Journal articles on the topic 'Похибки алгоритмів'

To see the other types of publications on this topic, follow the link: Похибки алгоритмів.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 48 journal articles for your research on the topic 'Похибки алгоритмів.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Мірошниченко, Іван Володимирович. "Обробка експериментальних даних про шорсткість поверхонь у аналого-цифрових системах з інтегрованим вимірювальним каналом." Адаптивні системи автоматичного управління 2, no. 21 (November 22, 2012): 46–53. http://dx.doi.org/10.20535/1560-8956.21.2012.30667.

Full text
Abstract:
Проведено аналіз узагальненої точності аналого-цифрових систем обробки експериментальних даних (СОЕД-К) з уніфікованими каналами вимірювання ординат шорсткості (УКВШ), що включає апаратурні похибки блоків УКВШ, статистичні похибки від кінцівки обсягу вибірки результатів вимірювання ординат профілю шорсткості і похибок алгоритмів обчислення статистичних характеристик шорсткості.У СОЕД-К з інтегрованими УКВШ, які використовують контактні індукційні датчики, практично не схильні до дії електромагнітних полів, є принципова можливість здійснювати процедуру обчислень параметрів шорсткості не тільки на прямолінійній базової довжині, але і на простих нелінійних поверх-ності, перетин яких у площині вимірювання становить пряму лінію, що характерно для протяжних авіаційних виробів. При цьому статистичні похибки ви-рахування характеристик шорсткості будуть пренебрежимо малими, так можливо будуть обчислюватися по великому числу ординат профілю.
APA, Harvard, Vancouver, ISO, and other styles
2

Teslyuk, V. M., and A. G. Kazarian. "Вибір оптимального типу штучної нейронної мережі для автоматизованих систем "розумного" будинку." Scientific Bulletin of UNFU 30, no. 5 (November 3, 2020): 90–93. http://dx.doi.org/10.36930/40300515.

Full text
Abstract:
Розроблено метод вибору оптимального типу ШНМ, ідеєю якого є практичне використання декількох типів ШНМ, подальшого обчислення похибок роботи кожного типу з використанням ідентичних наборів даних для навчання ШНМ, що унеможливлює вплив на результати роботи алгоритму і специфіки даних у навчальній вибірці. Запропонований метод дає змогу визначити оптимальний тип ШНМ для керування побутовими приладами у будинку. Розглянуто особливості процесу розроблення програмного забезпечення, що дає змогу провести процеси навчання, випробування та отримати вихідні результати роботи алгоритму штучної нейронної мережі. Вибір штучної нейронної мережі використовують для автоматизації обчислення значень оптимальних температурних режимів у кімнатах будинку, налаштувань параметрів освітлювальних приладів та режимів роботи системи безпеки "розумного" будинку. Наведено результати дослідження взаємозв'язку між різними типами нейронних мереж, кількістю внутрішніх шарів штучної нейронної мережі і кількістю нейронів на кожному внутрішньому шарі та зміни похибки обчислень параметрів налаштувань відносно очікуваних результатів роботи. Вирішення кожної окремої поставленої задачі за допомогою систем "розумного" будинку потребує використання різних алгоритмів машинного навчання. Великі обсяги даних, що генеруються у системах "розумного" будинку, та різноманітність типів і форматів цих даних не дає змоги створити універсальний автоматизований механізм з використанням алгоритмів штучного інтелекту, який вирішував би проблеми безпеки, енергоефективності та підтримки комфортних умов проживання користувачів. Тому використання запропонованого методу вибору оптимального типу нейронної мережі, що найкраще підходить для вирішення кожної окремої задачі, забезпечує високі показники ефективності роботи систем "розумного" будинку з мінімальними значеннями похибки отриманих автоматизованих рішень порівняно з рішеннями, що прийняла людина.
APA, Harvard, Vancouver, ISO, and other styles
3

Maidaniuk, Serhii, and Liubov Kovalova. "КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ ДИСКОВОГО ІНСТРУМЕНТУ ДЛЯ ГВИНТОВИХ КАНАВОК СВЕРДЕЛ." TECHNICAL SCIENCES AND TECHNOLOGIES, no. 1 (15) (2019): 106–14. http://dx.doi.org/10.25140/2411-5363-2019-1(15)-106-114.

Full text
Abstract:
Актуальність теми дослідження. Високі експлуатаційні характеристики свердла (точність оброблення, стійкість, надійність відведення стружки) забезпечуються точним розрахунком інструменту другого порядку. Тому розробка ефективних методик та алгоритмів профілювання є актуальною та становить практичну цінність. Постановка проблеми. Розвиток методів профілювання, які повинні забезпечувати вирішення завдань профілювання на сучасному науково-технічному рівні, у найкоротші терміни при економії ресурсів. Аналіз останніх досліджень і публікацій. Були розглянуті останні публікації у відкритому доступі, зокрема й методи геометричного твердотільного моделювання процесу формоутворення гвинтових поверхонь. Виділення недосліджених раніше частин загальної проблеми. Підвищення точності графічних методів профілювання, за рахунок використання сучасного інструментального середовища універсальних CAD-систем. Постановка завдання. Вдосконалення методики профілювання дискових інструментів, розробка алгоритму комп’ютерного моделювання процесу формоутворення стружкової канавки свердла. Виклад основного матеріалу. Пряма та зворотна задачі профілювання дискового інструменту вирішені за допомогою типових операцій поверхневого та твердотільного моделювання універсальної CAD-системи. Висновки відповідно до статті. Розроблено алгоритми та параметричну 3D модель процесу формоутворення гвинтової стружкової канавки спіральних свердел дисковими інструментами, які дозволяють вирішувати пряму та зворотну задачі профілювання, визначати можливі вихідні інструментальні поверхні при варіюванні параметрів встановлення, прогнозувати похибки профілювання.
APA, Harvard, Vancouver, ISO, and other styles
4

Pelekh, Ya M., I. S. Budz, A. V. Kunynets, S. M. Mentynskyi, and B. M. Fil. "Методи розв'язування початкової задачі з двосторонньою оцінкою локальної похибки." Scientific Bulletin of UNFU 29, no. 9 (December 26, 2019): 153–60. http://dx.doi.org/10.36930/40290927.

Full text
Abstract:
Багато прикладних задач, наприклад для проектування радіоелектронних схем, автоматичних систем управління, розрахунку динаміки механічних систем, задачі хімічної кінетики загалом зводяться до розв'язування нелінійних диференціальних рівнянь і їх систем. Точні розв'язки досліджуваних задач можна отримати лише в окремих випадках. Тому потрібно використовувати наближені методи. Під час дослідження математичних моделей виникає потреба знаходити не тільки наближений розв'язок, але й гарантовану оцінку похибки результату. Використання традиційних двосторонніх методів Рунге-Кутта призводить до істотного збільшення обсягу обчислень. Ланцюгові (неперервні) дроби набули широкого застосування у прикладній математиці, оскільки вони за відповідних умов дають високу швидкість збіжності, монотонні та двосторонні наближення, мають слабку чутливість до похибки заокруглення. У роботі виведено методи типу Рунге-Кутта третього порядку точності для розв'язування початкової задачі для звичайних диференціальних рівнянь, що базуються на неперервних дробах. Характерною особливістю таких алгоритмів є те, що за певних значень відповідних параметрів можна отримати як нові, так і традиційні однокрокові методи розв'язання задачі Коші. Запропоновано розрахункові формули другого порядку точності, які на кожному кроці інтегрування дають змогу без додаткових звертань до правої частини диференціального рівняння отримати не тільки верхні та нижні наближення до точного розв'язку, а також дають інформацію про величину головного члена локальної похибки. Для практичної оцінки похибки на кожному кроці інтегрування у разі використання односторонніх формул типу Рунге-Кутта порядку p застосовують двосторонні обчислювальні формули порядку (p–1). Зауважимо, що використовуючи запропоновані розрахункові формули в кожному вузлі сітки будуть отримані декілька наближень до точного розв'язку, порівняння яких дає корисну інформацію, зокрема в питанні вибору кроку інтегрування, або в оцінці точності результату.
APA, Harvard, Vancouver, ISO, and other styles
5

Pіlevych, Dmytro. "ТРАНСФОРМАЦІЯ СИСТЕМИ БУХГАЛТЕРСЬКОГО ОБЛІКУ В УМОВАХ РОЗВИТКУ ЦИФРОВИХ ТЕХНОЛОГІЙ." PROBLEMS AND PROSPECTS OF ECONOMIC AND MANAGEMENT, no. 3(23) (2020): 149–57. http://dx.doi.org/10.25140/2411-5215-2020-3(23)-149-157.

Full text
Abstract:
Мета статті полягає в обґрунтуванні основних напрямів трансформації системи бухгалтерського обліку в умовах розвитку цифрових технологій. У статті обґрунтовано, що цифрові технології є пріоритетом у розвитку бухгалтерського обліку, спроможним радикально трансформувати принципи його функціонування. Систематизовано ключові переваги впровадження цифрових технологій: оптимізація та економія витрат підприємства; розширення доступу стейкхолдерів до фінансової інформації; забезпечення вищої швидкості роботи з обліковою інформацією в режимі реального часу; транспарентність операцій; зростання рівня довіри з боку клієнтів; простий і зрозумілий інтерфейс та збільшення обсягів збереження облікових, податкових звітних даних. Відзначено, що некоректне чи непрофесійне використання цифрових технологій зумовлює виникнення ризиків: похибки при побудові алгоритмів; прорахунки в рішеннях щодо масштабів впровадження таких технологій; втрата даних, порушення їхньої цілісності; зниження рівня захисту й конфіденційності інформації, операцій; технічні збої; кібератаки.
APA, Harvard, Vancouver, ISO, and other styles
6

Boriak, B. "ПОРІВНЯЛЬНИЙ АНАЛІЗ ЯКОСТІ ФІЛЬТРАЦІЇ І ПРОГНОЗУВАННЯ ДВОКОНТУРНОГО І ТРИКОНТУРНОГО АДАПТИВНИХ ЕКСПОНЕНЦІАЛЬНИХ ФІЛЬТРІВ." Системи управління, навігації та зв’язку. Збірник наукових праць 1, no. 53 (February 5, 2019): 45–49. http://dx.doi.org/10.26906/sunz.2019.1.045.

Full text
Abstract:
Вступ. У статті проведено порівняльний аналіз якості фільтрації та прогнозування адаптивних експоненціальних двоконтурного і триконтурного фільтрів. Головна відмінність між дво- і триконтурним фільтрами полягає у кількості контурів фільтрації, які використовуються для оцінки якості фільтрації, та їх програмна реалізації. Цілі. Розглянути доцільність використання триконтурного фільтра-предиктора у системах керування у ролі алгоритму обробки інформації, у порівнянні із двоконтурним. Методологія. Було застосовано концепції аналізу часових рядів та математичне моделювання в пакеті Matlab. Результати. Отримано характеристики середньоквадратичних похибок фільтрації і прогнозу в залежності від кількості кроків, на які здійснюється прогнозування, та кількості кроків, що використовуються для оцінювання якості фільтрації, для двох варіацій фільтрів. Оригінальність. Вперше було визначено зв'язок між середньоквадратичними похибками (фільтрації та прогнозу) та наступними параметрами: кількість кроків, на які здійснюється прогнозування; кількість кроків, які алгоритм обробки даних використовує для оцінки якості процесу фільтрації, для дво- та триконтурного алгоритмів фільтрації та прогнозування. Проаналізовано актуальність застосування двох різних алгоритмів адаптації коефіцієнта згладжування в залежності від ресурсів ЕОМ. Практичне значення. Здійснено реалізацію запропонованих алгоритмів на мові програмування Matlab, які можуть бути інтегровані в різні автоматизовані системи управління з метою фільтрації та прогнозування значень спотвореного шумами сигналу. Це дослідження дає можливість обрати ефективний алгоритм обробки даних в залежності від поставленої задачі.
APA, Harvard, Vancouver, ISO, and other styles
7

Нечитайло, С. В., І. Є. Ряполов, Д. В. Білий, and Д. І. Ярчуківський. "Вплив носових обтічників пірамідальної форми на характеристики випромінювання бортових антенних систем." Системи озброєння і військова техніка, no. 1(61), (May 14, 2020): 136–44. http://dx.doi.org/10.30748/soivt.2020.61.16.

Full text
Abstract:
Сучасне ракетне озброєння часто оснащуються радіолокаційними головками самонаведення. Носові діелектричні обтічники, що закривають антенні системи (АС) радіолокаційних головок самонаведення сучасного ракетного озброєння, суттєво впливають на їх основні радіотехнічні характеристики. Цей вплив виражається у зниженні рівня головного максимуму діаграми спрямованості (ДС) (зниженні коефіцієнту підсилення антени), запливанні нулів ДС, а також у відхиленні її максимуму. У зв'язку з цим актуальності набуває питання оцінки негативного впливу обтічника з метою його врахування при проектуванні головок самонаведення та розробки бойових алгоритмів наведення керованої ракетної зброї. Одними з найбільш технологічних у виготовленні є обтічники пірамідальної форми, які можуть розглядатися як перспективні для гіперзвукового ракетного озброєння. У статті представлені результати розрахунку характеристик випромінювання апертурних антен, розташованих під носовими діелектричними обтічниками зазначеного типу. Для вирішення вказаної задачі використаний розроблений раніше в Харківському національному університеті Повітряних Сил метод розрахунку поля випромінюючої апертури у присутності довільної системи розсіювачів (зокрема обтічника). Метод може бути використаний для обтічників інших типів та форм. Розглянуто три типи пірамідальних носових обтічників, що відрізняються кількістю граней. Базуючись на отриманих результатах розрахунків надані рекомендації щодо вибору оптимальних товщин стінок обтічників. Оцінені похибки визначення кутових координат цілей, що вносять розглянуті обтічники при різних кутах сканування головок самонаведення.
APA, Harvard, Vancouver, ISO, and other styles
8

Коржов, І. М., Я. О. Кравченко, and Є. А. Борисенко. "Аналіз основних складових похибки визначення твердості за методом Брінелля з використанням оптичних систем." Збірник наукових праць Харківського національного університету Повітряних Сил, no. 4(70) (November 25, 2021): 105–13. http://dx.doi.org/10.30748/zhups.2021.70.15.

Full text
Abstract:
У статті приведено загальний алгоритм для визначення твердості за Брінеллем для вимірювальних приладів з оптичною системою на основі положень міжнародного стандарту ISO 6506, отримана результуюча формула для розрахунку твердості за Брінеллем для вимірювальних приладів з оптичною системою. На основі результуючої формули для розрахунку твердості отримані та проаналізовані абсолютна та відносна похибка, а також їх складові. Наведено теоретичний аналіз основних величин, що впливають на точність визначення твердості за методом Брінелля та шляхи їх зменшення для вимірювальних приладів з програмним забезпеченням для розрахунків та оптичною системою для вимірювання параметрів відбитку індентора. Приведений теоретичний аналіз складових похибок визначення твердості за методом Брінелля та шляхи їх зменшення, дають змогу більш детально оцінити похибку визначення твердості та мінімізувати вплив деяких складових відповідного устаткування для вимірювання твердості.
APA, Harvard, Vancouver, ISO, and other styles
9

Zuev, A. "РОЗРОБКА МЕТОДУ КОМПАКТНОГО ЗБЕРІГАННЯ ПОЛІВ ВИСОТ У ГІС ТА ІМІТАЦІЙНО-ТРЕНАЖЕРНИХ КОМПЛЕКСАХ БПЛА." Системи управління, навігації та зв’язку. Збірник наукових праць 6, no. 52 (December 13, 2018): 9–13. http://dx.doi.org/10.26906/sunz.2018.6.009.

Full text
Abstract:
Метою статті є розробка та дослідження методу компактного зберігання полів висот описують реальні ландшафти, які використовуються в ГІС та імітаційно-тренажерних комплексах. Визначено величини необхідної дискретизації поля для імітаційно-тренажерного комплексу. Розглянуто метод блочного кодування і декодування поля висот, який дозволяє обробляти як поодинокі, так і групові запити висот без повного декодування поля. Запропоновано практичну реалізацію алгоритму побудови безлічі векторів, які кодують поле з мінімальною похибкою. При проведенні дослідження шляхів мінімізації похибки кодування, використовувалися методи кластерного аналізу. Використання запропонованих методів дозволяє створити програмне забезпечення як для бортового комп'ютера ГІС БПЛА і наземної станції управління, так і для імітаційно-тренажерного комплексу що може бути використаний для підготовки операторів і попереднього моделювання польотного завдання в реальному масштабі часу. Проведено аналіз розподілу похибки кодування полів, наведено розподіл величин похибки по площі поля для різних типів ландшафтів. Показано швидкодію функції запиту висот для різних типів реальних ландшафтів, модель яких була синтезована за даними радіолокаційного сканування Землі.
APA, Harvard, Vancouver, ISO, and other styles
10

Avdieiev, V. "ЗАКОН РЕГУЛЮВАННЯ І ПОКАЗНИКИ СИСТЕМИ СТАБІЛІЗАЦІЇ РУХУ РАКЕТИ." Journal of Rocket-Space Technology 29, no. 4 (November 17, 2021): 158–65. http://dx.doi.org/10.15421/452118.

Full text
Abstract:
До основних показників системи стабілізації руху ракети прийнято відносити запас стійкості і точність, а також вимога до потужності виконавчого пристрою. Запас стійкості кількісно можна оцінити як відстань робочої точки у просторі коефіцієнтів закону регулювання до межі області стійкості і як запас за амплітудою і фазою частотної характеристики. В цій роботі він визначений на площині коренів характеристичного поліному як відстань від уявної осі комплексної площини до найближчого кореня. Для оцінки точності стабілізації вибрана приведена статична похибка кута рискання. Вимоги до потужності виконавчого пристрою визначаються як робота еквівалентного рульового органу на перехідному процесі компенсації постійного збурення. В умовах конкурентного середовища є необхідність вдосконалення методики встановлення залежності названих показників від параметрів ракети і закону регулювання. Об’єктом дослідження є система стабілізації плоского обертального руху ракети, предметом дослідження є точність, запас стійкості і приведена робота виконавчого пристрою на перехідному процесу компенсації збурення залежно від параметрів контуру управління. Мета полягає у розробці алгоритму встановлення залежності названих показників від наявності в законі регулювання доданків, пропорційних куту і кутовій швидкості еквівалентного рульового органу. Прийнята лінійна стаціонарна в околі певної точки траєкторії модель плоского обертального руху ракети із врахуванням інерції виконавчого пористою. Для випадку, коли з чотирьох координат вектору стану в законі регулювання враховуються тільки два, встановлені обмеження зверху запасу стійкості від параметрів виконавчого пристрою і діапазон розташування коренів характеристичного поліному на прямій, паралельній уявній осі комплексної площини. Для варіанту, у якому в законі регулювання беруться до уваги всі координати вектору стану, розроблений алгоритм оптимізації запасу стійкості і статичної похибки стабілізації. Оцінка вимоги до потужності виконавчого пристрою отримана з використанням моделі еквівалентного рульового органу у вигляді коливальної ланки, параметрами якої є жорсткість, коефіцієнт демпфування і момент інерції. Показано, що від розташування двох заданих коренів на прямій, паралельній уявній осі комплексної площини, залежать похибка стабілізації і вимога до потужності виконавчого пристрою без зміни запасу стійкості. Шляхом моделювання встановлено, що врахування в законі регулювання кута і кутової швидкості еквівалентного рульового органу виконавчого пристрою може дати покращення вибраних показників системи на 10 – 20 %. Матеріали роботи доповнюють методичну базу проектування системи стабілізації ракети.
APA, Harvard, Vancouver, ISO, and other styles
11

Тазетдінов, Валерій Абударович, and Світлана Володимирівна Сисоєнко. "НЕЙРОМЕРЕЖЕВА СИСТЕМА ПІДБОРУ ІНВЕНТАРЯ ДЛЯ НАСТІЛЬНОГО ТЕНІСУ." Вісник Черкаського державного технологічного університету, no. 1 (April 15, 2021): 79–85. http://dx.doi.org/10.24025/2306-4412.1.2021.225999.

Full text
Abstract:
У статті досліджується питання оптимізації пошукових процесів та актуальність використання штучних нейронних мереж для підбору інвентаря для настільного теннісу. Проводиться аналіз останніх публікацій в обраній темі та розглядаються переваги штучнихнейронних мереж порівняно з традиційними видами знаходження рішень. Визначаються переваги використання комп’ютерних технологій з метою автоматизації процесів підбору інвентаря для настільного тенісу. За домопомгою нейронних мереж можна розв’язати будь-яку задачу. Проблема полягає лише у тому, щоб здійснити правильний вибір архітектури та структури нейронної мережі, алгоритму її функціонування та здійснити формалізацію вихідних даних, результату та відповідного перетворення. В роботі розглядаються варіанти різних побудов штучних нейронних мереж і алгоритми їх функціонування з метою вибору оптимального алгоритму. Аналіуються недоліки та переваги мереж з алгоритмом оберненого поширення похибки, RBF (штучних нейронних мереж із радіально-базисними активаційними функціями) та карти Кохонена. В статті також розглянуто задачу кластеризації ринку інвентаря для настільного тенісу. Результатом дослідження стало створення нейромережевої інформаційно-аналітичної системи «Neuro TT» для аналізу ринку інвентаря настільного тенісу з можливістю підбору оптимального поєднання накладок і основи. Розроблено структуру такої нейромережевої системи. Вона складається з трьох інформаційних банків, в яких міститься інформація про властивості основ і накладок, а такожвідомі комбінації таких поєднань накладок і основ. Елементи системи розташовуються на сервері і є незалежними один від одного. Використання такої системи дасть змогу передбачати тенденції розвитку ринку інвентаря для настільного тенісу, виробникам планувати та змінювати структуру виробництва, покупцям (гравцям) та продавцям повністю задовольнити інформаційні потреби. Використання такої системи дозволить передбачати тенденції розвитку ринку інвентаря для настільного тенісу, виробникам планувати та змінювати структуру виробництва, покупцям (гравцям) та продавцям повністю задовільніть інформаційні потреби.
APA, Harvard, Vancouver, ISO, and other styles
12

Spizhenko, Iu, S. Luchkovskyi, and I. Kadenko. "Оцінка величини поглиненої дози в розрахунках плану опромінення злоякісних пухлин легенів у пацієнтів із застосуванням системи CyberKnife." Nuclear and Radiation Safety, no. 2(50) (June 15, 2011): 56–61. http://dx.doi.org/10.32918/nrs.2011.2(50).11.

Full text
Abstract:
Наведено результати розрахунків із заниженням на 29 % величини дози при використанні алгоритму Ray-Tracing, а також розглянуто зміщення в розподілі дози до здорової тканини пацієнта в планах із розташуванням пухлини на краю легеневої тканини з низькою масовою густиною. Запропоновано та проаналізовано проведення обов’язкового перерахунку дози алгоритмом Монте-Карло в процесі планування опромінення пацієнтів із пухлинами легенів для усунення значних систематичних похибок величини доведеної дози.
APA, Harvard, Vancouver, ISO, and other styles
13

Рязанцев, О. І., В. С. Кардашук, and А. О. Рязанцев. "Дослідження впливу параметра фільтра на якість аналого-цифрового перетворення сигналу." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 7 (263) (December 10, 2020): 29–34. http://dx.doi.org/10.33216/1998-7927-2020-263-7-29-34.

Full text
Abstract:
В статті досліджено вплив параметра фільтра нижніх частот, частоти зрізу і порядку фільтра на вході аналого-цифрового перетворювача на основну похибку перетворення при обробці аналогових сигналів.Визначено, що при прийомі аналогового сигналу при перетворенні в цифровий код велике значення має його якісний прийом. У цьому випадку доречним є використання ФНЧ від низькочастотних шумів та інших перешкод, які вливають на його якість. Встановлено, що зниження частоти зрізу фільтра нижніх частот зменшує рівень адитивної складової похибки, але при цьому в деяких випадках також знижується стабільність роботи системи. Зазначено, що використання цифрового фільтра підвищує точність та швидкість перетворення аналогової інформації в цифровий код. Визначено, що процедура нормалізації сигналів передбачає повне або часткове усунення впливу перешкод при одночасній обробці інформаційної частини сигналу. Параметри фільтра та його характеристики залежать від місця включення фільтра по відношенню до комутаційного пристрою. Розглянуті сучасні високопродуктивні пристрої введення/виведення та цифрової обробки інформації, які конструктивно виконуються у вигляді модулів введення аналогової інформації для створення комплексів на базі персональних комп’ютерів або мікроконтролерів. Для моделювання прийому аналогового сигналу запропоновано використати блоки, програмні модулі та алгоритм роботи програмного елементу обробки аналогового сигналу з бібліотеки алгоритмічних елементів. Представлені результати моделювання цифрового фільтра. Для моделювання обрано перетворення сигналу від датчика напруги. Перетворення напруги в цифровий код здійснювалось для 12–розрядного АЦП. Значення параметра фільтра змінювалось в діапазоні від 0,3 до 1,0. Результати моделювання показують, що для якісного перетворення аналогового сигналу в цифровий код необхідна попередня нормалізація з подальшою цифровою фільтрацією.
APA, Harvard, Vancouver, ISO, and other styles
14

Pantyeyev, R., and P. Bidyuk. "Модель та алгоритми гранулярної фільтрації у задачі глобальної локалізації мобільного робота." Herald of Kiev Institute of Business and Technology 45, no. 3 (November 10, 2020): 41–46. http://dx.doi.org/10.37203/10.37203/kibit.2020.45.06.

Full text
Abstract:
Методи оцінювання параметрів і станів динамічних систем – актуальна задача, результати розв’язання якої знаходять своє застосування у різних галузях діяльності, включаючи дослідження процесів у технічних системах, космологічних та фізичних дослідженнях, медичних діагностичних системах, економіці, фінансах, біотехнологіях, екології та інших. Незважаючи на значні наукові і практичні досягнення у цьому напрямі, дослідники багатьох країн світу продовжують пошуки нових методів оцінювання параметрів і станів досліджуваних об’єктів та удосконалення існуючих. Прикладом таких методів є цифрова та оптимальна фільтрація, які знайшли широке застосування у технічних системах ще у середині минулого століття, зокрема, у обробці фінансово-економічних даних, фізичних експериментах та інших інформаційних технологіях самого різного призначення. Розглядається модель та алгоритми гранулярної фільтрації на практичному прикладі – варіанті задачі глобальної локалізації мобільного робота (global localization for mobile robots) або задачі про викраденого робота (hijacked robot problem). В загальному варіанті вона полягає у визначенні положення робота за даними з сенсора. Ця задача була в цілому розв’язана рядом імовірнісних методів в кінці 90-х-початку 2000-х років. Задача є важливою і знаходить застосування у мобільній робототехніці та промисловості. Схожими за суттю є задачі позиціонування підводних човнів, літальних апаратів, автомобілів тощо. Також розглядається задача позиціонування робота. Нехай у темному лабіринті увімкнувся робот. Він має карту лабіринту та компас. У лабіринті в деяких точках встановлені позначені на карті станції, які можуть приймати і відбивати сигнал. Робот не знає, в якому місці лабіринту він знаходиться, але він може в кожний момент часу відправляти сигнал і з деякою похибкою дізнаватись відстань до найближчої до нього станції. Робот починає блукати лабіринтом, роблячи кожний крок у новому випадково обраному напрямку, але його компас також дає деяку несистематичну похибку. На кожному кроці робот визначає відстань до найближчої станції. Мета – з’ясувати координати робота у лабіринті в системі відліку, введеній на карті.
APA, Harvard, Vancouver, ISO, and other styles
15

Балик, І. В. "Удосконалення математичного апарату визначення рівня воєнної загрози." Наука і техніка Повітряних Сил Збройних Сил України, no. 3(40), (August 12, 2020): 7–12. http://dx.doi.org/10.30748/nitps.2020.40.01.

Full text
Abstract:
У статті викладено результати теоретичних досліджень щодо удосконалення математичного апарату для вирішення завдання визначення рівня воєнної загрози національній безпеці України. Запропоновано застосовувати метод “k-найближчих сусідів”, який належить до метричних алгоритмів для автоматичної класифікації об'єктів. Особливість запропонованого математичного апарату полягає в тому, що він дає змогу: враховувати динаміку зміни рівня загрози застосування воєнної сили; забезпечити меншу похибку результатів оцінювання експертами рівня загрози застосування воєнної сили.
APA, Harvard, Vancouver, ISO, and other styles
16

Kolomys, O. M. "Estimation of the Rounding Error of the Algorithm for Calculating the Estimate of the Spectral Density." Mathematical and computer modelling. Series: Physical and mathematical sciences, no. 19 (June 25, 2019): 41–46. http://dx.doi.org/10.32626/2308-5878.2019-19.41-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Vitynskiy, P. B., R. O. Tkachenko, and I. V. Izonin. "Ансамбль мереж GRNN для розв'язання задач регресії з підвищеною точністю." Scientific Bulletin of UNFU 29, no. 8 (October 31, 2019): 120–24. http://dx.doi.org/10.36930/40290822.

Full text
Abstract:
Розроблено метод ансамблювання нейронних мереж узагальненої регресії для підвищення точності розв'язання задачі прогнозування. Описано базові положення функціонування нейронної мережі узагальненої регресії. На основі цього подано алгоритмічну реалізацію розробленого ансамблю. Аналітично доведено можливість підвищення точності прогнозу із використанням розробленого ансамблю. Із використанням бібліотек мови Python, розроблено програмне рішення для реалізації описаного методу. Проведено експериментальне моделювання роботи методу на реальних даних задачі регресії. Встановлено високу ефективність розв'язання поставленої задачі із застосуванням розробленого методу на основі як середньої абсолютної похибки у відсотках, так і з використанням середньоквадратичної похибки. Здійснено порівняння роботи методу із наявними: апроксимацією поліномом Вінера на основі Стохастичного Градієнтного спуску, нейронною мережею узагальненої регресії та модифікованим алгоритмом AdaBoost. Експериментальним шляхом доведено найвищу точність розв'язання поставленої задачі розробленим методом на основі обох показників точності серед усіх розглянутих у роботі методів. Зокрема, він забезпечує більш ніж на 3,4, 4,3 та 8,3 % (MAPE) вищу точність порівняно із наявними методами відповідно. Розроблений метод можна використовувати для отримання розв'язків підвищеної точності під час вирішення прикладних завдань електронної комерції, медицини, матеріалознавства, бізнес-аналітики та інших.
APA, Harvard, Vancouver, ISO, and other styles
18

Fedorov, A., H. Khudov, S. Kovalevskyi, F. Zots, and K. Tahyan. "ОЦІНКА МОЖЛИВОСТЕЙ ВИКОРИСТАННЯ ТЕХНОЛОГІИЙ MLAT ТА ПРИЙМАЧІВ ADS-B ДЛЯ ПІДВИЩЕННЯ ТОЧНОСТІ ВИЗНАЧЕННЯ КООРДИНАТ ПОВІТРЯНИХ ОБ’ЄКТІВ." Системи управління, навігації та зв’язку. Збірник наукових праць 6, no. 58 (December 28, 2019): 3–8. http://dx.doi.org/10.26906/sunz.2019.6.003.

Full text
Abstract:
Предметом статті є вивчення можливостей використання технологій MLAT та приймачів ADS-B для підвищення точності визначення координат повітряних об’єктів. Метою є підвищення точності визначення координат повітряних об’єктів за рахунок використання технології MLAT та системи приймачів ADS-B. Завдання: аналіз різницево-далекомірного алгоритму, пропозиції щодо реалізації технології мультилатерації з використанням приймачів ADS-B в інтересах радіотехнічних військ, стислий аналіз можливостей технології ADS-B, аналіз можливостей використання приймачів ADS-B для підвищення точності визначення координат повітряного об’єкта. Використовуваними методами є: методи радіолокації, методи теорії прийому та обробки сигналів, визначення координат повітряних об’єктів. Отримані такі результати. Визначено фактори, що впливають на точність визначення координат повітряних об’єктів. Встановлено можливість застосування технології автоматичного залежного спостереження та технології мультилатерації для підвищення точності визначення координат повітряних об’єктів. Визначено інтервали відхилення часових затримок в залежності від розташування повітряного об’єкта відносно системи приймачів для забезпечення похибки визначення координат, що не перевищуватиме 300 м. Визначена залежність похибки визначення положення повітряного об’єкта від кількості приймачів. Висновки. Наукова новизна отриманих результатів полягає в наступному. Встановлено, що перевагами використання технології MLAT та системи приймачів ADS-B для визначення координат повітряного об’єкта є зменшення похибки визначення положення повітряного об’єкта. Використання технології MLAT та системи приймачів ADS-B не потребує внесення значних змін до існуючих засобів радіолокації. В свою чергу, використання технології MLAT та системи приймачів ADS-B є додатковим джерелом отримання інформації про повітряну обстановку. В подальших дослідженнях пропонується використання технології MLAT та системи приймачів ADS-B на позиціях радіотехнічних підрозділів при веденні радіолокаційного контролю повітряної обстановки
APA, Harvard, Vancouver, ISO, and other styles
19

Bychenko, V. B. "Моделювання розмірно-якісної структури стовбурів дуба звичайного за європейськими стандартами." Scientific Bulletin of UNFU 29, no. 7 (September 26, 2019): 90–95. http://dx.doi.org/10.15421/40290718.

Full text
Abstract:
Розглянуто проблеми, які виникли внаслідок набуття чинності нових стандартів на продукцію лісозаготівель. Невідповідність нормативно-інформаційної бази для таксації лісосік новим вимогам призводить до значних недоліків у плануванні виробничої діяльності лісогосподарських підприємств. Дослідження виконано на підставі дослідного матеріалу, зібраного в дубових насадженнях Придніпровського Правобережного Лісостепу на тимчасових пробних площах. Проаналізовано розподіл об'єму ділових стовбурів дуба звичайного (Quercus robur L.) на якісні категорії деревини залежно від діаметра, висоти та об'єму. Найбільш тісну лінійну залежність виявлено для абсолютних значень якісних категорій деревини від об'єму стовбура в корі. Між іншими біометричними показниками стовбура лінійна залежність відсутня або менш значуща на 5 %-му рівні. Завдяки аналізу модельовано вихід якісних категорій деревини залежно від об'єму стовбура на підставі степеневого рівняння. Пошук параметрів рівнянь виконано у MS Excel. Систематична похибка математичних моделей виходу ділової деревини виявилася близькою до нуля (1,0 %), дров та відходів – у допустимих межах (5,1 та 8,0 %), що дало змогу прийняти їх для розробки відповідних таблиць. Опрацьовані таблиці дають змогу за новими стандартами прогнозувати розподіл об'єму ділових стовбурів дуба зі стандартною похибкою 0,063-0,118 м3. Для отримання даних розподілу об'єму ділової деревини за класами розмірів, передбачених ДСТУ 1315-1-2011, розроблено в системі R алгоритм умовного розкряжування модельних дерев. Він оснований на апроксимації твірної поверхні стовбура за допомогою математичної моделі твірної A. Kozak (1988). На підставі одержаного розподілу об'єму ділової деревини за класами діаметрів досліджено його залежність від біометричних показників стовбурів. Практично для всіх розмірних категорій деревини виявлено нелінійний зв'язок. Узагальнення розмірної структури ділової деревини проведено за методикою, яка базується на дослідженні закономірностей розподілу об'єму за класами розмірів у відносних величинах. Виявлено тісну залежність відносних величин розмірної структури від діаметра модельних дерев на висоті 1,3 м. Незначна систематична похибка отриманих математичних моделей розподілу ділової деревини (-1,1-0,9 %) дала змогу прийняти їх для складання об'ємних таблиць. Розроблені за новими стандартами таблиці забезпечують прогнозування розподілу об'єму ділової деревини ділових стовбурів дуба за класами розмірів залежно від серединного діаметра лісоматеріалів без кори.
APA, Harvard, Vancouver, ISO, and other styles
20

Колгатін, Олександр Геннадійович, and Лариса Сергіївна Колгатіна. "Умови застосування модифікованих процедур обчислення тестових балів у системах організації самостійної роботи студентів." Theory and methods of learning fundamental disciplines in high school 8 (November 27, 2013): 142–47. http://dx.doi.org/10.55056/fund.v8i1.210.

Full text
Abstract:
Постановка проблеми. Здійснення зворотного зв’язку в системах організації самостійної роботи студентів у значній мірі спирається на застосування тестових технологій педагогічного вимірювання для здійснення поточного контролю і педагогічної діагностики. Під час самостійної роботи студентів комп’ютерно орієнтоване тестування з успіхом застосовується для вирішення таких завдань як актуалізація опорних знань (навчальна, стимулювально-мотиваційна функції та функція контролю), відпрацювання навичок за допомогою тестів-тренажерів (навчальна та стимулювально-мотиваційна функції), організація навчальних змагань (навчальна, виховна та стимулювально-мотиваційна функції). Надійність результатів вимірювання визначає якість управління самостійною роботою і позитивне ставлення студентів до відповідних навчальних засобів. Неперервний розвиток тестових технологій, розробка нових модифікованих процедур тестування та інтерпретації тестових результатів (наприклад, застосування вагових коефіцієнтів, спеціальних алгоритмів подання тестових завдань, врахування вгадування тощо) зумовлює потребу в розвитку методів визначення їх надійності.Мета даної роботи полягає у використанні методу статистичного моделювання для аналізу умов застосування певних процедур інтерпретації тестових балів у системах організації самостійної роботи студентів.Виклад основного матеріалу. Будь-яке порівняння має спиратися на певний критерій якості. Але кожна процедура інтерпретації тестових результатів передбачає оригінальний критерій, і різноманітність критеріїв позбавляє дослідника можливості застосувати їх для порівняння різних процедур. Більш того шкали, за якими визначаються тестові бали є різними в різних процедурах інтерпретації тестових результатів. Так за класичною моделлю маємо лінійну шкалу відносно кількості правильно виконаних завдань; моделі з ваговими коефіцієнтами, що враховують трудність або складність завдань, передбачають певні нелінійні шкали; модель IRT, яку започатковано Г. Рашем, передбачає визначення підготовленості тестованого в логітах. Одним із напрямів вирішення проблеми може бути перетворення тестового балу за процентільною шкалою, яка відображає ранжування тестованих за результатами тестування. Але, на наш погляд, такий підхід пов’язаний з певними проблемами застосування статистичних методів для обчислення надійних інтервалів, оскільки зв’язок між різними шкалами є нелінійним. В такій ситуації пропонуємо здійснювати порівняння на підставі методу статистичних випробувань. Критерієм якості процедури інтерпретації тестових результатів (Q) оберемо різницю між імовірністю правильного та неправильного висновку щодо ранжування тестованих. Статистичне моделювання процедур тестування та інтерпретації тестових результатів здійснюємо за розробленою нами моделлю [1], яка ґрунтується на апроксимації ймовірності правильної відповіді на завдання за моделлю Г. Раша. В обчислювальних експериментах кількість статистичних випробувань складала 100000, що за наближеними оцінками з імовірністю не менше 95% забезпечувало дві правильні цифри у шуканому значенні критерію Q.Аналіз результатів обчислювальних експериментів, проведений у статті [1] (рис. 1) дає підстави для висновку, що в усіх розглянутих випадках для рейтингової (нормоорієнтованої) інтерпретації тестових результатів саме класична процедура забезпечує найкращі значення запропонованого критерію якості. Проведено зіставлення таких процедур обчислення тестового бала:1. Класична процедура (ряд 1 на рис. 1), що передбачає 1 бал за кожну правильну відповідь і 0 балів в інших випадках.2. Поправка на вгадування (ряд 2 на рис. 1). Вгадування тестованим правильних відповідей призводить до систематичного завищення тестового бала. Для корекції систематичної похибки для випадку тесту з різними за формою завданнями нами на підставі підходу В. В. Кромера [2] було запропоновано процедуру обчислення тестового бала [3] в якій за правильну відповідь тестований отримує 1 бал, за відмову від відповіді – 0 балів, неправильна відповідь оцінюється величиною (–cj)/(1–cj).3. Застосування вагових коефіцієнтів, відповідних до трудності завдань (ряд 3 на рис. 1) – приклади такого підходу досить часто зустрічаються в літературі й автоматизованих системах тестування. Наприклад, вагові коефіцієнти застосовуються в тестах підсумкової державної атестації для завдань середнього і достатнього рівнів.Результати обчислювальних експериментів збігаються з відомими висновками, що класична процедура інтерпретації тестових результатів забезпечує найкраще розділення тестованих, коли їх підготовленість близька до трудності завдань тесту. Але такий тест має вузький робочий діапазон вимірювання и для тестованих з низькою або високою підготовленістю не забезпечує задовільної якості вимірювання. Сучасні педагогічні тести будуються як система завдань зростаючої трудності, що дозволяє суттєво розширити робочий діапазон вимірювання, але чутливість тесту, тобто його здатність розділяти тестованих з невеликою різницею підготовленості зменшується. Відсутні вгадуваннята неуважністьІмовірність угадування 25%, неуважність відсутняІмовірність угадування для половини завдань різної трудності складає 25%; решта завдань не припускають вгадування;неуважність відсутняІмовірність угадування для половини завдань різної трудності складає 25%; решта завдань не припускають вгадування; ймовірність помилки за неуважністю складає 10%Рис. 1. Вплив вгадування та неуважності на якість інтерпретації тестових результатів за різними процедурами обчислення тестового бала (1 – класична; 2 – з поправкою на вгадування; 3 – з ваговими коефіцієнтами). Критерій Q обчислено для випадку ранжування тестованих з різницею підготовленості (θ2–θ1) = 0,5 і середньою підготовленістю θ = (θ2 + θ1) / 2 в термінах моделі Г. Раша (θ = –2 – погано підготовлені учні; θ = 0 – середньо підготовлені учні; θ = 2 – кращі учні) для тесту, який складається з 31 завдання зростаючої трудності (параметр трудності різних завдань за моделлю Г. Раша від –2 до 2), параметр роздільної здатності за моделлю Г. Раша дорівнює 2. Враховуючі значну різницю в підготовленості тестованих, доцільно застосовувати тести, які побудовані як система завдань зростаючої трудності, що забезпечує найкращу якість тестових результатів у широкому діапазоні, як це показано за результатами обчислювальних експериментів [1].Інтерпретація тестових результатів за моделлю IRT не змінює ранжування тестованих у порівнянні з класичною процедурою інтерпретації тестових результатів. Це підтверджується теоретичним аналізом процедури визначення підготовленості тестованого за моделлю IRT і проведеними обчислювальними експериментами. В реальному тестуванні, коли параметри завдань невідомі й обчислюються за результатами тестування, звісно, спостерігатимуся розбіжності в ранжуванні, які викликатимуся похибками визначення параметрів тестових завдань за моделлю Г. Раша.В системі організації самостійної роботи студентів розглянута вище рейтингова (нормоорієнтована) інтерпретація тестових результатів доцільна для проведення певних навчальних змагань і при здійснені студентом самоконтролю, щоб надати йому можливість бачити рівень власних навчальних досягнень на фоні групи. За нормоорієнтованою інтерпретацією тестових результатів може здійснюватися підсумковий контроль.Під час організації самостійної роботи часто застосовується інтерпретація тестових результатів, що орієнтована на критерії, які задаються навчальним стандартом, викладачем або системою педагогічної діагностики й прогнозування. Так, під час здійснення актуалізації опорних знань на початку вивчення нового матеріалу рейтингова інтерпретація тестових результатів не є можливою, оскільки за умови нормального навчального процесу всі тестовані мають успішно виконати тест. Викладач задає певну межу тестового балу, що відповідає якості опорних знань, яка достатня для продовження навчання. Поточний контроль теж частіше здійснюється на основі критеріїв якості засвоєння. За рекомендаціями різних авторів повнота знань, яка ще дає можливість студенту самостійно ліквідувати прогалини складає близько 0,7. За вимогами «Критерієв оцінювання навчальних досягнень ...» [4] мінімальна позитивна оцінка 4 за 12-бальною шкалою виставляється за умови, що учень знає близько половини навчального матеріалу. Тематичний контроль може здійснюватися за нормоорієнтованою інтерпретацією тестових результатів, але для цього потрібно мати стандартизовані тести, створення яких пов’язано з ретельною апробацією цих тестів на великій вибірці з цільової групи. Якщо таких тестів немає, то неможливо перевірити якість засвоєння студентом навчального матеріалу теми через порівняння його навчальних досягнень з досягненнями невеликої і не завжди репрезентативної академічної групи студентів. В такому випадку застосування інтерпретації тестових результатів, що орієнтована на критерії, буде доцільним.Для порівняння якості різних критеріально орієнтованих процедур інтерпретації тестових результатів запропонуємо критерії Z, який за аналогією з вище описаним критерієм Q визначатиме різницю між імовірністю правильного та неправильного висновку щодо перебільшення навчальних досягнень тестованого над певною заданою межею, що встановлена викладачем або освітнім стандартом. Критерії Z є функцією від різниці Δy між навчальними досягненнями та встановленою критеріями межею. Чим більше ця різниця, тим ближче значення критерію до одиниці. Таким чином, під час здійснення аналізу якості процедур тестування й інтерпретації тестових результатів потрібно заздалегідь обрати певну різницю Δy, яка визначатиме частку повноти знань для якій визначатимуся критерій Z. Крім цього, досліджувана процедура тестування й інтерпретації тестових результатів може давати систематичну похибку в бік завищення або заниження вимірюваної повноти знань. Тому потрібно обчислювати значення критерію Z як для випадку перевищення навчальних досягнень над заданою межею, так і для протилежного випадку, коли навчальні досягнення (наприклад, повнота знань) нижче за встановленої межі.Висновки:1. Показано, що під час організації самостійної роботи доцільно застосовувати як нормоорієнтовану, так і критеріально орієнтовану інтерпретацію тестових результатів, у залежності від дидактичних завдань тестування.2. Обчислювальний експеримент підтверджує відомий висновок, що найбільша якість ранжування тестованих забезпечується, якщо тест містить завдання однакової трудності, яка близька до підготовленості тестованих. Але такий тест має вузький діапазон вимірювання.3. Для тестів з нормо-орієнтованою інтерпретацією результатів слід застосовувати класичну процедуру обчислення тестового бала (без корекції вгадування та вагових коефіцієнтів).5. Інтерпретація тестових результатів за моделлю IRT не змінює ранжування тестованих у порівнянні з класичною процедурою інтерпретації тестових результатів за відсутності похибки визначення параметрів завдань.6. Запропоновано критерій, який дає можливість порівнювати якість критеріально орієнтованих процедур інтерпретації тестових результатів, незалежно від застосованої в кожній процедурі шкали вимірювання.Напрями подальших розвідок з проблеми дослідження: доцільно провести порівняльне дослідження якості конкретних процедур тестування та інтерпретації тестових результатів в системах з критеріально орієнтованою інтерпретацією тестових результатів.
APA, Harvard, Vancouver, ISO, and other styles
21

Butenko, O., K. Zvyaschenko, K. Buravchenko, and A. Nikitin. "ОПТИМІЗАЦІЯ ПРОЦЕСУ ВИБОРУ МІСЦЯ РОЗТАШУВАННЯ СОНЯЧНИХ ЕЛЕКТРОСТАНЦІЙ З ВИКОРИСТАННЯМ ГІС-АНАЛІЗУ." Системи управління, навігації та зв’язку. Збірник наукових праць 1, no. 53 (February 5, 2019): 17–21. http://dx.doi.org/10.26906/sunz.2019.1.017.

Full text
Abstract:
В статті представлені основні засади щодо оптимізації процесу вибору місця розташування сонячних електростанцій за рахунок комплексного підходу до вибору критеріїв проведення геопросторового аналізу територій. Проаналізовані всі основні показники, які впливають на вибір. Проведено математичні розрахунки значень необхідних вхідних факторів для оптимізації процесу вибору місця розташування сонячної електростанції. Обґрунтовано розділення територія України на основні зони сонячного потенціалу Сформовані матриці неточностей з похибками між еталонними та вхідними значеннями. Обрано фактори найбільшого ступеню впливу на оптимальний вибір місця розташування сонячних панелей за інвертованим алгоритмом Флойда — Уоршелла. Приведена методика формування вирішальних правил щодо вибору місця розташування на основі відповідності статистичних показників значенням побудованої шкали відповідності якісних оцінок приналежності кожного фактора до однієї з трьох груп приналежності до виділених зон. Представлено метод оптимального вибору місця розташування під сонячні електростанції. Розглянуто математичний алгоритм для вибору оптимальної території під будівництво сонячних електростанцій(СЕС) та перевірено адекватність представленого методу шляхом порівняльного аналізу з реальними даними. Показано доцільність використання геоінформаційних технологій і методів ГІС-аналізу при побудові картографічних моделей при сумісному використанні даних космічного моніторингу та статистичних даних.
APA, Harvard, Vancouver, ISO, and other styles
22

Купіна, О. А., М. Г. Лорія, О. Б. Целіщев, and Гезеві Абдалхалех Гома Ахмед. "Iдентифікація динамічних характеристик об`єктів керування." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 6 (270) (November 10, 2021): 129–34. http://dx.doi.org/10.33216/1998-7927-2021-270-6-129-134.

Full text
Abstract:
У роботі запропоновано спосіб отримання математичної моделі об`єкту керування, у якому в якості початкових даних обирається перехідний процес об`єкту керування. Переваги такого підходу наступні: він грунтується на об’єктивних даних, що формує сам об`єкт керування; достатньо проста реалізація такого підходу; отримання адекватної і точної математичної моделі, оскільки для її отримання використовується глобальна інформація динамічної характеристики об`єкта керування. Дослідження проводиться для оптимізації технологічного процесу, що розглядається. В результаті досліджень встановлено, що якщо при виводі математичної моделі обмежитися ступенем диференціального рівняння (ступенем передатної функції) і прийняти його таким, що дорівнює двом, то розробка математичної моделі значно спрощується.У деяких випадках є можливість звести модель високого порядку до моделі більш низького, іноді навіть першого або другого порядку і при цьому істотно не програти в точності оцінки її характеристик, тобто будь-яку фізичну систему завжди можна описати моделлю порівняно невисокого порядку, нехтуючи деякими її характеристиками. Це можливо завдяки наступним факторам:завдання аналізу та синтезу набагато простіше розв`язати для моделей невисокого порядку;точність обчислень на ЕОМ зворотно пропорційна величині порядку моделі;якщо модель має перший або другий порядок, ми володіємо інформацію, необхідну для аналізу та синтезу;незважаючи на те, що моделі високого порядку і самі по собі ніколи не були абсолютно точними, в ряді випадків зниження їх порядку може дати результати, які не поступаються в точності моделі високого порядку. Дуже часто збільшення порядку моделі не підвищує її точність. Отримана в результаті розрахунків похибка ідентифікації є припустимою для розрахунків такого типу. Під час вирішення поставленої задачі в статті розв’язується такі питання:кількість точок на кривій розгону об`єкту керування, яку необхідно обрати;який обрати алгоритм ідентифікації;спосіб розміщення точок на кривій розгону об`єкту керування;вплив кількості і місця розташування точок на похибку апроксимації. Запропонований спосіб отримання математичної моделі дозволяє за рахунок регулювання вхідних величин отримати оптимальні вихідні параметри зокрема й підвищити ефективність технологічного процесу в цілому.
APA, Harvard, Vancouver, ISO, and other styles
23

Хома, Ю. В., В. В. Хома, Су Юн, and О. В. Кочан. "Аналіз ефективності методів коригування промахів у системах біометричної ідентифікації на підставі електрокардіограми." Scientific Bulletin of UNFU 30, no. 3 (June 4, 2020): 99–105. http://dx.doi.org/10.36930/40300317.

Full text
Abstract:
Здійснено порівняння ефективності різних методів коригування промахів у біометричних системах ідентифікації. Основна ідея – виявити сегменти ЕКГ-сигналу із промахами, і замість їх вилучення з процесу ідентифікації, застосувати процедуру їх коригування. Це дасть змогу отримати більший обсяг даних і кращу статистичну базу для навчання та калібрування системи. У роботі порівнювали три різні методи усунення промахів. Перший метод базується на оцінюванні статистичного відхилення вибірок від певного номінального значення на деякий поріг. При цьому аналізується не весь сигнал одразу, а тільки його частина в межах ковзного вікна. В основі двох інших методів знаходиться ідея застосування штучних нейронних мереж, зокрема одного із їх різновидів – автоенкодерів. Відмінність між методами із використанням автоенкодерів полягає у такому: в одному випадку теж використовується ковзне вікно, що дає змогу безпосередньо задавати критерії, за якими відбувається коригування, водночас як за іншим методом виконується коригування за критеріями, які система підбирає автоматично на етапі навчання. Окрім цього, в роботі описано структуру системи біометричної ідентифікації на підставі сигналу електрокардіограми. До ключових структурних компонентів системи належать: аналоговий вимірювальний блок, АЦП та низка цифрових функціональних блоків для перетворення та аналізу сигналів. Ці блоки можуть бути імплементовані на різних обчислювальних платформах, таких як мікроконтролери, ПК, хмарні сервіси). Ці цифрові блоки виконують такі перетворення, як: низькочастотна та високочастотна фільтрація, виявлення R–піків у сигналі електрокардіограми, сегментація серцевих циклів, нормалізація за амплітудою, усунення аномалій, зменшення розмірності та класифікація. Експерименти проводили на самостійно зібраному наборі даних LBDS (Lviv Biometric Dataset). Ця база даних на момент написання статті містила понад 1400 записів для 95 різних осіб. Базова похибка ідентифікації без коригування промахів становить близько 14 %. Після застосування процедури коригування промахів похибка ідентифікації зменшилась до 2,0 % для алгоритмів на підставі автоенкодерів та до 2,9 % для алгоритмів на підставі статистичних методів. При цьому найкращі результати було досягнуто за використання LDA класифікатора у поєднанні з PCA–компресією (1,7 %), а також для KNN класифікатора без PCA–компресії (2,3 %). Проте додавання процедури коригування промахів у процес біометричної ідентифікації призводить до певного збільшення часу на опрацювання сигналу (до 20 %), що однак не критично для більшості прикладних застосувань.
APA, Harvard, Vancouver, ISO, and other styles
24

Крамаренко, Тетяна Григорівна. "До питання підвищення інформаційної культури вчителя математики." New computer technology 4 (October 31, 2013): 35–36. http://dx.doi.org/10.55056/nocote.v4i1.18.

Full text
Abstract:
Необхідність формування особистості школяра як творчої, розвиток потенційних можливостей кожної дитини, підготовка її до плідної продуктивної праці викликана зростанням соціальної ролі особистості гуманного та демократичного інформаційного суспільства, динамізмом, який присутній сучасній цивілізації, інтелектуалізацією праці, швидкою зміною техніки та технології у всьому світі. Школа покликана якомога ра­ніше виявити якості творчої осо­бистості в учнів і розвивати їх в межах можливого у всіх школярів. Одним із напрямків здійснення цього завдання є впровадження інформаційно-комунікаційних технологій (ІКТ) навчання. Тому вирішення проблеми підвищення кваліфікації вчителя в галузі ІКТ потребує пошуку нових шляхів удосконалення якості його підготовки та перепідготовки, формування уміння поєднувати традиційні методичні системи навчання із новими інформаційно-комунікаційними технологіями, використовувати їх для підготовки супроводу, аналізу, коригування навчального процесу, управління навчальним процесом і навчальним закладом. На важливості формування у вчителя математики високого рівня інформаційної культури, що передбачає вміння грамотно працювати з будь-якою інформацією, акцентують увагу в наукових працях М.І. Жалдак та Г.О. Михалін. До основних компонентів відносять розуміння сутності інформації та інформаційних процесів, їх ролі в процесі пізнання навколишньої дійсності та перетворюючої діяльності людини, проблем подання, оцінки і вимірювання інформації, її сприймання і розуміння, усвідомлення сутності інтелектуально-пошукових систем. Це допоможе вчителю успішно впроваджувати в навчальний процес особистісно орієнтовані проектні технології навчання. А саме, засобами інформаційних технологій школярі зможуть вести пошук та обробку інформації, представляти результати досліджень і оформляти звіти.Вміле проведення обчислювальних експериментів засобами ІКТ в навчанні математики забезпечує ефективний розвиток творчого мислення школяра через реалізацію навчання як відкриття, навчання як дослідження. У зв’язку з цим перед вчителем постає проблема розуміння сутності неформалізованих, творчих компонентів мислення, а також постановка проблеми і добір потрібних операцій, що приводять до її розв’язання. Вкрай необхідними в ході дидактичної гри з комп’ютерною підтримкою є уміння вчителем математики добирати і разом з учнями формулювати мету дослідження, здійснювати постановку задач, висувати гіпотези самому і спонукати до цього учнів, будувати інформаційні моделі досліджуваних процесів і явищ, аналізувати їх за допомогою інформаційно-комунікаційних технологій та інтерпретувати отримані результати, систематизувати, осмислювати і формулювати висновки, узагальнювати спостереження, передбачати наслідки прийнятих рішень та вміти їх оцінювати. Суттєвим для роботи вчителя математики є питання визначення місця дидактичної гри в системі інших видів діяльності на уроці та педагогічна доцільність використання її на різних етапах роботи з навчальним матеріалом. Тобто, вчитель має бути компетентним в питанні добору раціональних методів та засобів навчання у відповідності до цілей, змісту навчання та індивідуальних особливостей учнів, їх нахилів та здібностей, в тому числі і необхідних педагогічних програмних засобів. Важливі уміння розробляти програму спостереження, досліду, експерименту; добирати послідовність операцій і дій у діяльності. В той же час слід зауважити, що використання ППЗ в навчальному процесі має бути доцільним, оптимально виправданим.Питання підвищення інформаційної культури вчителя тісно пов’язане з формуванням компетентностей вчителя з математики та з ІКТ, чому приділено значну увагу в роботах С.А. Ракова та Ю.В. Триуса. Надзвичайної ваги набуває технологічна компетентність фахівця-математика, тобто володіння сучасними математичними пакетами. В той же час в учителя має бути сформована така риса інформаційної культури, як розуміння того, що автоматизовані інформаційні системи необхідні чи достатні для розв’язування далеко не всіх задач. Розуміння сутності математичного моделювання, адекватності моделі досліджуваному явищу, коректності постановки задачі, стійкості методу розв’язування та відповідного алгоритму, впливу похибок необхідне педагогу незалежно від того, використовує він у своїй роботі комп’ютери чи ні. Уміння оцінювати доцільність використання математичних методів для розв’язування індивідуально і суспільно значущих задач визначає методологічну компетентність учителя математики.Розвиток програмного забезпечення комп’ютерів досяг такого рівня, коли в багатьох випадках алгоритм досягнення мети може побудувати сам комп’ютер. Однак, актуальним є розуміння сутності поняття алгоритму, уявлення про програмування і мови програмування, володіння основами алгоритмізації, програмування, арифметичними та логічними основами ЕОМ, елементами схемотехніки ЕОМ. І особливо для вчителів таких спеціальностей, як “Математика та основи інформатики”, котрим необхідні не тільки знання великої кількості стандартних алгоритмів, а й уміння створювати нові алгоритми і навчати цьому школярів, в тому числі і засобами ІКТ, умінь навчати учнів користуватися ними. Вирішенню окреслених проблем мають сприяти курси підвищення кваліфікації, майстер-класи методкабінетів, курс “Інформаційно-комунікаційні засоби навчання математики”. Детальні пропозиції з їх організації представлені у доповіді.
APA, Harvard, Vancouver, ISO, and other styles
25

Репетило, С. М., and Я. М. Глинський. "РЕГУЛЯРИЗАЦІЯ КРАЙОВОЇ ЗАДАЧІ З МІШАНИМИ УМОВАМИ ДЛЯ ГІПЕРБОЛІЧНОГО РІВНЯННЯ ДРУГОГО ПОРЯДКУ." PRECARPATHIAN BULLETIN OF THE SHEVCHENKO SCIENTIFIC SOCIETY Number, no. 16(60) (October 22, 2021): 11–19. http://dx.doi.org/10.31471/2304-7399-2021-16(60)-11-19.

Full text
Abstract:
Розглянуто питання коректної розв’язності та побудови розв’язку за системою ортогональних функцій крайової задачі з даними на всій межі області для лінійного однорідного гіперболічного рівняння другого порядку зі змінними за просторовими координатами коефіцієнтами. Для випадку, коли праві частини крайових умов задано з похибкою, побудовано регуляризуючий алгоритм для знаходження наближеного розв’язку розглядуваної задачі.
APA, Harvard, Vancouver, ISO, and other styles
26

Вожегова, Р. А., П. В. Лиховид, І. М. Біляєва, С. О. Лавренко, and Х. І. Бойценюк. "Модифікований метод Хольдріджа для визначення евапотранспірації." Аграрні інновації, no. 3 (March 22, 2021): 17–20. http://dx.doi.org/10.32848/agrar.innov.2020.3.3.

Full text
Abstract:
Оцінити можливості та доцільність застосу- вання методу Хольдріджа для визначення річної потен- ційної евапотранспірації для з’ясування вологодефі- циту та коригування режимів зрошення на прикладі Херсонської області шляхом порівняння результатів оцінки агрометеорологічного показника з еталонними розрахунками у програмі ФАО ET0 Calculator, що вико- ристовує алгоритм Пенмана – Монтейта (референсна евапотранспірація), а також запропонувати можливий варіант перерахунку потенційної евапотранспірації в референсну. Методи. Розрахунковий метод оцінки евапотранспірації в Херсонській області за річний період 1973–2019 років (методи Хольдріджа за біотемпературою та Пенмана – Монтейта); статистичний аналіз точності розрахунків; метод лінійної регресії для побудови трен- дів і лінійного прогнозу; регресійний аналіз для розро- блення модифікованої формули розрахунку евапотран- спірації за біотемпературою. Результати. Встановлено, що метод Хольдріджа в чистому вигляді дає похибку 37,03% під час оцінювання евапотранспірації порів- няно з методом Пенмана – Монтейта. Тренд і лінійний прогноз за обох методик оцінки евапотранспірації іден- тичний, відрізняється лише крутизною. Модифіковане рівняння Хольдріджа дозволяє зменшити похибку роз- рахунку референсної евапотранспірації до 11,41%, що дозволяє рекомендувати його для використання в аграр- ній науці та практиці. Висновки. Застосування методу Хольдріджа в чистому вигляді доцільне у кліматології, але має обмеження для сільськогосподарського вико- ристання. Модифіковане нами в результаті регресійного аналізу даних рівняння Хольдріджа можна рекоменду- вати для швидкої оцінки річної референсної евапотран- спірації в аграрному секторі.
APA, Harvard, Vancouver, ISO, and other styles
27

Павленко, В. "Щодо питання застосування нейронної мережі для автоматизації процесів розпізнавання обличчя людини." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 44 (October 30, 2021): 111–21. http://dx.doi.org/10.36910/6775-2524-0560-2021-44-18.

Full text
Abstract:
У статті розкрито питання застосування нейронної мережі для автоматизації процесів розпізнавання обличчя людини. Підкреслено, що на сьогодні, є можливість виділити щонайменше дві широкі категорії систем розпізнавання осіб: необхідність знайти людину у великій базі даних осіб (наприклад, у базі даних поліції); необхідність ідентифікувати конкретних людей у режимі реального часу (наприклад, у системі моніторингу безпеки, системі відстеження місцезнаходження тощо), або необхідно дозволити доступ групі людей і заборонити доступ усім іншим (наприклад, доступ до будівлі, комп’ютеру тощо). Наголошено, що при вирішенні різних завдань єдиними стабільними ознаками порівнюваних зображень є контурні ознаки. Така ситуація особливо характерна для випадку отримання фото однієї і тієї ж людини в різних ділянках електромагнітного спектру. Запропоновано алгоритм оператора Робертса або оператора виділення контурних ліній 2×2 заснований на оцінці та виборі фрагментів зображення з високим градієнтним рівнем. Описано оператор виділення контурних ліній 3×3 при оцінці величини градієнта певного елемента зображення враховує вплив восьми сусідніх з ним елементів. Наведено сутність алгоритму Канні. Зазначається, що послідовним застосуванням маскового фільтру оператора Канні та статистичного фільтра пошукового вікна вдалося сформувати бітове растрове зображення знімка максимально зберігши контури обличчя людини, що значно покращило результати фільтрації на відміну від стандартного порівняння з пороговим значенням. Наголошено, що виявлення кордонів відбувається при визначенні локального максимуму та мінімуму градієнта яскравості об'єкта. Наведено блок-схему високого рівня системи для розпізнавання обличчя та описано принцип роботи система. Підкреслено, що повна автоматизація процесу розпізнавання обличчя людини цілком можлива, але потребує додаткового механізму для ліквідації можливих похибок на стадії фільтрації контуру, що і послугує підставою для подальших досліджень.
APA, Harvard, Vancouver, ISO, and other styles
28

Лиско, Б. О., and В. П. Михайлишин. "Визначення постійної поправки електронних віддалемірів методами нелінійного програмування." Scientific Bulletin of UNFU 31, no. 2 (April 29, 2021): 98–102. http://dx.doi.org/10.36930/40310216.

Full text
Abstract:
Розроблено алгоритм опрацювання результатів досліджень постійної поправки електронних тахеометрів. Його суть полягає у використанні методу Гауса та знаходженні мінімуму деякої функції визначення похибок виміряних віддалей. Спочатку було досліджено кількість необхідних вимірювань для приладу: розглянуто вплив кореляційної залежності між величинами інструментальної і випадкової похибок. Далі складено систему рівнянь на підставі залежностей між довжиною виміряного створу та його відрізків у всіх комбінаціях з урахуванням постійної поправки віддалеміра. Отже, отримано умовні рівняння з однією невідомою – постійною поправкою віддалеміра. За наявністю великої кількості вимірювань розв'язання такої системи рівнянь полягає у знаходженні мінімуму деякої функції визначення похибок виміряних віддалей. При цьому найдоцільнішим вибором є критерій мінімізації максимального відхилення, який дає змогу відбракувати грубі помилки у виміряних значеннях. Отже, отримано найімовірніше значення постійної поправки віддалеміра, значення довжин виміряного створу та його відрізків, які будуть узгодженими у всіх можливих комбінаціях. Дослідження здійснено на геодезичному полігоні за оптимальних метеорологічних умов. З'ясовано, що запропоновані технологічні рішення можуть підвищити точність урівноваження значення постійної поправки віддалеміра, довжин виміряного створу та його відрізків, порівняно із відомим методом корелат, мінімум на 10 %. На прикладі дослідження тахеометра SOUTH NTS-350 встановлено, що точність отриманих апроксимованих значень довжин створу і його відрізків практично у три рази вища від задекларованої у технічних характеристиках СКП вимірювання довжин ліній цим самим приладом.
APA, Harvard, Vancouver, ISO, and other styles
29

Ostroumov, I. "ПОЄДНАННЯ КООРДИНАТНОЇ ІНФОРМАЦІЇ ЗА ЙМОВІРНІСНИМ ПІДХОДОМ." Системи управління, навігації та зв’язку. Збірник наукових праць 3, no. 49 (July 3, 2018): 3–8. http://dx.doi.org/10.26906/sunz.2018.3.003.

Full text
Abstract:
Розглянуто основні датчики координатної інформації літака цивільної авіації, що застосовуються для вирішення задачі позиціонування у просторі, а саме супутникову та інерціальну системи; алгоритми зональної навігації у обчислювальній системі літаководіння, що функціонують за сигналами наземних далекомірних (DME) та кутомірних (VOR) радіомаяків. Проаналізовано математичні підходи до об’єднання даних на різних рівнях обробки, зокрема розглянуто поєднання координатної інформації за методом максимальної достовірності. Вперше представлено структурну схему поєднання координат літака, отриманих за результатами попарного та множинного принципів позиціонування на основі даних наземних радіомаяків. Досліджено використання ймовірнісного підходу для поєднання координатної інформації літака у випадку, коли розподіли похибок вимірювання мають Гаусівський вигляд.
APA, Harvard, Vancouver, ISO, and other styles
30

Детлінг, Вольдемар Степанович. "Вибір параметрів адаптивних систем обробки експериментальних даних." Адаптивні системи автоматичного управління 1, no. 20 (November 23, 2012): 41–51. http://dx.doi.org/10.20535/1560-8956.20.2012.30701.

Full text
Abstract:
Оптимізація адаптивної системи обробки експериментальних даних зводиться до отримання аналітичної залежності для цільових функцій вимірювання, наприклад, для похибок вимірювань; знаходження співвідношень параметрів адаптивних систем при вирішення задач оптимізації; ухвалення рішення по одному з вибраних критеріїв. Для оцінки ефективності адаптивної системи необхідно передбачити сумісний аналіз ефекту від іі застосування при виконанні сукупності умов, що реалізовують прийняті принципи, і витрат різного роду на його досягнення. Для автоматизованих систем обробки експериментальних даних необхідно в алгоритми і апаратну частину закладати можливості адаптації по швидкості обробки, підвищенню точності та ін. Користувачам повинна бути надана можливість зміни взаємодії з системою в залежності як від параметрів вхідних даних, що підлягають обробці за фіксованими або змінними програмами, так і від стану бази даних по конкретній наочній області.
APA, Harvard, Vancouver, ISO, and other styles
31

Matsevytyi, Yu M., M. O. Safonov, and I. V. Hroza. "Method for Identification of the Power of a Source of Thermal Energy By Solving the Internal Reverse Problem of Thermal Conductivity." Èlektronnoe modelirovanie 43, no. 2 (April 6, 2021): 19–28. http://dx.doi.org/10.15407/emodel.43.02.019.

Full text
Abstract:
Запропоновано підхід до вирішення внутрішньої оберненої задачі теплопровідності (ОЗТ) на основі використання принципу регуляризації Тихонова та методу функцій впливу. Потужність джерела енергії подано у вигляді лінійної комбінації сплайнів Шьонберга першого порядку, а температуру — у вигляді лінійної комбінації функцій впливу. Метод функцій впливу дає можливість використовувати один і той же вектор невідомих коефіцієнтів для джерел енергії та температури. Невідомі коефіцієнти визначено за допомогою розв’язання системи рівнянь, яка є наслідком необхідної умови мінімуму функціонала Тихонова з ефективним алгоритмом пошуку параметра регуляри­зації, використання якого дає можливість одержати сталий розв’язок ОЗТ. Для регуляри­зації розв’язку ОЗТ в цьому функціоналі використовується також стабілізуючий функ­ціонал з параметром регуляризації як мультиплікативним множником. Наведено обчис­лю­вальні результати ідентифікації потужності теплової енергії по температурі, яка вимірюється з похибкою, що характеризується випадковою величиною, розподіленою за нормальним законом.
APA, Harvard, Vancouver, ISO, and other styles
32

Dudnik, Andrey. "МЕТОД ВИМІРЮВАННЯ ВІДСТАНІ МІЖ ОБ’ЄКТАМИ СЕНСОРНИХ МЕРЕЖ ЗАСОБАМИ МІКРОПРОЦЕСОРНОГО ФАЗОМЕТРА." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 2 (12) (2018): 136–41. http://dx.doi.org/10.25140/2411-5363-2018-2(12)-136-141.

Full text
Abstract:
Актуальність теми дослідження. Нині безпровідні сенсорні мережі є важливим інструментом для дослідження фізичного світу. Їхня важливість пов’язана з новими можливостями використання, завдяки таким характеристикам, як відсутність необхідності в кабельній інфраструктурі, мініатюрних вузлах, низькому енергоспоживанні, вбудованому радіоінтерфейсі, досить високій потужності передачі, відносно низькій вартості. Тому існує проблема створення нових засобів, що покращили б ефективність їх використання, що б дало змогу розширити сфери застосування. Постановка проблеми. У процесі розроблення таких систем розробникам доводиться вирішувати суперечність між зниження точності вимірювання відстані, зі зростанням дальності розташування об’єктів, обмеженою потужністю передавачів і дорогою вартістю спеціальних вузлів, що отримують точні координати із супутника. Наявність цих обмежень підвищує імовірність похибок при локалізації об’єктів у безпровідних сенсорних мережах. Аналіз останніх досліджень і публікацій. Були розглянуті останні публікації у відкритому доступі, включаючи існуючі алгоритми вимірювання відстані та задачі енергоефективності передавачів. Виділення недосліджених раніше частин загальної проблеми. Підвищення точності вимірювання відстані заобів, що використовують існуючі алгоритми вимірювання відстані. Постановка завдання. Удосконалення методу вимірювання відстані пристроями безпровідних сенсорних мереж, шляхом застосування мікропроцесорних фазометрів. Виклад основного матеріалу. Локалізація об’єктів відбувається за допомогою методу TDOA (Time Difference of Arrival). Дані, що були одержані після використання цього методу, надсилаються до мікропроцесорного фазометра, який визначає період між фазами радіо- та ультразвукового сигналу, що є пропорційною величиною до відстані між об’єктами. Висновки відповідно до статті. Запропонований метод дозволяє покращити точність процесу локалізації об’єктів у безпровідних сенсорних мережах.
APA, Harvard, Vancouver, ISO, and other styles
33

Мулеса, О. Ю., and В. Є. Снитюк. "Розробка еволюційного методу для прогнозування часових рядів." Automation of technological and business processes 12, no. 3 (November 5, 2020): 4–9. http://dx.doi.org/10.15673/atbp.v12i3.1854.

Full text
Abstract:
Процеси прийняття рішень щодо діяльності об’єктів господарювання, як правило, пов’язані з необхідністю аналізу основних показників їх діяльності. Виявлення тенденцій зміни числових показників в часі дозволяє робити припущення щодо їх майбутніх значень. Такі задачі можна звести до задач прогнозування часових рядів, які полягають у дослідженні законів зміни значень ряду та, на основі заданого критерію точності, знаходження прогнозних значень. Аналітичний огляд сучасних наукових публікацій показав, що задача прогнозування часових рядів є актуальною. Існує багато досліджень присвячених розробці ефективних гібридних методів прогнозування, в основі яких містяться декілька інших методів. Дослідження присвячене розробці прогнозної моделі, яка використовує кращі властивості базових моделей прогнозування, дозволяє підвищити точність прогнозу та його волатильність. В ході дослідження було розроблено еволюційний метод прогнозування на основі базових моделей прогнозування. Для обчислення прогнозних значень будується оптимізаційна модель, в яку входять прогнозні значення, обчислені за допомогою базових моделей. Параметри моделі можуть бути визначені за допомогою генетичного алгоритму. Критеріями якості прогнозної схеми були відносна похибка прогнозування, а також волатильність прогнозу. Такий підхід дозволяє зменшити відхилення прогнозних значень від точних. Виконано експериментальну верифікацію розробленого методу прогнозування. Виконано порівняльний аналіз результатів роботи розробленого методу та інших методів прогнозування для часового ряду «Кількість хворих на СНІД». Показано, що використання прогнозної схеми дозволяє як підвищити точність прогнозу, так і покращити його волатильність.
APA, Harvard, Vancouver, ISO, and other styles
34

Ніколаєнко, Анатолій Миколайович. "ПРОГНОЗУВАННЯ ТЕМПЕРАТУРИ МЕТАЛУ ПІД ЧАС ВИРОБНИЦТВА АЛЮМІНІЄВОЇ КАТАНКИ." Scientific Journal "Metallurgy", no. 1 (July 22, 2021): 60–66. http://dx.doi.org/10.26661/2071-3789-2021-1-08.

Full text
Abstract:
Запропоновано методику розрахунків температурного графіка в технологічній лінії ливарно-прокатного агрегату з виробництва алюмінієвої катанки, яку створено на підставі аналізу літературних джерел, присвячених математичному моделюванню подібних процесів. Прогнозування температури металу здійснюється з використанням існуючих формул і рівнянь, за допомогою яких обчислюють змінювання температури зливка у процесі охолодження кристалізатора водою; повітряне охолодження заго- товки на шляху від кристалізатора до прокатного стана та катанки під час укладання її в бунт; змінювання температури штаби протягом гарячої прокатки; зменшення її температури за примусовим охолодженням емульсією у прокатному стані та катанки у гартувальному пристрої. Похибка прогнозу температури заготовки на виході з ливар- ного колеса складає 1,7%, а перед прокатним станом 0,8%. Розрахункова темпера- тура катанки на виході з прокатного стана відрізняється від фактичної на 3%, а після гартувального пристрою розбіжність складає 1,3%. Модельна температура катанки у кінці технологічної лінії майже співпадає з фактичною. Наявність математичної моделі термограми алюмінієвого зливка дає змогу дослідити вплив різноманітних теплових втрат, що відбуваються за кристалізації металу, на температуру заготовки після ливарного колеса, зафіксувати та зрозуміти характер змінювання температури штаби від першої до останньої кліті прокатного стана, обчислити температуру катанки після її охолодження в гартувальному пристрої. Все це дає змогу обґрунтовано кори- гувати технологію на окремих ділянках ливарно-прокатного агрегату й удосконалю- вати алгоритми управління технологічними параметрами та механізмами.
APA, Harvard, Vancouver, ISO, and other styles
35

Pasternak, Volodymyr, Olexandr Slysh, and Vitalii Nazarenko. "Розмірно-якісна структура стовбурів Quercus robur L. у деревостанах вегетативного походження Лівобережного Лісостепу України." Наукові праці Лісівничої академії наук України, no. 22 (June 10, 2021): 165–72. http://dx.doi.org/10.15421/412114.

Full text
Abstract:
Для досліджень розмірно-якісної структури деревини стовбурів Quercus robur L. використано дослідні дані, зібрані в деревостанах вегетативного походження Лівобережного Лісостепу на тимчасових пробних площах. Проаналізовано розподіл об'єму ділових стовбурів дуба звичайного за розмірно-якісними категоріями деревини залежно від діаметра, висоти та об'єму. Найтіснішу лінійну залежність від об'єму стовбура в корі виявлено для абсолютних значень об’єму ділової деревини. Пошук параметрів рівнянь виконано у MS Excel. Систематична похибка математичних моделей виходу ділової деревини становить 1,0%. Для отримання даних розподілу об'єму ділової деревини за класами товщини, передбачених ДСТУ 1315-1-2001, розроблено алгоритм умовного розкряжування модельних дерев, який базується на апроксимації твірної поверхні стовбура за допомогою математичної моделі функції Riemer–Gadow–Sloboda. Розмірну структуру ділової деревини узагальнено за методикою, що базується на встановленні закономірностей розподілу об'єму за класами товщини у відносних величинах. Виявлено тісну залежність (коефіцієнт детермінації моделей R2 = 0,68-0,82) відносних величин розмірної структури від діаметра модельних дерев на висоті 1,3 м. Порівняння поданих нормативів з даними розробки лісосік рубок головного користування 2019-2020 рр. показало, що характер розподілу деревини за класами товщини є подібним з незначними відхиленнями. Розроблені за новими стандартами таблиці забезпечують прогнозування розподілу об'єму ділової деревини ділових стовбурів дуба звичайного за класами товщини, за серединним діаметром лісоматеріалів без кори залежно від діаметра на висоті 1,3 м.
APA, Harvard, Vancouver, ISO, and other styles
36

Kryvchenko, Yuri. "КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ САМООРГАНІЗАЦІЇ КЛАСТЕРНИХ СИСТЕМ: ЗАЛЕЖНІСТЬ СТРУКТУРИ ВІД ОСОБЛИВОСТЕЙ ГЕНЕЗИСУ." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 4 (14) (2018): 153–61. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-153-161.

Full text
Abstract:
Актуальність теми дослідження. Перколяційні методи показують високу ефективність під час дослідження речовини, генезису й еволюції зв'язкових областей у матеріалах. У таких задачах вивчається і кластерна система фізичного тіла, і її вплив на об’єкт загалом. Вивчення структури та властивостей перколяційних кластерів дозволить досліджувати і прогнозувати поведінку об’єктів (твердих тіл) у різних умовах зовнішнього середовища, генезис їх утворень у часі. Постановка проблеми. Практичне дослідження кластерних систем у твердих тілах пов’язано зі складністю і трудомісткістю експериментів. Основні проблеми полягають у тому, що для отримання достовірної інформації про структуру і властивості необхідно синтезувати кластери із широким діапазоном параметрів і створити надійну систему їх діагностики. Аналіз останніх досліджень і публікацій. У статті наведено огляд останніх публікацій в українських і закордонних журналах, включаючи експериментальні й теоретичні роботи, що містять дослідження самоорганізованої критичності. Виділення недосліджених частин загальної проблеми. У наведених дослідженнях розширюються можливості опису процесів генерації та еволюції кластерних систем у твердих тілах; міститься гіпотеза, що дозволяє істотно збільшити кількість варіантів кластероутворення. Постановка завдання. Провести імітаційне моделювання кластероутворення із взаємодіючими елементами за допомогою методу Монте-Карло. Визначити залежності параметрів перколяційних систем, що самоорганізуються, від ступеня самоорганізації, довжини кореляції, швидкості генерації системи та інших параметрів. Отримати аналітичні вирази залежностей та значення відносної похибки. Виклад основного матеріалу. Для вирішення задач, пов’язаних із практичним дослідженням кластерних систем, розроблено програмний комплекс моделювання кластероутворення, у якому імітується взаємодія кластеркластер і кластер-частка. У моделі вирішується багатовимірна перколяційна задача. Як алгоритм зростання кластерів використовується шлях послідовного нарощування заданої кількості часток. Висновки відповідно до статті. Комп'ютерні розрахунки, проведені, зокрема, методом Монте-Карло, дають найбільш надійні передбачення властивостей перколяційних систем. У роботі отримані аналітичні вирази для залежностей потужності нескінченного кластера, радіус-вектора центра мас, ступеня анізотропії та фрактальної розмірності від відстані агрегації, від кількості часток, генерованих на кожній ітерації, та від кількості актів взаємодії між елементами кластерної системи.
APA, Harvard, Vancouver, ISO, and other styles
37

ГАНДЗЮК, Микола, Дмитро ГАНДЗЮК, and Богдан ШУМІК. "РОЗРОБКА МЕТОДИКИ ОПЕРАТИВНОГО ПЛАНУВАННЯ РОБОТИ АВТОМОБІЛІВ НА МІЖМІСЬКИХ МАРШРУТАХ." СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 2, no. 17 (November 14, 2021): 47–61. http://dx.doi.org/10.36910/automash.v2i17.634.

Full text
Abstract:
В даний час успішна робота всіх галузей народного господарства неможлива без ефективного транспортного обслуговування. Організація роботи транспорту повинна забезпечувати ефективне постачання промислового виробництва, сільського господарства, інших галузей народного господарства, а також задовольняти потреби населення в перевезеннях з системних позицій. Комплексний підхід до організації та планування перевезень вимагає досягнення мінімальних витрат як у всій системі транспортного обслуговування, так і в окремих її елементах. Вирішення цього завдання неможливо без заміщення існуючих раніше технологій і методів організації і планування транспортного процесу на сучасні. Сучасні вимоги до організації перевізного процесу та якості виконуваних перевезень на автомобільному транспорті диктують необхідність застосування нових організаційних і технологічних рішень в плануванні перевезень з використанням програмно-цільових і логістичних принципів. Існуюча організація системи оперативного планування не завжди відповідає реальним потребам учасників процесу вантажних автомобільних перевезень. Основним недоліком на сьогоднішній день є те, що методологічна база сегментована і описує окремі етапи планування процесу перевезень. Методики, які працюють сьогодні, присвячені окремим завданням, таким як визначення оптимальної вантажопідйомності парку рухомого складу, розрахунок техніко експлуатаційних показників, в тому числі необхідної кількості автомобілів, розподіл рухомого складу за заявками із застосуванням методів лінійного програмування, складання графіка роботи автомобілів, розрахунок витрат на перевезення та інші. Виконання такого різноманіття розрізнених операцій і завдань в сучасних умовах без комплексного підходу до їх вирішення, а також без автоматизації переробки значних обсягів інформації неефективне. Крім того методики розрахунку необхідної кількості автомобілів мають серйозні похибки, це виражається в невідповідності розрахункових і фактичних величин. Незважаючи на те, що останніми роками ведеться активна розробка і впровадження на автотранспортні підприємства програм автоматизованого документообігу та планування роботи автомобілів, в даний час не існує методики, яка забезпечує комплексне планування та рішення перерахованих вище завдань з урахуванням специфіки міжміських перевезень, тоді як сучасні тенденції розвитку автотранспорту в Україні пов'язані з інтенсивним їх розвитком. Ключові слова: перевезення, техніко-експлуатаційні показники, міжміський маршрут, система, оперативне планування, заявка, методика, алгоритм, автоматизація, методологічна база.
APA, Harvard, Vancouver, ISO, and other styles
38

НОВАК, Сергій, Михайло НОВАК, and Варвара ДРІЖД. "ОЦІНЮВАННЯ ТЕПЛОФІЗИЧНИХ ВЛАСТИВОСТЕЙ РЕАКТИВНИХ ВОГНЕЗАХИСНИХ ПОКРИТТІВ ДЛЯ СТАЛЕВИХ КОНСТРУКЦІЙ." Науковий вісник: Цивільний захист та пожежна безпека, no. 2(12) (December 23, 2021): 69–81. http://dx.doi.org/10.33269/nvcz.2021.2(12).69-81.

Full text
Abstract:
Математичні моделі для теплофізичних властивостей реактивного вогнезахисного покриття, що спучується, які застосовано в процедурі щодо визначення цих властивостей, наведеній в EN 13381-8 і ДСТУ Б В.1.1-17, не враховують повною мірою особливості процесу теплопровідності в такому покритті в умовах вогневого впливу. Це може призводити до значних похибок у встановленні його товщини, необхідної для забезпечення нормованих класів вогнестійкості сталевих конструкцій (колон і балок). У дослідженні ставилось за мету вдосконалити процедуру (що існує) з’ясування теплофізичних властивостей такого вогнезахисного покриття шляхом застосування уточненої моделі для них. За його результатами розроблено модифіковану процедуру визначення теплофізичних властивостей реактивних покриттів, що спучуються, які призначено для вогнезахисту сталевих конструкцій, в якій вихідними даними є температури в печі і сталі для ненавантажених коротких конструкцій, отримані під час випробування за EN 13381-8 або ДСТУ Б В.1.1-17 в умовах вогневого впливу за стандартного температурного режиму. Обґрунтовано застосування в цій процедурі уточненої моделі, в якій враховано залежність коефіцієнта теплопровідності такого вогнезахисного покриття від температури, його початкової товщини і коефіцієнта поперечного перерізу сталевої конструкції. З’ясовано алгоритм розрахунку теплофізичних властивостей покриття за модифікованою процедурою. Визначено напрями подальших досліджень, які орієнтовані на оцінювання достовірності результатів, отримуваних за розробленою модифікованою процедурою
APA, Harvard, Vancouver, ISO, and other styles
39

Губаревич, О. В., and І. В. Мелконова. "Імітаційне моделювання асинхронного електродвигуна для підвищення рівня діагностичних систем." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 1(271) (February 8, 2022): 18–23. http://dx.doi.org/10.33216/1998-7927-2022-271-1-18-23.

Full text
Abstract:
Враховуючи досить широку сферу застосування асинхронних двигунів та складні умови їх експлуатації з постійно зростаючою ціною відмови, стрімко зростають і вимоги до їх надійності, своєчасного визначення стану та часу безвідмовної роботи, що забезпечує надійну і непереривну роботу асинхронних двигунів. Для підвищення рівня надійності та непереривної роботи асинхронних електродвигунів необхідно проводити удосконалення вже існуючих та розробку нових методів їх діагностування, що відбувається шляхом проведення досліджень процесів при різних дефектах двигунів з використанням сучасних засобів, зокрема імітаційного моделювання, за допомогою котрого є можливість побудови моделі, що описують процеси так, як вони проходили б у дійсностіУ роботі проведено аналіз принципу запропонованої імітаційної моделі асинхронного електродвигуна та проведено порівняння одержаних результатів моделювання з розрахунковими даними за класичною методикою, яка приведена в роботі.Максимальна похибка при порівнянні параметрів знаходиться у межах 0,045–6,365 %, що підтверджує адекватність моделі та великий рівень точності імітаційної моделі для якої були проведені розрахунку. Крім того, модель що розглядається у роботі, дає можливість створювати несиметричне обертове поле статора для проведення подальших досліджень пошкоджень обмотки при міжвиткових замиканнях, що є дуже актуальним питанням при визначенні технічного стану двигуна.У використовуваній досліджуваній математичній моделі асинхронного двигуна передбачений алгоритм врахування зміни взаємної індуктивності обмоток від зміни комплексного опору однієї або декількох обмоток, таке удосконалення моделі дозволить суттєво збільшити уяву про динамічні процеси, які реально відбуваються у двигуні з несиметричними обмотками, а також забезпечити подальший розвиток проведення діагностичних заходів з виявленням ступеню пошкодження обмотки статору. Для проведення досліджень з більш широким колом можливих дефектів, що впливають на режими роботи двигунів слід використовувати математичну модель асинхронного двигуна з можливостю створення несиметричного обертаючогополя виконану в «загальмованих координатах»з врахуванням втрат в сталі та механічних втрат.
APA, Harvard, Vancouver, ISO, and other styles
40

Kopchak, B., and A. Kushnir. "РОЗРОБКА ТА РЕАЛІЗАЦІЯ БЛОКУ НЕЧІТКОЇ ЛОГІКИ МАКСИМАЛЬНОГО ТЕПЛОВОГО ПОЖЕЖНОГО СПОВІЩУВАЧА З ВИКОРИСТАННЯМ ПЛАТИ ARDUINO." Fire Safety 39 (December 29, 2021): 32–42. http://dx.doi.org/10.32447/20786662.39.2021.04.

Full text
Abstract:
Вступ. Для виявлення полуменевих пожеж одними з найкращих є теплові пожежні сповіщувачі. Вони найпростіші, не дорогі, прості та дешеві в обслуговуванні, дуже надійні, мають хорошу стійкість до різноманітних завад порівняно з іншими типами сповіщувачів, однак, мають найбільшу інерційність спрацювання. Існує ряд об’єктів, де виникають полуменеві пожежі або де є значне забруднення і тоді теплові пожежні сповіщувачі є незамінними у використанні. Загалом, теплові пожежні сповіщувачі більш стійкі до несприятливих умов середовища порівняно з іншими типами сповіщувачів. Зменшити час виявлення загорання тепловими пожежними сповіщувачами можна завдяки використанню новітніх технологій при розробці алгоритмів роботи на основі нечіткої логіки, нейронних мереж та сучасних мікроконтролерів. Ці математичні апарати дають змогу покращити технічні характеристики теплових сповіщувачів, зменшити їхню інерційність спрацювання. Вони також можуть зменшити хибність спрацювання пожежного сповіщувача та точно розпізнати загорання.Мета роботи. Розробити блок нечіткої логіки максимального теплового пожежного сповіщувача з можливістю його реалізації в мікроконтролері на базі апаратно-обчислювальної платформи (плати) Аrduino.Основні результати дослідження. У цій статті розглядається так званий метод нечіткого висновку Сугено. Найпростіший спосіб візуалізувати системи Сугено першого порядку – це вважати, що кожне правило є визначенням місця розташування рухомої точки. Тобто одиночні вихідні піки можуть переміщатися лінійно у вихідному просторі, залежно від того, що є вхідним сигналом. Це також має тенденцію зробити такі системи дуже компактними та ефективними.Для подальшого застосування плат Arduino для розробки та дослідження нечіткого блоку максимального пожежного сповіщувача, побудованого на основі нечіткої логіки, необхідне здійснення одного дуже важливого кроку – розібрати на елементарні складові і дослідити пакет Fuzzy Logic Toolbox, який надалі буде використовуватися як еталонний для розробки програми для Arduino. У випадку програмної реалізації нечіткого блоку в програмному середовищі Arduino найкращі результати отримуються при застосуванні функцій належності трикутної і трапецієподібної форми. В пакеті Fuzzy Logic Toolbox MATLAB/Simulink був розроблений нечіткий блок Сугено. Надалі він виступив еталонним на етапі створення нової моделі нечіткого блоку і її реалізації в пакеті MATLAB/Simulink для подальших досліджень точності та адекватності отриманої моделі. Розроблена нова модель нечіткого блоку Сугено нульового порядку в пакеті MATLAB/Simulink. Проведено дослідження точності і адекватності отриманої моделі, шляхом подачі лінійного наростаючого сигналу на вході зі швидкістю 1 од/сек. Результати збіглися, похибка відсутня. Отже отримана нова модель буде служити прототипом для створення нечіткого блоку максимального теплового пожежного сповіщувача в мікроконтролері плати Arduino.В програмному комплексі Arduino з використанням мови програмування С була здійснена апаратна реалізація нечіткого блоку Сугено нульового порядку для одного входу на платі Arduino Mega 2560. Реалізація здійснена для масштабованого сигналу на вході і виході [0, 1]. Такий масштаб легко привести до робочої напруги плати Arduino 5 В. Після програмування плати Arduino було здійснено експериментальні дослідження шляхом зміни потенціометром напруги на вході плати від 0 до 5 В, що відповідає вихідному сигналу з давача температури DHT21/AM2301A. Крок зміни напруги на вході – 0,25 В.Висновки. Розглянуто математичні основи нечіткого блоку Сугено. На їх основі для максимального теплового пожежного сповіщувача розроблено модель нечіткого блоку Сугено з одним входом у програмному середовищі MATLAB/Simulink. В ході проведених досліджень вона показала 100% точність і адекватність по відношенню до існуючої моделі у пакеті Fuzzy Logic Toolbox MATLAB/Simulink. На відміну від існуючої моделі запропоновану модель нечіткого блоку можна реалізувати в мікроконтролері. В програмному комплексі Arduino, була здійснена апаратна реалізація нечіткого блоку максимального теплового пожежного сповіщувача з використанням мови програмування С і плати Arduino Mega 2560. Після програмування Arduino було здійснено експериментальні дослідження. Похибка результату, обчисленого Arduino не перевищила 2,5%. Час виконання одного повного циклу нечіткого блоку – 0,004сек.
APA, Harvard, Vancouver, ISO, and other styles
41

Brechlychuk, P. P. "Порівняльний аналіз відповідності результатів двох експертних підходів до кількісної оцінки травм щелепно-лицевої області." Clinical Dentistry, no. 3 (November 8, 2019): 25–31. http://dx.doi.org/10.11603/2311-9624.2019.3.10569.

Full text
Abstract:
Резюме. Актуальна проблема щодо розроблених на сьогодні підходів до експертної оцінки травм щелепно-лицевої ділянки полягає у різному рівні неузгодження таких між собою, враховуючи відмінності у методології їх реалізації. Мета дослідження – провести порівняльний аналіз відповідності результатів використання двох експертних підходів FISS (Facial Injury Severity Scale) та MFISS (Maxillofacial Injury Severity Score) у ході кількісної оцінки випадків травм щелепно-лицевої ділянки. Матеріали і методи. З метою реалізації мети дослідження проводили за участі 14 пацієнтів із діагностованими фактами травм щелепно-лицевої ділянки різного ступеня тяжкості. Кількісну оцінку травм щелепно-лицевої ділянки проводили із застосуванням двох експертних підходів FISS та MFISS. У ході статистичного опрацювання результатів виконували пошук середніх величин досліджуваних показників та рівнів стандартних похибок, визначення рівня кореляції між ними та перевірка достовірності ідентифікованих розбіжностей. Результати досліджень та їх обговорення. Результати проведеного аналізу відповідності щодо використання двох експертних підходів FISS та MFISS у ході кількісної оцінки випадків травм щелепно-лицевої ділянки встановили, що рівень кореляції між показниками, які отримали, серед пацієнтів досліджуваної групи складав r=0,65 (p<0,05), при цьому показник кореляції між показниками FISS та тривалістю госпіталізації складав r=0,71 (p<0,05), а між показниками MFISS та тривалістю госпіталізації – r=0,78 (p<0,05). Висновки. Враховуючи встановлений рівень кореляції між кінцевими показниками MFISS та FISS, та факт наявності корелятивного зв’язку між результатами оцінки травматичних уражень зубощелепного апарату та тривалістю госпіталізації, можна резюмувати доцільність проведення подальших досліджень, направлених на аспект уніфікації діагностичного алгоритму обстеження постраждалих із використанням експертних оцінок у структурі комплексного прогнозу ефективності майбутньої реабілітації та тенденцій щодо потенційного рівня втрати стоматологічного здоров’я.
APA, Harvard, Vancouver, ISO, and other styles
42

Берідзе, T., З. Бараник, І. Дашко, О. Гамова, and С. Ткаченко. "ОЦІНЮВАННЯ ІНВЕСТИЦІЙНИХ РИЗИКІВ ПРОМИСЛОВОГО ПІДПРИЄМСТВА." Financial and credit activity problems of theory and practice 5, no. 40 (November 8, 2021): 429–36. http://dx.doi.org/10.18371/fcaptp.v5i40.245194.

Full text
Abstract:
Анотація. Метою статті є дослідження особливостей інвестиційних ризиків і визначення відповідних методів щодо їх оцінювання у процесі господарської діяльності підприємстві. Сформовано науково-практичний підхід щодо економіко-математичного моделювання на основі мінімізації ризику інвестиційного портфеля задля ухвалення ефективних управлінських рішень. Сучасні методи управління економікою значною мірою спираються на застосуванні економіко-математичних методів, а саме моделювання. Процес інвестування пов’язаний із ризиками. Нестабільність у розвитку сучасної економіки призводить до похибок при ухваленні рішень щодо управління промисловим підприємством. Перш за все, це пов’язано з розподілом фінансових коштів, які зберігаються на балансі підприємств. У підсумку це призведе до наявності фінансового ризику при розподілі фінансів. Наукові доробки зумовлюють актуальність і необхідність подальшого дослідження питання щодо особливостей інвестування для підприємств із відповідним оцінюванням ризику. Формально представлена постановка завдання і послідовне її вирішення шляхом реалізації відповідного алгоритму задля коригування його вартості.. Запропоновано постановку і вирішення завдань формування фінансового портфеля на основі мінімізації фінансового ризику і відповідних втрат, що дозволяє ефективно розподілити фінансові кошти промислового підприємства. Доведено, що для збереження стабільної структури портфеля доцільно мінімізувати дисперсію за обмежень, які накладені на величину інвестицій і ставку прибутковості. Аналіз отриманих результатів економіко-математичного моделювання на основі статичних даних щодо діяльності промислового підприємства ПАТ «Запоріжсталь» підтвердив дієвість запропонованого підходу, що дозволило скоригувати вартість портфеля в бік його зменшення. Доведено, що прибутковість портфеля не може бути більшою від прибутковості самого дохідного цінного папера (акції), що входить у портфель; завжди варто обирати між збільшенням прибутковості і зменшенням ризику. Ключові слова: ризик, інвестиції, портфель, модель, підприємство, прибутковість. Формул: 25; рис.: 1; табл.: 2; бібл.: 17.
APA, Harvard, Vancouver, ISO, and other styles
43

Шенаєва, Тетяна Олексіївна, and Микола Георгійович Медведєв. "Застосування Excel для розв’язання систем лінійних алгебраїчних рівнянь при моделюванні в хімії." Theory and methods of e-learning 3 (February 13, 2014): 326–32. http://dx.doi.org/10.55056/e-learn.v3i1.357.

Full text
Abstract:
Однією з особливостей хімії ХХІ століття є її інформатизація та математизація, при цьому хімія виходить на новий рівень розвитку з новими для неї можливостями. Багато авторів приділяють увагу місцю математики та інформатики в сучасній хімії: Н. Д. Вишнивецька, В. С. Вишнивецька, Т. М. Деркач, С. А. Неділько, М. Є. Соловйов, М. М. Соловйов, А. А. Черняк, Ж. А. Черняк, А. А. Якимович та інші.Загальновідомо, що в умовах вищих навчальних закладів та середніх шкіл дуже гостро стоїть питання про роботу на комп’ютерах тільки з ліцензійними програмами, що на даному етапі не завжди можливо. В той же час комп’ютери в навчальних закладах та в домашніх умовах налагоджені, в основному, на операційну систему Windows з пакетом програм Microsoft Office. Табличний процесор Excel входить до цього пакету програм, має великі обчислювальні можливості, зручний та простий в користуванні, має російський інтерфейс, тому раціонально математичні методи в хімії здійснювати в Excel. Ряд авторів присвятили свої роботи математичному моделюванні в Excel [1; 3; 6]. Про популярність цієї програми говорить і той факт, що табличний процесор Excel активно розглядається та використовується в соціальних мережах.Метою даної роботи є подання прикладів хімічних систем та процесів, які описуються за допомогою системи лінійних алгебраїчних рівнянь (СЛАР), і алгоритмів розв’язування СЛАР в Excel.Більшість фізичних, фізико-хімічних, хімічних та технологічних процесів описуються СЛАР. Наведено приклади хімічних систем та хімічних процесів, математичними моделями яких є СЛАР.Неорганічна хімія. Розчини та їх приготування з вихідного розчину та кристалічної речовини. Розрахунок маси вихідних компонентів для приготування розчину певної маси та певної концентрації речовини. При цьому складають систему рівнянь, перше з яких є рівнянням балансу за масою розчину, який треба приготувати, друге є рівнянням матеріального балансу за речовиною в кінцевому розчині.Фізична хімія. Тиск багатокомпонентної хімічної системи. Розрахунок тиску пари чистих компонентів, якщо відомо сумарний тиск суміші цих компонентів в однофазній системі за певної сталої температури та склад суміші. В даному випадку складають систему рівнянь, в кожному з яких підводиться баланс за тиском суміші. Кількість рівнянь повинна бути неменше кількості компонентів у суміші.Аналітична хімія. Спектрофотометричний аналіз багатокомпонентної суміші. Розрахунок кількісного складу багатокомпонентної суміші за результатами вимірювання оптичної густини суміші при різних довжинах хвиль. При цьому складають систему рівнянь, в кожному з яких підводиться баланс за оптичною густиною суміші при певній довжині хвилі. Система рівнянь має розв’язок, якщо кількість довжин хвиль, при яких проводили вимірювання оптичної густини суміші, неменше кількості компонентів цієї суміші.Регресійний аналіз результатів хімічного експерименту. За методом найменших квадратів знаходять рівняння регресії (математична модель експерименту), яке оптимально відповідає залежності функції, яку вивчають, від аргументів в експерименті (наприклад, розчинності речовин від температури).Хімічна технологія. Суміші та їх приготування для проведення певного технологічного процесу з компонентів, в тому числі, відходів виробництва. Розрахунок маси вихідних компонентів для приготування суміші певної маси та певного складу. Для цього складають систему рівнянь, перше з яких є рівнянням балансу за масою суміші, яку треба приготувати, інші є рівняннями матеріального балансу за окремими речовинами в кінцевій суміші.Наступний етап в роботі хіміка – це розв’язання СЛАР, яке іноді є складним та довготривалим процесом. Застосування Excel значно спрощує та прискорює цей процес і дозволяє хіміку більше уваги приділити хімічній суті даного процесу. Тому розглянемо методи розв’язування СЛАР із застосуванням Excel.Існує багато способів розв’язання СЛАР, які поділяють на дві групи:1) точні методи, за допомогою яких знаходимо за певним алгоритмом точні значення коренів системи. До них відносяться метод Крамера, метод Жордана-Гауcса, метод Гаусcа, метод оберненої матриці та інші;2) ітераційні методи, за допомогою яких знаходимо корені системи з заданою заздалегідь точністю шляхом збіжних нескінченних процесів. Це такі методи, як метод простої ітерації, метод Гауcса-Зейделя, метод верхньої та нижньої релаксації та інші.Легко реалізуються в Excel такі методи розв’язування СЛАР, як метод Крамера та матричний метод (або метод оберненої матриці).Розв’язання СЛАР точними методамиМетод КрамераНехай задана система n лінійних рівнянь з n невідомими, (1)тоді їй відповідає матриця:(2)Якщо детермінант det A = Δ ≠ 0, ця система має єдиний розв’язок.Замінимо у визначнику основної матриці Δ i-ий стовпець стовпцем вільних членів, тоді одержимо n інших визначників для знаходження n невідомих Δ1, Δ2, …, Δ n. За формулами Крамера знаходимо невідомі:;; …; . (3)Таким чином, з формули (3) видно, що якщо визначник системи не дорівнює нулю (Δ ≠ 0), то система має лише один розв’язок.Цей метод можна реалізувати в Excel за допомогою математичної функції майстра функцій МОПРЕД (масив матриці), яка знаходить визначник матриці.Метод оберненої матриці1. Записуємо систему в матричній формі:Ах = b,де А – матриця коефіцієнтів; х – вектор невідомих; b – вектор вільних членів.2. Обидві частини матричного рівняння множаться на матрицю, обернену до А:А-1Ах = А-1b. (4)За визначенням, добуток матриці на обернену до неї дає одиничну матрицю, а добуток одиничної матриці на будь-який вектор дорівнює цьому ж вектору, тому рівняння (4) перетворюється до наступного вигляду:х = А-1b.Це і є розв’язок системи рівнянь.Для здійснення цього методу в Excel застосовують математичну функцію МОПРЕД (масив вихідної матриці А), МОБР (масив вихідної матриці А), за допомогою якої знаходять обернену матрицю А-1, та функцію МУМНОЖ (масив матриці А-1; масив вектора b), яка знаходить добуток матриць. Функції подані з указанням їх синтаксису в Excel. Функції «МУМНОЖ» та «МОБР» – функції масивів, які в якості результату повертають масив значень.Розв’язання СЛАР ітераційними методамиМетод простої ітерації1. Нехай маємо систему n лінійних алгебраїчних рівнянь з n невідомими (1), основна матриця А (2) якої має детермінант det A = Δ ≠ 0. Таким чином, система має єдиний розв’язок.2. Перевіримо задану систему на виконання для всіх рівнянь наступної умови, достатньої на цьому етапі для збіжності наступного процесу ітерацій:, і = 1, 2, …, n. (5)Якщо система n лінійних алгебраїчних рівнянь не задовольняє цій умові, то перетворюємо її на еквівалентну систему елементарними перетвореннями так, щоб виконувалась умова (5) для всіх діагональних коефіцієнтів. Вважаємо, що представлена система рівнянь (1) відповідає умові (5).3.Розв’яжемо перше рівняння відносно х1, друге – відносно х2 і так далі. В результаті одержимо таку систему в ітераційній формі:, (6)де ; при i ≠ j та ai,j = 0 при i = j.Тоді одержимо систему в матричному вигляді:х = β + αх, (7)де; ; .4. Розв’яжемо систему методом послідовних наближень (ітерацій). За нульовий розв’язок приймемо або розв’язок якимось прямим методом, або стовпець вільних членів, тобто, х(0) = β, або будь-які довільні числа.5. Підставимо одержані значення х(0) у праві частини рівнянь системи в ітераційній формі (6) і одержимо перше наближення х(1) = β + αх(0). потім друге наближення х(2) = β + αх(1) і так далі. В загальному вигляді маємо, що (k)-е наближення розраховуємо за формулою х(k) = β + αх(k-1).Якщо послідовність наближень х(1), х(2), …, х(k), … має границю, тобто, i = 1,2 … , n ,то ця границя буде розв’язком системи (7) xj*= (x1*, xj*,… , xn* ).Умова закінчення ітераційного процесу для отримання розв’язку наступна:, i = 1,2,…, n, (8)де ε > 0, не більше граничної похибки наближеного розв’язку.Метод Гауcса-ЗейделяЯкщо в методі простої ітерації при обчисленні k-го наближення х(k)=(х1(k), х2(k), х3(k)) використовуємо тільки результати (k-1)-го наближення, то в ітераційному методі Гауcса-Зейделя для обчислення хі(k) використовують вже знайдені значення х1 (k), … , хі-1(k). Умови збіжності методу Гауcса-Зейделя ті ж самі, що і для методу простої ітерації, але ітераційний процес в цьому випадку відбувається швидше, хоч обчислення більш громіздкі.Для здійснення цього методу в Excel треба привести СЛАР до ітераційної форми, налагодити обчислювальний ітераційний процес за допомогою меню «сервіс», ініціалізувати ітераційний процес уведенням початкових наближень та застосуванням логічної функції ЕСЛИ(лог_выражение; знач_если_истина; знач_если_ложь), при введенні рівнянь використати посилання. Ітераційний процес продовжують до тих пір, поки не досягають задовільної збіжності до розв’язку.Цей метод більш складний для реалізації в Excel, тому покажемо алгоритм на прикладі.Приклад. Нехай треба розв’язати таку систему рівнянь: Перетворимо систему лінійних рівнянь до ітераційної форми Відкриваємо робочий аркуш Excel і налагоджуємо обчислювальний ітераційний процес:- обираємо команду Сервис → Параметры;- відкриваємо вкладку Вычисления;- вмикаємо режим Вручную;- ставимо відмітку на перемикач Итерации;- уводимо в поле Предельное число итераций значення 1;- відмикаємо режим Пересчёт перед сохранением;- тиснемо на кнопку ОК.До комірки А1 вводимо «Розвязок систем рівнянь. Метод Гаусса-Зейделя».До комірки А3 вводимо «Поч. флаг».До комірки В3 вводимо початковий флаг ініціалізації (спочатку ИСТИНА, потім ЛОЖЬ), який би переводив обчислювальний процес в певний початковий стан.При введенні значення ИСТИНА функція ЕСЛИ (лог_выражение; знач_если_истина; знач_если_ложь) повертає початкові наближення в стовпець розв’язку (0;0;0), тобто, в якості аргументу функції (ЕСЛИ) знач_если_истина використовуємо початкові наближення 0;0;0.При введенні значення ЛОЖЬ функція ЕСЛИ (лог_выражение; знач_если_истина; знач_если_ложь) повертає наступні наближення в стовпець розв’язку, тобто, в якості аргументу функції (ЕСЛИ) знач_если_ложь використовуємо стовпець приведених рівнянь.До комірки А6 вводимо «Початкові значення».До комірок А7:А9 вводимо стовпець початкових наближень, нехай це будуть нулі (0;0;0).Вводимо стовпець рівнянь в ітераційній формі:До комірки В6 вводимо «Рівняння».До комірки В7 вводимо =(С8+2*С9)/8.До комірки В8 вводимо =(10-5*С7+С9)/7.До комірки В9 вводимо =(2+2*С7+С8)/4.В комірку С6 вводимо «Розв’язки».В комірку С7 вводимо формулу: =ЕСЛИ($B$3; A7; B7) і копіюємо її в комірки С8 та С9.Для проведення розрахунків встановлюємо флаг ініціалізації рівним ИСТИНА і натискаємо клавішу F9. Після ініціалізації листа змінюємо значення флага ініціалізації на ЛОЖЬ і натискаємо клавішу F9. Перехід до наступної ітерації здійснюємо за допомогою клавіші F9. Ітераційний процес продовжуємо доти, поки не буде виконуватись умова (8).ВисновкиБільшість фізичних, фізико-хімічних, хімічних та технологічних процесів описується системами лінійних рівнянь.Наведені приклади хімічних систем та процесів, які описуються за допомогою системи лінійних алгебраїчних рівнянь.Застосування Excel значно спрощує та прискорює розв’язок систем лінійних рівнянь.Описані алгоритми розв’язання систем лінійних рівнянь в Excel точними методами (метод Крамера та метод оберненої матриці) та ітераційним методом Гауcса-Зейделя.Представлені приклади систем з різних областей хімії та алгоритми розв’язання систем лінійних рівнянь в Excel можуть бути корисними для викладачів вищих навчальних закладів та вчителів шкіл з поглибленим вивченням хімії.ℼ佄呃偙⁅呈䱍倠䉕䥌⁃ⴢ⼯㍗⽃䐯䑔䠠䵔⁌⸴‰牔湡楳楴湯污⼯久㸢㰊呈䱍ਾ䠼䅅㹄ऊ䴼呅⁁呈偔䔭啑噉∽佃呎久ⵔ奔䕐•佃呎久㵔琢硥⽴瑨汭※档牡敳㵴瑵ⵦ∸ਾ㰉䥔䱔㹅⼼䥔䱔㹅ऊ䴼呅⁁䅎䕍∽䕇䕎䅒佔≒䌠乏䕔呎∽楌牢佥晦捩⁥⸴⸱⸳′䰨湩硵∩ਾ㰉䕍䅔丠䵁㵅䌢䕒呁䑅•佃呎久㵔〢〻㸢ऊ䴼呅⁁䅎䕍∽䡃乁䕇≄䌠乏䕔呎∽㬰∰ਾ㰉呓䱙⁅奔䕐∽整瑸振獳㸢ऊℼⴭऊ䀉慰敧笠洠牡楧㩮㈠浣素ऊ倉笠洠牡楧⵮潢瑴浯›⸰ㄲ浣※楤敲瑣潩㩮氠牴※潣潬㩲⌠〰〰〰※整瑸愭楬湧›番瑳晩㭹眠摩睯㩳〠※牯桰湡㩳〠素ऊ倉眮獥整湲笠猠ⵯ慬杮慵敧›歵唭⁁੽उ⹐瑣⁻潳氭湡畧条㩥愠⵲䅓素ऊ䄉氺湩⁻潣潬㩲⌠〰〰晦素ऊⴭਾ㰉匯奔䕌ਾ⼼䕈䑁ਾ䈼䑏⁙䅌䝎∽畲刭≕吠塅㵔⌢〰〰〰•䥌䭎∽〣〰昰≦䐠剉∽呌≒ਾ值䰠乁㵇產⵫䅕•䱃十㵓眢獥整湲•呓䱙㵅琢硥⵴湩敤瑮›⸰挷㭭洠牡楧⵮潢瑴浯›挰≭ਾ黐듐뷐雑铑軑퀠₷뻐臑뻐뇐믐룐닐뻐臑苑뗐말턠톅킖톼톖ₗꗐꗐ蛐턠톁킂킾톻톖톂톂એ铑턠톗ₗ雑뷐蓑뻐胑볐냐苑룐럐냐蛑雑近턠킂₰볐냐苑뗐볐냐苑룐럐냐蛑雑近ਬ뿐胑룐턠톆킌킾톼₃藑雑볐雑近퀠킲톸킅킾킴톸톂₌뷐냐퀠킽킾킲킸₹胑雑닐뗐뷐賑턊킀킾킷킲톸킂톺₃럐퀠킽킾킲킸킼₸듐믐近퀠킽통ₗ볐뻐뛐믐룐닐뻐臑苑近볐룐ਮ釐냐돐냐苑뻐퀠킰톲킂톾톀킖₲뿐胑룐듐雑믐近軑苑賑턠킃킲킰톳₃볐雑臑蛑軑퀊킼톰킂킵킼톰킂킸킺₸苑냐턠킖톽킄톾킀킼톰킂킸킺₸닐턠톁톃킇톰킁톽킖હ藑雑볐雑韑›鷐☮扮灳퀻⺔渦獢㭰鋐룐裑뷐룐닐뗐蛑賑뫐냐ਬ鋐☮扮灳퀻⺡渦獢㭰鋐룐裑뷐룐닐뗐蛑賑뫐냐‬ꋐ☮扮灳퀻⺜渦獢㭰铐뗐胑뫐냐蟑ਬꇐ☮扮灳퀻⺐渦獢㭰鷐뗐듐雑믐賑뫐뻐‬鳐☮扮灳퀻⺄渦獢㭰ꇐ뻐믐뻐닐말뻐닐ਬ鳐☮扮灳퀻⺜渦獢㭰ꇐ뻐믐뻐닐말뻐닐‬郐☮扮灳퀻⺐渦獢㭰Ꟑ뗐胑뷐近뫐ਬ雐☮扮灳퀻⺐渦獢㭰Ꟑ뗐胑뷐近뫐‬郐☮扮灳퀻⺐渦獢㭰꿐뫐룐볐뻐닐룐蟑턠킂ર雑뷐裑雑㰮倯ਾ值䰠乁㵇產⵫䅕•䱃十㵓眢獥整湲•呓䱙㵅琢硥⵴湩敤瑮›⸰挷㭭洠牡楧⵮潢瑴浯›挰≭ਾ韐냐돐냐믐賑뷐뻐닐雑듐뻐볐뻐‬觑뻐퀠₲菑볐뻐닐냐藑퀠킲톸킉톸અ뷐냐닐蟑냐믐賑뷐룐藑퀠킷킰킺킻킰톴킖₲苑냐턠킁통킀킵킴톽톖₅裑뫐雑믐퀊톴킃킶₵돐뻐臑苑胑뻐턠톁킂톾톗톂₌뿐룐苑냐뷐뷐近퀠톿킀₾胑뻐뇐뻐苑菑퀊킽₰뫐뻐볐뿐胢톙톎킂통킀톰₅苑雑믐賑뫐룐퀠₷믐雑蛑뗐뷐럐雑말뷐룐볐룐퀊톿킀킾톳킀킰킼킰킼Ⲹ턠킉₾뷐냐퀠킴킰킽킾톼₃뗐苑냐뿐雑퀠킽₵럐냐닐뛐듐룐퀊킼킾킶킻킸킲⺾퀠ₒ苑뻐말퀠킶₵蟑냐臑퀠킺킾킼馀軑苑뗐胑룐퀠લ뷐냐닐蟑냐믐賑뷐룐藑퀠킷킰킺킻킰킴톰₅苑냐퀠₲듐뻐볐냐裑뷐雑藑턠킃킼킾킲톰અ뷐냐믐냐돐뻐듐뛐뗐뷐雑‬닐퀠톾킁킽킾킲킽킾톼ⲃ퀠킽₰뻐뿐뗐胑냐蛑雑말뷐菑턊킁톸톁킂킵톼₃楗摮睯⁳럐퀠킿킰킺통킂킾₼뿐胑뻐돐胑냐볐䴠捩潲潳瑦伊晦捩⹥퀠킢킰킱킻톸킇킽킸₹뿐胑뻐蛑뗐臑뻐胑䔠捸汥퀠톲킅킾킴톸톂₌듐뻐턊톆킌킾킳₾뿐냐뫐뗐苑菑퀠톿킀킾톳킀킰Ⲽ퀠킼톰ₔ닐뗐믐룐뫐雑퀊킾톱킇톸킁톻킎킲킰톻킌톽ₖ볐뻐뛐믐룐닐뻐臑苑雑‬럐胑菑蟑뷐룐말턠킂ર뿐胑뻐臑苑룐말퀠₲뫐뻐胑룐臑苑菑닐냐뷐뷐雑‬볐냐铑턠킀톾톁킖톹톁킌킺킸હ雑뷐苑뗐胑蓑뗐말臑‬苑뻐볐菑턠킀톰톆킖킾킽킰톻킌킽₾볐냐苑뗐볐냐苑룐蟑뷐雑퀊킼통킂킾킴₸닐턠톅킖톼톖ₗ럐듐雑말臑뷐軑닐냐苑룐퀠₲硅散⹬퀠토킏઴냐닐苑뻐胑雑닐퀠톿킀톸킁톲톏킂킸킻₸臑닐뻐韑턠킀킾킱톾킂સ볐냐苑뗐볐냐苑룐蟑뷐뻐볐菑퀠킼킾킴킵톻킎킲킰킽톽ₖ닐䔠捸汥嬠㬱㌠※崶ਮ鿐胑뻐퀠킿킾톿킃톻톏킀톽톖톁톂₌蛑雑铑韑퀠톿킀킾톳킀킰킼₸돐뻐닐뻐胑룐苑賑턊ₖ苑뻐말턠킄킰톺Ⲃ턠킉₾苑냐뇐믐룐蟑뷐룐말퀠톿킀톾킆통킁톾₀硅散੬냐뫐苑룐닐뷐뻐턠킀킾킷킳톻킏킴톰톔톂톌톁₏苑냐퀠킲킸킺톾킀톸톁킂킾톲톃톔톂톌톁એ닐턠킁톾톆킖킰톻킌킽톸₅볐뗐胑뗐뛐냐藑㰮倯ਾ值䰠乁㵇產⵫䅕•䱃十㵓眢獥整湲•呓䱙㵅琢硥⵴湩敤瑮›⸰挷㭭洠牡楧⵮潢瑴浯›挰≭ਾ䈼퀾킜통킂톾㲎䈯‾듐냐뷐뻐韑턠킀킾킱톾킂₸铑퀠킿킾킴킰킽톽₏뿐胑룐뫐믐냐듐雑닐턊톅킖톼톖킇킽톸₅臑룐臑苑뗐볐턠킂₰뿐胑뻐蛑뗐臑雑닐‬近뫐雑퀊킾킿톸톁톃톎톂톌톁₏럐냐퀠킴킾킿킾킼킾킳톾₎臑룐臑苑뗐볐룐퀠톻킖톽킖킹킽톸અ냐믐돐뗐뇐胑냐韑蟑뷐룐藑턠톀킖킲톽킏톽₌퀨킡킛킐⦠‬雑퀠킰킻킳톾킀톸킂톼킖લ胑뻐럐닐胢톙킏톷킃킲킰킽톽₏ꇐ鯐郐ꃐ퀠₲硅散⹬⼼㹐㰊⁐䅌䝎∽歵唭≁䌠䅌卓∽敷瑳牥≮匠奔䕌∽整瑸椭摮湥㩴〠㜮浣※慭杲湩戭瑯潴㩭〠浣㸢퀊톑킖톻톌톈톖톁톂₌蓑雑럐룐蟑뷐룐藑‬蓑雑럐룐뫐뻐턭톅킖톼톖킇킽톸ⲅ턊톅킖톼톖킇킽톸₅苑냐턠킂통킅킽킾킻킾톳톖킇킽톸₅뿐胑뻐蛑뗐臑雑닐퀊킾킿톸톁톃톎톂톌톁₏ꇐ鯐郐ꃐ‮鷐냐닐뗐듐뗐뷐뻐퀠톿킀킸킺킻킰킴સ藑雑볐雑蟑뷐룐藑턠킁톸톁킂킵₼苑냐턠톅킖톼톖킇킽톸₅뿐胑뻐蛑뗐臑雑닐ਬ볐냐苑뗐볐냐苑룐蟑뷐룐볐룐퀠킼킾킴킵톻킏킼₸近뫐룐藑턠ₔꇐ鯐郐ꃐ㰮倯ਾ值䰠乁㵇產⵫䅕•䱃十㵓眢獥整湲•呓䱙㵅琢硥⵴湩敤瑮›⸰挷㭭洠牡楧⵮潢瑴浯›挰≭ਾ唼퀾킝킵톾킀킳킰톽톖킇킽₰藑雑볐雑近㰮唯㰾㹉퀠킠킾톷킇킸킽₸苑냐턠톗અ뿐胑룐돐뻐苑菑닐냐뷐뷐近퀠₷닐룐藑雑듐뷐뻐돐뻐턠킀킾톷킇킸톽₃苑냐퀊톺킀톸톁킂킰톻톖
APA, Harvard, Vancouver, ISO, and other styles
44

Григулич, Світлана Миколаївна, and Василь Олександрович Швець. "Самостійна робота старшокласників при вивченні математики." Theory and methods of learning mathematics, physics, informatics 1, no. 1 (April 2, 2014): 55–60. http://dx.doi.org/10.55056/tmn.v1i1.422.

Full text
Abstract:
Навчити старшокласників самостійно здобувати знання – завдання загальнопедагогічне, надзвичайно важливе і нелегке. Його мають розв’язувати всі вчителі-предметники, в тому числі і математики теж. Кожен педагог розв’язує таке завдання своїми методами, способами, прийомами. Зупинимось коротко на власному досвіді такої роботи, одержаному в ході експериментального дослідження. Фрагментарні ілюстрації проводяться на прикладі вивчення теми “Поняття похідної” (10 клас).Як відомо, зміст і структуру освіти визначають її цілі. Вони ж спрямовують педагогічний процес, впливають на вибір форм, методів і засобів навчання. Тому вивчення навчального матеріалу кожної конкретної програмної теми необхідно розпочинати, насамперед, з їх конкретизації, яка є нічим іншим як формуванням триєдиної мети вивчення певної навчальної теми. Здійснює цю дію вчитель, керуючись відомою методикою. Таким чином мету вивчення теми «Поняття похідної» можна, наприклад, сформулювати так:а) (розвиваюча) розвивати в учнів теоретичне мислення, самостійність у навчанні, культуру усної та письмової мови, вчити помічати і застосовувати аналогію, порівняння, роботи узагальнення і формулювати висновки;б) (виховна) виховувати в учнів самодисципліну, відповідальне ставлення до навчання, творчу активність;в) (дидактична) учні повинні засвоїти поняття похідної, навчитися, користуючись означенням, обчислювати похідні елементарних функцій.Варто зауважити, що освітні цілі різних рівнів будуть конкретизуватися під час вивчення даної теми в цілях конкретних уроків. Їх вчитель доводить до відома учнів, робить все, щоб вони стали їх власними. Оскільки виховні та розвиваючі реалізовуватимуться не одним уроком, а системою уроків, то записувати їх до кожного не варто, достатньо обмежитися записом лише до навчальної теми. Знайомити учнів з такими цілями – не обов’язково. Відбулося, таким чином, цілепокладання самостійної діяльності учнів.Вивчення матеріалу даної навчальної теми, як і будь-якої іншої, обов’язково повинно супроводжуватися формуванням у старшокласників умінь самостійної діяльності в навчанні. Учні мають вчитися планувати свою навчальну роботу, виділяти головне в матеріалі, що вивчається, здійснювати пошук раціональних шляхів учіння, критично оцінювати досягнуті результати, обґрунтовувати і доводити твердження, проводити чіткі узагальнення, формулювати висновки і таке інше. Адже для успішного оволодіння сучасним змістом шкільної математичної освіти стає необхідністю підвищення ефективності процесу навчання саме завдяки активізації самостійної діяльності учнів. А тому виникає потреба у чіткій і системній організації їх самостійної роботи.Наступна дія – складання тематичного плану, планування самостійної роботи учнів. Щоб її успішно виконати доцільно спочатку проаналізувати навчальний матеріал теми, виділити в теоретичному матеріалі елементи знань, скласти його структурно-логічну схему, з’ясувати, які з виділених елементів вивчатимуться учнями самостійно.Так, виконавши логіко-дидактичний аналіз навчального матеріалу теми «Поняття похідної» отримуємо як результат наступний перелік елементів знань: Зона 2(Зона актуально контро-льованого матеріалу)Зона 1(Зона актуально засвоюваного матеріалу)а) абсолютна похибка;1) границя функції в точці;б) точність наближення;2) привила обчислення границь;в) миттєва швидкість;3) приріст аргументу;г) лінійна функція y=kx2;4) приріст значення функції;д) модуль числа.5) січна до графіка функції; 6) ; 7) правило обчислення миттєвої швидкості ; 8) дотична до графіка функції; 9) правило обчислення кутового коефіцієнта дотичної до графіка функції y=f(x), ; 10) означення похідної.Поряд з елементами знань даної теми (зона 1) варто розглянути елементи знань, що використовуватимуться при вивченні нових понять, тверджень, способів дій як опорні, раніше вивчені, відомі учням факти (зона 2).Проаналізувавши взаємозв’язок елементів знань як зони 1, так і зони 2, отримуємо таку структурно-логічну схему даної теми (схема 1) :Схема 1. Світлими кружечками на схемі позначені ті елементи знань, які учні спроможні засвоїти самостійно.Засвоєння нових знань є успішним, а самі знання більш міцними тоді, коли опорні знання і способи дій попередньо добре актуалізуються. Відповідно, виникає потреба в запитаннях на повторення. Враховуючи зміст елементів знань зони 2 даної теми та зв’язки між ними і елементами зони 1, формулюються наступні запитання на повторення (контрольні запитання) : 1. Що означає запис f(x)→L при x→a?(вміти пояснити на прикладі)2. Сформулювати основні правила обчислення границь.(знати правила)3. Що називається модулем числа?(знати означення та вміти ілюструвати на прикладах)4. Що називається абсолютною похибкою?(знати означення та вміти ілюструвати на прикладах)5. За яким алгоритмом обчислюється миттєва швидкість?(знати формулу )6. За яким алгоритмом обчислюється кутовий коефіцієнт дотичної до графіка функції y=f(x)?(знати формулу )7. Дати означення похідної функції в точці.(знати означення та вміти записувати в прийнятих позначеннях)Аналогічно формулюються запитання відповідно до змісту елементів знань зони 1. Складання таких запитань для попередньої перевірки дозволить практично в кожній темі, що вивчається, здійснити глибоке, цілеспрямоване повторення, а в кінці теми  тематичну атестацію. Наступним кроком є складання тематичного плану, загальна схема якого відома (приводити не будемо). В плані необхідно чітко виділити що вивчатиметься при безпосередньої участі вчителя, що самостійно в класі і вдома. Крім цього, варто проаналізувати масив завдань підручника на вказану тему, розбивши їх на блоки. В перший блок включаємо, наприклад, завдання на поняття границі функції в точці та правила обчислення границь. В наступний – завдання на формування вмінь і навичок знаходження приросту аргументу і приросту значення функції, миттєвої швидкості і т.д. Серед завдань мають бути як завдання обов’язкового, так і підвищеного та поглибленого рівнів. Це дасть змогу здійснювати рівневу диференціацію в навчанні. В кожному блоці виділяються завдання, які розв’язуватимуться в класі колективно (як зразки), решта – самостійно. Контроль за їх виконання варто здійснювати, заповнюючи таблиці (див. таблицю 1).Таблиця 1Масив задач з теми “Поняття похідної” (фрагмент) Список учнів класуЗавдання Блок № 1Блок № 2Блок № 3121…123…123…1. …+++--+-----+-+--2. …+++---+++---+++ Умовні позначення: “-” – завдання не розв’язане учнем; “+” – завдання розв’язане; 3  завдання, яке розв’язано в класі колективно (як зразок).Успіх будь-якої самостійної роботи, як відомо, багато у чому залежить від того, як виконавець її вміє організовувати свою діяльність. Тому учням доцільно розкрити зміст основних видів самостійної діяльності при вивченні математики і показати можливі способи її організації. Якщо це зроблено, то, повідомляючи учням масив задач у вигляді блоків, контрольні запитання визначаємо на кожний урок кожному учню вид самостійної роботи. Таким чином, з’являється план самостійної роботи учнів з теми “Поняття похідної” (див. таблиця 2). Таблиця 2 Список учнів класуНавчальна тема:“Поняття похідної”Номери уроків1. (І)2. (ІІ)3. (ІІІ)4. (IV)1. 2. 3. 4. … Умовні позначення в таблиці 2.Види самостійних робіт:а) за дидакт
APA, Harvard, Vancouver, ISO, and other styles
45

Білоусова, Людмила Іванівна, Тетяна Василівна Бєлявцева, Олександр Геннадійович Колгатін, and Лариса Сергіївна Колгатіна. "Навчальні дослідження при вивченні методів обчислювальної математики." Theory and methods of learning mathematics, physics, informatics 5, no. 3 (November 26, 2013): 26–30. http://dx.doi.org/10.55056/tmn.v5i3.207.

Full text
Abstract:
Постановка проблеми. У підготовці майбутніх фахівців в області математики курс чисельних методів відіграє значну роль, оскільки при його вивченні студенти опановують способи і засоби розв’язування тих математичних задач, що виникають на практиці і непідвласні строгим методам чистої математики.Курс чисельних методів можна розглядати як своєрідний “місток” між логічно вивіреними математичними теоріями і реальністю. Аналізуючи чисельні методи, легко помітити, що вони часто являють собою прямий наслідок з теорем чистої математики, їхню проекцію на практичні задачі. Серед них є методи настільки прості й очевидні, що їх можна вивести не з теоретичних посилок, а попросту спираючись на здоровий глузд чи геометричну інтерпретацію задачі. Однак, є і такі методи, що вражають уяву оригінальністю і своєрідністю ідеї, нестандартністю підходу до розв’язування задачі.Постановка курсу чисельних методів являє собою досить складну проблему. Це зумовлено низкою факторів, з яких наведемо основні.Теоретична частина курсу досить важка для сприйняття студентами, оскільки обґрунтування чисельного методу, з одного боку, вимагає широкого залучення апарату чистої математики з різних її областей; з іншого боку, математична основа чисельних методів ґрунтується на оцінках, що не завжди виглядають досить переконливими. Більш того, багато з них студент повинен прийняти на віру, тому що їхнє послідовне виведення виходить за межі навчального курсу і найчастіше навіть не наводиться в підручниках.Усе сказане вище ускладнюється ще і тією обставиною, що поряд з теоретично встановленими нормами застосування того чи іншого методу існують і практичні правила – “неписані закони”, що не мають строгого обґрунтування, але якими проте зручно і доцільно керуватися на практиці. Згідно з цими правилами встановлюється реальна сфера дії чисельного методу, що звичайно виходить за рамки тієї, котра визначена теорією; умови застосовності методу одержують конкретизацію з врахуванням реальних технічних можливостей, а для контролю обчислювального процесу й оцінювання досягнутої точності рішення задачі пропонуються досить прості прийоми і співвідношення.Використання практичних правил дозволяє додати процедурі застосування чисельного методу технологічність. Разом з тим, недоведеність практичних правил залишає деякий сумнів у їхній правомірності, усунути який дозволяє лише досвід багаторазового контрольованого застосування чисельного методу – той самий досвід, що і породив ці правила.Слід зазначити також, що світ чисельних методів надзвичайно різноманітний, кожен з них має свою специфіку, свою область ефективного застосування, тому основною задачею обчислювача є правильний вибір методу, найбільш придатного для розв’язування поставленої конкретної задачі, вміле сполучення різних методів на різних етапах її розв’язування, для чого вимагаються не тільки і не стільки теоретичні знання в галузі чисельних методів, скільки інтуїція, що здобувається в міру нагромадження знову ж такі особистого досвіду застосування цих методів.Таким чином, курс чисельних методів, у силу свого явно вираженого практичного характеру, з необхідністю має спиратися на лабораторний практикум, якість постановки якого значною мірою визначає результати навчання за курсом у цілому.Метою даної роботи є висвітлення цілей, способу і результатів реалізації навчально-дослідницького лабораторного практикуму з чисельних методів.У стандартній постановці лабораторний практикум з чисельних методів зводиться до виконання розрахунків, необхідних для розв’язування задачі за відомим алгоритмом. Використання засобів обчислювальної техніки дозволяє цю роботу полегшити або автоматизувати, однак, у будь-якому випадку, коли це використання здійснюється на рівнях, що не виходять за рамки виконання обчислень або програмування, діяльність студента зводиться до відтворення алгоритму методу і кропіткої роботи з числами, що фактично призводить до заміщення змістовної задачі рутинною роботою.У такому режимі за час, що відводиться на вивчення курсу, вдається лише випробувати окремі методи на прикладі розв’язування якої-небудь однієї задачі. У такому усіченому і, можна сказати, збитковому виді курс чисельних методів утрачає свою привабливість і внутрішню красу і, цілком природно, виявляється нудним і нецікавим для студентів.Наше глибоке переконання полягає в тому, що істотних змін у постановці курсу чисельних методів і, як наслідок, у математичній підготовці студентів, можна досягти лише перетворенням лабораторного практикуму на цикл навчальних досліджень. При цьому дуже істотними є дві обставини: навчальні дослідження не вкрапляються окремими епізодами в тканину практикуму, а складають сутність кожної лабораторної роботи; використання обчислювальної техніки здійснюється на рівні середовища підтримки професійної математичної діяльності.Перша обставина змушує переглянути весь курс, надавши лекціям характеру тематичних оглядів, а практикуму – систематичності, що є необхідною умовою для поетапного розвитку, поглиблення й ускладнення навчальних досліджень студентів з опорою на набутий досвід такої діяльності та дослідницькі уміння і навички, які формуються.Необхідно відзначити, що епізодичне використання навчальних досліджень у лабораторному практикумі за принципом "час від часу" недоцільно. Практика показала, що в такому випадку студенти не усвідомлюють суті запропонованих їм завдань, а недостатній рівень дослідницьких умінь привносить у їхню діяльність елементи хаотичності і безсистемності. В решті більш привабливою формою проведення практикуму для більшості студентів виявляється звична робота за інструкціями.Що стосується другої обставини, то орієнтація вузівського навчального процесу на використання сучасного професійного комп’ютерного інструментарію, а не на навчальні пакети, представляється найбільш доцільної. Така орієнтація, з одного боку, сприяє формуванню в студентів стійких навичок використання комп'ютера в професійних цілях, з іншого боку – визначає досить високий рівень постановки навчальних досліджень, відразу відтинаючи рутинну роботу.Професійні пакети підтримки математичної діяльності, що одержали широке поширення, не розраховані на застосування в навчанні. Вони забезпечують розв’язання широкого кола стандартних математичних задач, залишаючи схованими від користувача використані для розв’язання методи. Разом з тим, такі пакети оснащені досить потужними і зручними вбудованими засобами, що дозволяють розширити функції пакета, у тому числі і такі, котрі пристосовують його для використання з метою навчання.Для постановки навчально-дослідницьких робіт з курсу чисельних методів нами був узятий за основу пакет MathCAD, засобами якого був розроблений комплект динамічних опорних конспектів (ДОК’ів), що підтримують виконання таких робіт із усіх тем курсу. Таким чином, фактично студенту була надана віртуальна лабораторія для проведення обчислювальних експериментів.Вибір пакета MathCAD зумовлений тим, що він широко застосовується для розв’язування прикладних задач математики і разом з тим йому притаманні такі якості, що дозволяють використовувати його в навчанні: можливість створення динамічної екранної сторінки, вільне переміщення курсору по екрану, досить розвинена вбудована мова і т.д. Створення ДОК’а в середовищі MathCAD зводиться до розробки програми, що реалізує алгоритм відповідного чисельного методу, і інтерфейсу, зручного для введення даних задачі і відображення на екрані процесу і результатів роботи алгоритму. Математичні можливості пакета були використані для оцінювання якості отриманих результатів.Кожен ДОК орієнтований на роботу з одним з чисельних методів і надає можливість багаторазових випробувань цього методу на різних задачах з виведенням на екран результатів у числовій і графічній формі. Проводячи навчальне дослідження, студент здійснює серію таких випробувань і на підставі спостереження за обчислювальним процесом, шляхом аналізу його характеристичних показників робить висновки.Необхідно відзначити, що задачі, розв'язувані студентом у ході навчального дослідження, істотно відрізняються від тих, котрі складають суть традиційної лабораторної роботи. Так, наприклад, при дослідженні чисельних методів розв’язування рівнянь студенту пропонується встановити, який критерій варто обрати для оцінки близькості знайденого наближення до шуканого значення кореня рівняння – точність, з якою це наближення задовольняє рівняння, чи точність, з якою це наближення повторює попереднє. У кожному дослідженні студенту пропонується вирішити такі задачі: експериментально оцінити порядок і швидкість збіжності методу; виділити основні фактори, що впливають на ці характеристики; встановити область ефективного застосування методу.При дослідженні, наприклад, інтерполяційних формул, де, на перший погляд, усе ясно – чим більше вузлів інтерполяції, тим вище ступінь полінома, точніше наближення, – студент має переконатися в тому, що далеко не завжди це й справді так. Для досягнення потрібної точності іноді доцільно змінити тактику: замість нарощування вузлів використовувати дроблення проміжку інтерполяції. Студенту пропонується побудувати найкраще можливе наближення функції на відрізку по заданій на ньому обмеженій кількості її значень. Як варто розпорядитися цими даними? Який спосіб інтерполяції дасть найбільш надійний результат? Вивчаючи питання про точність відновлення значення функції в проміжній точці таблиці за інтерполяційними формулами, студент експериментально встановлює правило для вибору тих табличних значень, на які варто спиратися для мінімізації похибки і т.д.Для того, щоб діяльність студента була осмисленої, націленою і забезпечувала досягнення прогнозованого навчального ефекту, нами було розроблено методичну підтримку практикуму у виді планів-звітів з кожної лабораторної роботи.Плани-звіти виконані за єдиною схемою і складаються з двох частин – інформативної й інструктивної. В інформативній частині повідомляється тема роботи, її ціль, програмне забезпечення роботи, наводиться характеристика вхідних і вихідних числових і графічних даних.Інструктивна частина містить порядок виконання роботи, де позначені і зафіксовані її ключові моменти. Для орієнтації студента на виконання дослідження йому спочатку пропонується ланцюжок відповідним чином підібраних питань. Деякі з них адресовані до інтуїтивних уявлень студента про досліджуваний метод, інші – на те, щоб наштовхнути його на думку про можливу помилковість таких уявлень. У ході обмірковування запропонованих питань студент одержує можливість зорієнтуватися в проблемі, усвідомити її та вибудувати робочу гіпотезу дослідження.Уся наступна – основна – робота студента спрямована на перевірку, уточнення, конкретизацію гіпотези. Ця робота виконується за запропонованим планом, що визначає окремі етапи дослідження, задачі, що розв’язуються на кожному етапі, експериментальний матеріал, який потрібно отримати, форму його подання і т.д. У міру просування практикуму інструкції студенту все менш деталізуються, здобуваючи характер рекомендацій. Деякі експерименти він повинний продумати, поставити і здійснити самостійно.Для виконання кожної з лабораторних робіт підібрані індивідуальні варіанти комплектів задач, на яких пропонується випробувати метод для отримання експериментального матеріалу, що відповідає меті роботи. При бажанні студент може доповнити ці комплекти задачами за власним вибором.Завершальним етапом дослідження є підведення його підсумків. Це пропонується зробити у вигляді висновків, контури яких з більшим чи меншим ступенем виразності намічені в плані-звіті. Підказки допомагають студенту зафіксувати результати роботи, структурувати їх, дозволяють звернути увагу на ті моменти дослідження, що можуть залишитися непоміченими.Виконання запланованого дослідження дає студенту досить глибоке розуміння властивостей і специфіки застосування досліджуваного методу, і це повинно знайти відображення в "творі на вільну тему": придумати таку практичну задачу, для якої найбільш ефективним інструментом рішення є саме досліджуваний метод.Зазначимо, що плани-звіти надаються студентам як у друкованому виді, так і в електронній формі. Остання використовується паралельно з ДОК’ом під час проведення лабораторної роботи, що зручно для перенесення експериментальних даних з ДОК’а в заготовлені таблиці, для підготовки звітних матеріалів.Висновки. Досвід впровадження описаного практикуму в навчальний процес на фізико-математичному факультеті Харківського національного педагогічного університету дозволяє зробити наступні висновки. Курс чисельних методів набув більшої значимості у формуванні математичної культури студентів, було істотно розширено коло апробованих методів і коло розглянутих задач. Навчальні дослідження, при наявності відповідного програмного і методичного забезпечення, а також при певній наполегливості викладача виявилися цілком посильною і результативною формою навчальної роботи студентів.
APA, Harvard, Vancouver, ISO, and other styles
46

Kozakova, N. L., and V. I. Kuzmenko. "ОБЕРНЕНА ЗАДАЧА ВИЗНАЧЕННЯ МЕХАНІЧНИХ ХАРАКТЕРИСТИК ШАРУ ГІРСЬКОЇ ПОРОДИ." Problems of applied mathematics and mathematic modeling, January 11, 2022. http://dx.doi.org/10.15421/322114.

Full text
Abstract:
Розглянута пружна ізотропна тришарова смуга, що знаходиться під дією власної ваги та нормального навантаження, яка має порожнину на другому шарі. Розв’язана обернена задача визначення густини матеріалу та модуля Юнга верхнього шару. Використано апарат варіаційних методів. Дискретизація виконана за допомогою методу скінченних елементів. Для розв’язання скінченновимірної задачі застосовано метод верхньої релаксації. Розв’язання оберненої задачі ґрунтується на екстремальному формулюванні та методі локальних варіацій. Виконано аналіз практичної збіжності розроблених алгоритмів. Здійснена апостеріорна оцінка похибки розв’язання оберненої задачі.
APA, Harvard, Vancouver, ISO, and other styles
47

Січний, Сергій. "БАЗИ ДАНИХ РИНКОВИХ ЦІН НА МАТЕРІАЛЬНО-ТЕХНІЧНІ РЕСУРСИ В СИСТЕМАХ УПРАВЛІННЯ ВАРТІСТЮ БУДІВНИЦТВА." Економіка та суспільство, no. 22 (December 15, 2020). http://dx.doi.org/10.32782/2524-0072/2020-22-99.

Full text
Abstract:
У статті розглянуто вимоги вітчизняних нормативних документів щодо аналізу цін на будівельні матеріально-технічні ресурси (МТР), підходи сучасної економічної теорії до визначення ринкової ціни та досвід формування баз ринкових цін будівельних ресурсів в різних країнах. Запропоновано для достовірного визначення поточної ринкової ціни МТР використовувати систему спостереження за ринковими цінами (ССРЦ). Розглянуто її місце в організаційній структурі учасників будівельного процесу та можливості практичного застосування ССРЦ та її елементів на будівельному ринку. В тому числі для формування оперативної інформації про ціни у будівництві для 5D та 4D BIM-моделі та в сучасних системах управління витратами або проектування вартості, проектування цінності, управління проектами, управління якістю. Наведено перелік завдань, які має вирішувати ССРЦ, схему та алгоритм її роботи. Основне завдання – визначення поточної ринкової ціни ресурсів за встановленими правилами з заданою точністю (похибкою) в обмежених часових та/чи фінансових рамках. Приведено можливі сценарії заповнення початкового переліку МТР в базі ринкових цін.
APA, Harvard, Vancouver, ISO, and other styles
48

Ружицька, Наталя Володимирівна, Тетяна Анатолїївна Різниченко, and Олександр Кирилович Войтенко. "МЕТОДИКА РОЗРАХУНКУ ПРОЦЕСУ КОНЦЕНТРУВАННЯ ХАРЧОВИХ РОЗЧИНІВ ТА ЕКСТРАКТІВ У МІКРОХВИЛЬОВОМУ ВАКУУМ-ВИПАРНОМУ АПАРАТІ." Scientific Works 82, no. 1 (August 23, 2018). http://dx.doi.org/10.15673/swonaft.v82i1.1020.

Full text
Abstract:
Для інтенсифікації процесу вакуум-випарювання запропоновано забезпечити рівномірність енергопідведення і виключити проміжний теплоносій за рахунок використання мікрохвильових технологій. При мікрохвильовому підведенні енергія надходить безпосередньо до молекул води в продукті, осередки пароутворення виникають у всьому об’ємі і виконують функцію гріючої поверхні. В результаті експериментального моделювання процесу мікрохвильового вакуум-випарювання розчинів цукру одержано коефіцієнти критеріального рівняння процесу.Наведено методику розрахунку процесу вакуум-випарювання в умовах дії мікрохвильового поля. В основі методики розрахунку критеріальне рівняння процесу випарювання в умовах вакууму та мікрохвильового енергопідведення, змінними якого є число енергетичної дії, безрозмірний параметр площі дзеркала продукту та безрозмірний тиск. Алгоритм включає розрахунки теплофізичних властивостей продукту, геометричних характеристик ємності, швидкості видалення вологи, поточну концентрацію сухих речовин у розчині, необхідну тривалість процесу, витрати енергії та економічні характеристики. Цикли розрахунку повторюються поки концентрація розчину в апараті сягне заданого для кінцевого продукту значення. Наведено результати перевірки запропонованої методики для розчинів цукру, кави, стевії. Встановлено, що відносна похибка для визначеної за алгоритмом швидкості видалення вологи відносно експерименту для розчинів цукру, стевії та кави складає 0,2…12 %.На основі розробленого мікрохвильового вакуум-випарного апарату запропоновано технологію одержання рідкого концентрату стевії – природного цукрозамінника. Екстракт стевії, який направляється на концентрування, одержується у мікрохвильовому екстракторі,а концентрація сухих речовин у кінцевому продукті - близько 12 %. For vacuum-vaporization process intensification it is offered to provide energy supply uniformity and exclude intermediate heat medium by using of microwave technologies. While microwave supply energy comes directly to water molecules in product, vaporization centers appear in whole volume and perform function of heating surface.As a result of experimental modeling of sugar solutions microwave vacuum vaporization the constants of criterion equation are received.The method of calculation of vacuum vaporization under microwave action is given. The base of the calculation method is criterion equation of vaporization under vacuum and microwave energy supply conditions, which variables are energy action criterion, dimensionless parameter of product mirror area and dimensionless pressure. The algorithm includes calculations of product thermophysical properties, vessel geometrical characteristics, water removing velocity, current dry matter concentration, necessary process duration, energy consumption and economical characteristics. Calculation cycles repeat until solution concentration in apparatus reaches the value prescribed for the final product. The results of verification of proposed method for sugar solutions, coffe and stevia extracts are given. It is defined, that relative error for calculated water removing velocity relatively to experiment for sugar, coffee and stevia solutions is 0,2…12 %.On the base of elaborated microwave vacuum evaporation apparatus a technology of production liquid stevia concentrate, a natural sugar substitute, is offered. Stevia extract that is being concentrated is received in microwave extractor. Dry matter concentration in final product is about 12 %.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography