тенденцій є Національна стратегія розвитку освіти на 2012–2020 роки, відповідно до якої одним із головних напрямів державної політики є інформатизація освіти, що передбачає впровадження сучасних інформаційно-комунікаційних технологій (ІКТ) у всі рівні освітньої галузі і зокрема у методичні системи навчання математичних дисциплін.Сучасні ІКТ навчання як інноваційні педагогічні технології розглядаються у роботах О. О. Андрєєва, В. Ю. Бикова, М. І. Жалдака, В. М. Кухаренка, А. Ф. Манако, Н. В. Морзе, С. О. Семерікова, Ю. В. Триуса та ін.Проблемі ІКТ-підтримки навчання математичних дисциплін у середній та вищій школі присвячено роботи М. С. Голованя, З. В. Бондаренко, В. І. Клочка, С. А. Ракова, О. В. Співаковського, Н. В. Рашевської, Т. Г. Крамаренко, Ю. В. Триуса та інших.Крім того, актуальною залишається проблема організації та контролю самостійної роботи студентів, на яку припадає від 1/3 до 2/3 загального обсягу навчального часу студента. У дослідженнях О. В. Ващук, С. Є. Коврової, П. М. Маланюка, К. С. Собеніної, М. А. Умрик, С. В. Шокалюк доведено, що ефективним засобом підтримки самостійної роботи є сучасні ІКТ.До ІКТ навчання відносять Інтернет-технології, мультимедійні програмні засоби, офісне та спеціалізоване програмне забезпечення, електронні посібники та підручники, системи дистанційного навчання (системи комп’ютерного супроводу навчання).У процесі навчання вищої математики ІКТ доцільно використовувати для:1) подання навчального матеріалу (електронні підручники, презентації, лекційні демонстрації);2) проведення обчислень (табличні процесори, системи комп’ютерної математики, системи динамічної геометрії);3) тренування (програми-тренажери);4) забезпечення контролю (тести).Продемонструємо можливості використання хмарних офісних засобів для реалізації кожного із зазначених напрямів.Найпростішим та найдоступнішим хмарним офісним засобом є Google Docs, побудований на технології AJAX. Google Writely надає можливості створювати гіпертекст, картинки, схеми, таблиці, а також оприлюднивати документи у мережі Інтернеті. Google Cloud Connect for Microsoft Office надає можливість зберігати документи Microsoft Office у хмарному сховищі Google Docs безпосередньо з Microsoft Word, PowerPoint та Excel.Для створення електронного підручника в Microsoft Word достатньо скористатись таким алгоритмом:– підготувати необхідний матеріал за допомогою текстового редактора;– оформити заголовки стилями за допомогою вкладки «Стилі» пункту меню «Головна»;– створення навігації за допомогою вкладки «Вигляд» команда «Схема документу» (рис. 1) (надає можливість користувачеві переходити до довільного розділу підручники без перелистування сторінок);– додавання до документу змісту, за допомогою вкладки «Посилання» команда «Зміст» (рис. 2) (надає можливість користувачеві відкрити необхідний розділ одразу, як було відкрито підручник).Рис. 1. Створення навігації в електронному підручнику Синхронізація електронного підручника з Google Docs виконується автоматично або за запитом.Рис. 2. Створення змісту електронного підручника Проте використання засобів для створення презентацій не обмежується лише поданням навчального матеріалу. За допомогою Microsoft PowerPoint та Google Cloud Connector можна розробляти засоби для тренування та тестування, що забезпечують контроль засвоєння знань на різних етапах навчання. Основними перевагами Microsoft PowerPoint для розробки тестів є:– розробник не обов’язково повинен володіти навичками програмування;– можливість створювати тести як для перевірки знань, так і відпрацювання навичок;– можливість створювати тести з великою кількістю завдань;– може містити як слайди із завданнями, так і слайди з навчальними відомостями (підказки);– можливість створення тесту що передбачає: вибір єдиної правильної відповіді (з перемикачами); вибір кількох правильних відповідей (з прапорцями); встановлення відповідностей (з переміщуваними об'єктами); встановлення правильної послідовності.– у будь-який момент розробки тесту можна додавати або видаляти потрібні слайди та міняти порядок їх розташування;– кількість варіантів відповідей для вибору може бути різною на різних слайдах.Крім того, при використані Microsoft PowerPoint передбачено можливість виводу підсумків тестування у прихований текстовий файл, що надає можливість контролювати та узагальнювати результати тестування за допомогою «Менеджера тестування».Для створення тесту за допомогою Microsoft PowerPoint перед початком роботи необхідно встановити додаток «Конструктор для створення тестів в редакторі презентацій Microsoft PowerPoint» [Ошибка: источник перёкрестной ссылки не найден]. Після встановлення цього додатку з’явиться шаблон для тестів, що містить такі основні компоненти: головне вікно та вікно висновків (які є обов’язковими та не можуть бути видалені), слайди із завданнями (з вибором однієї відповіді та з вибором декількох відповідей) та навчальними відомостями (дані види слайдів можна копіювати та видаляти) (рис. 3): а) головне вікнов) слайд з завданням б) слайд з висновкамиг) слайд для подання необхідних відомостейРис. 3. Види шаблонів слайдів для створення тесту Для задання правильної відповіді та параметрів тестування необхідно скористатись відповідним значком у головному вікні тесту (рис. 3 а) після першого запуску програми тестування.Налаштування параметрів тестування відбувається у панелі «Тестування», яка встановлюється на початку першого проходження тесту (рис. 4). При виборі підпункту «Правильні відповіді» викладач одержує можливість вказати правильну відповідь на те чи інше питання або завдання (рис. 5): Рис. 4. Панель тестування Рис. 5 Встановлення правильної відповіді Після введення всіх параметрів тестування та правильних відповідей бажано встановити пароль для попередження доступу студентів до настроювання та відповідей. Останнім кроком у створенні тестів за допомогою Microsoft PowerPoint є збереження результатів у файлі з розширенням .pps (з підтримкою макросів).У процесі вивчення вищої математики виникає необхідність у здійсненні громіздких обчислень. Використання таких засобів ІКТ, як табличні процесори (електронні таблиці), надає можливість автоматизувати обчислювальний процес розв’язання задач прикладної спрямованості, зосереджуючись на побудові моделі та інтерпретації результатів обчислювального експерименту.Найпопулярнішим хмарним табличним процесором є Google Spreadsheets. Розглянемо приклад його використання для розв’язання задач лінійної алгебри.Задача. Розв’язати систему лінійних алгебраїчних рівнянь за допомогою оберненої матриці та методом Крамера: Розв’язання. Проведемо обчислення за допомогою електронної таблиці Google Spreadsheets.Введемо дані значення коефіцієнтів системи рівнянь в комірки А2:С4 – матриця А і в комірки D2:D4 – матриця В (рис. 6).Розв’яжемо систему методом оберненої матриці.Знайдемо матрицю, обернену матриці А. Для цього в комірку А9 введемо формулу =MINVERSE(A2:C4). Після цього виділимо діапазон А9:С11, починаючи з комірки, що містить формулу. Натиснемо клавіші Ctrl+Shift+Enter. Формула вставиться як формула масиву =ArrayFormula(MINVERSE(A2:C4)). Знайдемо добуток матриць A-1 та B. В комірки F9:F11 введемо формулу: =MMULT(A9:C11;D2:D4) як формулу масиву. Одержимо в комірках F9:F11 корені системи (рис. 7). Рис. 6. Введення коефіцієнтів системи Рис. 7. Розв’язування системи методом оберненої матриці Розв’яжемо систему методом Крамера. Спочатку обчислимо визначник основної матриці системи, увівши у комірку B15 формулу =MDETERM(A2:C4). Потім обчислимо визначники матриці шляхом заміни одного стовпця на стовпець вільних коефіцієнтів. У комірку В16 введемо формулу =MDETERM(D15:F17). У комірку В17 введемо формулу =MDETERM(D19:F21). У комірку В18 введемо формулу =MDETERM(D23:F25). Потім знайдемо корені системи, для чого в комірку В21 введемо: =B16/$B$15, у комірку В22 введемо: =B17/$B$15, у комірку В23 введемо: =B18/$B$15. Після чого одержимо результати, представлені на рисунку 8. Рис. 8. Розв’язування системи методом Крамера Крім того, електронні таблиці може використовуватись і для створення тестів різного виду.Таким чином, розглянуті хмарні офісні програмні засоби можна використати для підготовки та проведення різних видів навчальних занять. Ураховуючи, що пакети Google Docs та Microsoft Office Web Apps є вільно поширюваними, за умови постійного доступу до Інтернет це є прийнятним для вітчизняних ВНЗ.
APA, Harvard, Vancouver, ISO, and other styles
43

Самойленко, В., В. Григор’єва, О. Гнєдкова, and О. Котова. "ОСОБЛИВОСТІ ЗДІЙСНЕННЯ ЗАМІНИ ЗМІННИХ В ІНТЕГРАЛІ РІМАНА В КУРСІ МАТЕМАТИЧНОГО АНАЛІЗУ ПРИ ПІДГОТОВЦІ МАЙБУТНІХ ВЧИТЕЛІВ МАТЕМАТИКИ." Physical and Mathematical Education 27, no. 1 (April 26, 2021): 82–88. http://dx.doi.org/10.31110/2413-1571-2021-027-1-013.

Full text
Abstract:
В статті розглядаються особливості введення заміни змінних в інтегралі Рімана у процесі викладання курсу математичного аналізу на педагогічних спеціальностях вищих навчальних закладів. Формулювання проблеми. У зв’язку з тим, що на даний час середня загальноосвітня та професійна освіта вступили у принципово новий етап свого розвитку, характерними рисами якого є розбудова освіти на основі нових прогресивних концепцій, запровадження у навчально-виховний процес сучасних педагогічних та інформаційних технологій, науково-методичних досягнень, особливо актуальною постає проблема вдосконалення професійної підготовки вчителів математики. Математичний аналіз має провідне значення у підготовці майбутніх вчителів математики. В статті на прикладі розгляду конкретного питання даного курсу визначені математичні аспекти, які стосуються особливостей викладання матеріалу з урахуванням тих вимог, що висуваються нині до процесу підготовки фахівців у галузі освіти. Розглянуто питання заміни змінних в інтегралі Рімана для функцій, заданих на метричних просторах з мірою, зокрема, і в кратних інтегралах. Матеріали і методи. Загальні методи математичного аналізу та аналіз математичної літератури щодо обчислення кратних інтегралів та інтегралу Рімана із застосуванням методу заміни змінних, аналіз та узагальнення власного педагогічного досвіду та педагогічного досвіду провідних вчителів та науковців. Результати. В роботі розглянуто авторський підхід щодо здійснення заміни змінних в інтегралі в загальному випадку, заміни змінних в інтегралі Рімана по відрізку, а також для кратних інтегралів від функцій, заданих на метричних просторах з мірою. Висновки. Підхід, розглянутий в статті, має певні переваги, які пояснюються тим, що кратні, поверхневі та криволінійні інтеграли вписуються в дану схему та одержуються в якості прикладів при відповідному виборі простору та міри. Саме тому такий підхід при підготовці майбутніх вчителів математики сприяє професійній орієнтації навчання математичного аналізу.
APA, Harvard, Vancouver, ISO, and other styles
44

Мулеса, О. Ю., and В. Є. Снитюк. "Розробка еволюційного методу для прогнозування часових рядів." Automation of technological and business processes 12, no. 3 (November 5, 2020): 4–9. http://dx.doi.org/10.15673/atbp.v12i3.1854.

Full text
Abstract:
Процеси прийняття рішень щодо діяльності об’єктів господарювання, як правило, пов’язані з необхідністю аналізу основних показників їх діяльності. Виявлення тенденцій зміни числових показників в часі дозволяє робити припущення щодо їх майбутніх значень. Такі задачі можна звести до задач прогнозування часових рядів, які полягають у дослідженні законів зміни значень ряду та, на основі заданого критерію точності, знаходження прогнозних значень. Аналітичний огляд сучасних наукових публікацій показав, що задача прогнозування часових рядів є актуальною. Існує багато досліджень присвячених розробці ефективних гібридних методів прогнозування, в основі яких містяться декілька інших методів. Дослідження присвячене розробці прогнозної моделі, яка використовує кращі властивості базових моделей прогнозування, дозволяє підвищити точність прогнозу та його волатильність. В ході дослідження було розроблено еволюційний метод прогнозування на основі базових моделей прогнозування. Для обчислення прогнозних значень будується оптимізаційна модель, в яку входять прогнозні значення, обчислені за допомогою базових моделей. Параметри моделі можуть бути визначені за допомогою генетичного алгоритму. Критеріями якості прогнозної схеми були відносна похибка прогнозування, а також волатильність прогнозу. Такий підхід дозволяє зменшити відхилення прогнозних значень від точних. Виконано експериментальну верифікацію розробленого методу прогнозування. Виконано порівняльний аналіз результатів роботи розробленого методу та інших методів прогнозування для часового ряду «Кількість хворих на СНІД». Показано, що використання прогнозної схеми дозволяє як підвищити точність прогнозу, так і покращити його волатильність.
APA, Harvard, Vancouver, ISO, and other styles
45

Kozak, Ye. "Особливості побудови алгоритмів планування задач у рамках концепції граничних обчислень." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 43 (June 12, 2021): 36–41. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-06.

Full text
Abstract:
Розглянуто сучасні підходи, які використовуються при впровадженні автоматизованих системобробки вхідних запитів хмарних сервісів мережі «Інтернету речей» відповідно до концепції граничних обчислень. Узагальнено найбільш актуальні задачі, що виникають при побудові та впровадженні алгоритмів обробки вхідних даних за умов обмежень на обчислювальний ресурс апаратно-програмної платформи та перепускність мережевих каналів системи. Запропоновано математичну модель впровадження та масштабування програмних додатків для обробки потокових даних. що надходять змножини інформаційних вузлів глобальної мережі хмарного сервісу, а також систему оцінки і оптимізації роботи алгоритмів відповідно показника зменшення часу затримки, що виникає при обробці вхідних даних центральним вузлом інформаційної мережі. При цьому математичний апарат базується на формалізації процесу розгортання програмного додатку відповідно до типової задачі планування завдань потокової обробки даних. Результати моделювання вказують на ефективність запропонованих методів, а також наможливість побудови на їх основі цілісної методології оцінки ефективності процесів впровадження та масштабування програмних додатків у середовищі хмарного сервісу глобальної інформаційної мережі «Інтернету речей».
APA, Harvard, Vancouver, ISO, and other styles
46

Корольський, Володимир Вікторович, and Світлана Вікторівна Шокалюк. "Моделювання та генерування системи багатоваріантних задач на обчислення квадратури парабол." New computer technology 15 (April 25, 2017): 63–67. http://dx.doi.org/10.55056/nocote.v15i0.645.

Full text
Abstract:
Метою дослідження є побудова та підготовка до практичного використання математичних моделей систем багатоваріантних задач на обчислення квадратури парабол. Задачами дослідження є побудова математичних моделей систем багатоваріантних задач на обчислення площ параболічних фігур та розробка програмного засобу для їх автоматизованого генерування. Об’єктом дослідження є процес побудови системи задач на обчислення площ параболічних фігур. Предметом дослідження є математичні моделі систем багатоваріантних задач на обчислення площ параболічних фігур та програмні засоби автоматизації їх генерування. У роботі подано етапи побудови математичних моделей систем багатоваріантних задач на обчислення площ параболічних фігур. Моделювання засновано на використанні квадрата з параметром a. Діагональними вершинами квадрата є точки (0; 0) та (а; а), у квадрат вписано параболу, що проходить через три задані точки; за координатами точок виводиться рівняння параболи та формула для обчислення площі параболічної фігури, що обмежена сторонами квадрата та параболою. Надаючи параметру а різних значень, маємо систему багатоваріантних задач. На допомогу вчителю запропоновано програму-генератор задач, який реалізовано у середовищі SageMathCloud. Результати дослідження визначили напрями подальших досліджень авторського колективу, а саме – моделювання та генерування системи задач з курсів шкільної, елементарної та вищої математики.
APA, Harvard, Vancouver, ISO, and other styles
47

Romanyshyn, Ruslana. "НЕЙРОПСИХОЛОГІЧНІ ОСНОВИ ОБЧИСЛЮВАЛЬНОЇ ДІЯЛЬНОСТІ УЧНЯ ПОЧАТКОВОЇ ШКОЛИ: ТЕОРЕТИЧНИЙ АСПЕКТ." Mountain School of Ukrainian Carpaty, no. 20 (September 30, 2019): 116–20. http://dx.doi.org/10.15330/msuc.2019.20.116-120.

Full text
Abstract:
У статті розглядається обчислювальна діяльність учнів початкової школи з точки зору нейропсихологічних досліджень. На їх основі обчислювальну діяльність віднесено до вищих психічних функцій, які притаманні тільки людині та формуються упродовж життя. Встановлено закономірності побудови процесу формування та засвоєння знань і навичок в учнів початкової школи. Цей процес забезпечується завдяки роботі кори великих півкуль головного мозку. Обчислення, як будь-яка вища психічна функція забезпечується інтегративною діяльністю всього мозку. Значення кожної ділянки мозку на якість обчислювальної діяльності можна оцінити лише з точки зору нейронауки. Вивчення локальних уражень мозку дають можливість встановити різні порушення розумових процесів, обумовлених випаданням певних компонентів психічної діяльності. Оскільки обчислювальна діяльність, як і будь-яка діяльність є цілісним процесом, то при його розпаді ця цілісність заміщується окремностями та фрагментами. У цьому випадку діяльність порушується не тільки як ланцюг дій, але як ієрархізована система. При враженні окремих ділянок мозку обчислювальні операції розпадаються за законами своєї змістової будови. Обчислювальні операції є складними психологічними процесами за ґенезою, структурою та протіканням, а тому зазнають найбільших труднощів при навчанні дітей у школі.
APA, Harvard, Vancouver, ISO, and other styles
48

Ленчук, Іван Григорович, and Анатолій Йосипович Щехорський. "МЕТОДОЛОГІЯ КОМП’ЮТЕРНОГО МОДЕЛЮВАННЯ ПЕРЕРІЗУ ПІРАМІДИ У ПРОГРАМНИХ СЕРЕДОВИЩАХ." Information Technologies and Learning Tools 86, no. 6 (December 30, 2021): 170–86. http://dx.doi.org/10.33407/itlt.v86i6.4565.

Full text
Abstract:
Порушено проблему недостатньо розвинених у майбутніх учителів інформатики компетентностей з питань теорії та практики евклідової геометрії. Вивчення дисциплін програми актуалізується в статті з допомогою інноваційних освітніх інформаційно-комунікаційних технологій, у творчо-розвивальному, економному в часі візуальному демонструванні перетворювальних операцій із стереометричними фігурами та їх елементами. Запропонована методологія передбачає розробку алгоритмічних схем і програмного забезпечення графічного (графоаналітичного) вирішення стереометричних задач конструктивним методом на основі сучасних комп’ютерних технологій. Динамічні характеристики та властиві конструктивні можливості обраних у дослідженні програмно-педагогічних засобів гарантують високоточне візуальне відображення розумових уявлювано-логічних операцій з фігурами евклідової геометрії. Що стосується обчислювальних стереометричних задач, то переважна більшість програм візуалізації не може задовольнити алгоритмізований процес швидкого і результативного їх розв’язання без перезавантаження даних у роботі програми. Процес повинен йти, як це прийнято на уроках геометрії, за схемою – вхідні дані, результат. Неперервність процесу вирішення стереометричних задач, як показано в статті, забезпечується програмним середовищем комп’ютерної алгебри Mathcad Pro. На відміну від інших комп’ютерних засобів, обране програмне середовище з графічними редакторами, редакторами формул та тексту допускає безперервну побудову зображень багатокутних пірамід, перерізів і обчислення їх площ, побудову розгорток пірамід, бічної та повної поверхні зрізаних пірамід. На основі відомої процедури побудови багатокутної піраміди в Mathcad Pro, автори статті пропонують напрацьовані процедури побудови її елементів. Програмні коди для побудови елементів піраміди та її перерізів написані простою алгоритмічною мовою. Намічено шляхи і засоби інтерактивного методу роботи в навчанні інформатики й геометрії, характерними ознаками якого є отримання студентами змістових предметних знань, самопізнання і пізнання власної діяльності.
APA, Harvard, Vancouver, ISO, and other styles
49

Голодюк, Лариса Степанівна. "Геометричний матеріал як змістова основа спілкування учнів на уроці." Theory and methods of learning mathematics, physics, informatics 1, no. 1 (April 2, 2014): 52–54. http://dx.doi.org/10.55056/tmn.v1i1.420.

Full text
Abstract:
Реформування загальної середньої освіти передбачає реалізацію принципів гуманізації освіти, методологічну переорієнтацію процесу навчання на розвиток особистості учня. В зв’язку з новими завданнями школи стають все більш відчутними недоліки процесу організації навчання (репродуктивний характер діяльності учнів, стандарти у проведенні уроків, перебільшення ролі опитування в навчальному процесі), і як наслідок, пасивність учнів, слабкий вплив на розвиток особистості, зниження інтересу до навчання.Результати анкетування вчителів математики Кіровоградської області виявили, що 92% всіх опитах вважають: учням простіше вивчати алгебру, ніж геометрію. Однією із причин такого вибору є алгоритмічний підхід до вивчення даного предмета. При розв’язуванні геометричних задач учням потрібне вміння творчо мислити. Отже, сьогодні вчитель повинен бути готовим не передавати учням свої знання, а навчити самостійно здобувати. А це можливо тільки за умов творчої співпраці учнів і вчителя, коли учень свідомо, активно і самостійно здобуває знання, а вчитель удосконалює форми, методи і прийоми викладання. Пошуки шляхів удосконалення організації навчального процесу висунули на передній план диференційований підхід до навчання.Проблема диференційованого підходу навчання не є новою. Але пошуки в цій області пов’язані з необхідністю продовження в новій освітній ситуації розвитку теоретичних і практичних досліджень основних положень даної технології.Під диференційованим навчанням слід розуміти таку спеціально організовану пізнавальну діяльність учнів на уроці, яка, враховуючи індивідуальні відмінності, спрямована на оптимальний інтелектуальний розвиток кожного учня й передбачає структурування змісту навчального матеріалу, добір форм, прийомів і методів навчання відповідно до типологічних особливостей учнів [1]. Отже, диференційоване навчання – це навчання у групах, які формуються за певними спільними ознаками. Наприклад, сформувати групи можна за рівнем навчальних досягнень: А група – учні з початковим та середнім рівнями навчальних досягнень; Б група – учні з достатнім рівнем; В група – учні з високим рівнем навчальних досягнень.Навчання в групах створює умови для спілкування учнів. Одна з головних особливостей підліткового періоду – підвищений інтерес до спілкування зі своїми ровесниками, орієнтація на вироблення групових норм і цінностей. У підлітка з’являється незадоволення від того, що він у спілкуванні з дорослими нерідко опиняється у позиції підлеглого. Тому для нього зростає значимість спілкування з однолітками, де немає наперед заданої нерівності. Положення підлітка серед ровесників задовольняє його вимоги, потреби бути рівними [2]. При спілкуванні з однокласниками учень може виступати в двох ролях: як вчитель і як учень, що накладає на учня відповідальність різного роду.Структура спілкування згідно класифікації Л. Фрідмана складається з трьох взаємнозв’язаних компонентів:комунікативного (обмін інформацією між учнями в процесі спілкування);інтерактивного (організація взаємодії між учнями);перцептивного (процес взаємного сприймання партнерів по спілкуванню і встановлення на цій основі емоційного ставлення один до одного) [3].Спілкування є важливим засобом спільної діяльності учнів. В умовах спілкування школярі глибоко аналізують матеріал, всебічно розглядають досліджуваний процес, виділяють його найбільш істотні характеристики, які необхідні для розв’язування геометричних задач.Задачі з геометрії дають великі можливості для творчості учня і вчителя. При розв’язуванні задач на обчислення можна використовувати індивідуальну і парну роботу учнів при завершенні якої учні виконують взаємоперевірку і самооцінку. Вміння перевірити себе і товариша, проаналізувати свої наслідки своєї роботи, зробити з цього висновки належить до найважливіших навчальних умінь.При спілкуванні у системі “учень–учень” або “учень–група” можна створити наближений алгоритм спілкування при розв’язуванні геометричних задач:обговорити і виділити, що дано;обговорити, яким буде малюнок до задачі;з’ясувати, що необхідно знайти;обговорити способи розв’язання, вибрати раціональний (учень, який не згодний з рішенням групи, розв’язує задачу своїм методом);розв’язування задачі;обговорення та порівняння результатів.Для успішного спілкування на уроках учням слід засвоїти аксіому спілкування:“Будь терпимим та поважай погляди і думки своїх товаришів!”Зразком може стати культура спілкування учителя, яка ґрунтується на засадах:– поваги до поглядів і думок учнів (будьте терпимі, пам’ятайте, що ви маєте справу з дитячими вчинками, з дитячим світом думок і поглядів);– вмінь зрозумінь і відчуттів, що учневі під силу, а що ні;– вмінь помічати найменші успіхи учнів;– готовності завжди співпереживати досягненням і невдачам своїх дітей.
APA, Harvard, Vancouver, ISO, and other styles
50

Globa, O. V., S. P. Vysloukh, and R. O. Ivanenko. "КОМПЛЕКСНА ОПТИМІЗАЦІЯ ПРОЦЕСУ ФРЕЗЕРУВАННЯ НА ВЕРСТАТАХ ІЗ ЧПК." Transport development, no. 2(9) (August 12, 2021): 7–19. http://dx.doi.org/10.33082/td.2021.2-9.01.

Full text
Abstract:
У статті розглянуто сутність методу комплексної оптимізації, наводить- ся алгоритм визначення оптимальної геометрії інструменту, режимів різання і траєкторії руху інструменту. Наводиться експериментальне підтвердження коректності математичної моделі. Стаття присвячена створенню методики автоматизованого розрахунку оптимальних режимів фрезерування криволінійних поверхонь на верстатах із ЧПК з урахуванням різних умов різання, що забезпе- чують максимальну продуктивність або мінімальну собівартість обробки. Роз- роблена методика використовується в промисловості у вигляді системи автома- тизованого розрахунку оптимальних режимів фрезерування поверхонь кінцевими фрезами. Застосування результатів досліджень дало змогу підвищити продук- тивність обробки деталей на фрезерних верстатах із ЧПК, підвищити точність обробки, скоротити час налагодження керуючих програм на верстаті. Метод комплексної оптимізації є оптимальним із позиції витрат часу на обчислення, він дає змогу знайти глобальний екстремум функції на базі спільного використан- ня методів структурної і параметричної оптимізації в процесі вирішення задачі нелінійного програмування. Застосування запропонованого методу комплексної оптимізації процесу кінцевого фрезерування дає змогу отримати оптимальні режими різання з наявних значень на металорізальному верстаті, побудувати оптимальну траєкторію руху різального інструменту в складному геометрич- ному контурі, вибрати оптимальну чорнову і чистову фрезу і їх радіуси заточки. Вибір різального інструмента і визначення оптимального варіанту обробки на основі мінімізації тривалості процесу обробки за допомогою запропонованого алгоритму, реалізованого на верстатах із ЧПК, дає змогу підвищити загальну продуктивність виготовлення деталі в середньому до 10–15%.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography