Academic literature on the topic 'Оптичний сенсор'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Оптичний сенсор.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Оптичний сенсор"

1

Bragynets, I. O., and Yu O. Masjurenko. "FIBER OPTICAL SENSOR FOR LINEAR MEASUREMENTS." Tekhnichna Elektrodynamika 2019, no. 6 (October 25, 2019): 81–87. http://dx.doi.org/10.15407/techned2019.06.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

STETSIV, Yuliia, Mykhaylo YATSYSHYN, and Oleksandr Oleksandr. "OPTICAL рН SENSOR BASED ON POLYANILINE FILMS." Proceedings of the Shevchenko Scientific Society. Series Сhemical Sciences 2018, no. 53 (September 28, 2018): 170–80. http://dx.doi.org/10.37827/ntsh.chem.2018.53.170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martsenyuk, V. P., I. V. Kachur, A. S. Sverstyuk, V. I. Bondarchuk, Yu V. Zavidnyuk, V. B. Koval, and O. M. Mochulska. "МОНІТОРИНГ СТАНУ ЗДОРОВ’Я ЗА ФУНКЦІОНАЛЬНИМИ ПОКАЗНИКАМИ ЗА ДОПОМОГОЮ СЕНСОРІВ У РЕАБІЛІТАЦІЙНІЙ МЕДИЦИНІ: СИСТЕМАТИЧНИЙ ОГЛЯД." Вісник наукових досліджень, no. 2 (April 16, 2019): 5–12. http://dx.doi.org/10.11603/2415-8798.2019.2.9971.

Full text
Abstract:
На сьогодні значно зростає потреба людей у швидких та ефективних реабілітаційних процесах. Людям з обмеженими функціональними можливостями необхідні сенсорні пристрої, які застосовують для реабілітації з метою покращення здоров’я людини та її повернення до належного рівня життя. Сенсорні пристрої використовують для системи моніторингу здоров’я людей, які поділяють на портативні та переносні. Адже реабілітаційного лікування потребують пацієнти різної вікової категорії із серцево-легеневою патологією, неврологічними розладами, ортопедичними порушеннями тощо. У статті висвітлено електромеханічні, електричні, оптичні та теплові сенсори, перетворювачі акустичних сигналів або сенсори, чутливі до маси, сенсорні датчики та їх застосування на різних етапах реабілітації. Мета дослідження – проаналізувати сучасну вітчизняну та зарубіжну літератури щодо видів сенсорів у реабілітаційній медицині. Матеріали і методи. У дослідженні застосовано бібліосистематичний та аналітичний методи в наступних електронних базах даних: Science Direct, PubMed, Scopus і Google Scholar. Під час пошуку статті проаналізовано анотації. Критеріями включення були такі: 1 – фізична та медична реабілітація і/або допоміжна система, яка підтримується сенсорами і комп’ютером, 2 – системи, розроблені для організму людини, і 3 – документи, написані англійською мовою. Якщо очікуваний критерій було знайдено, повний текст переглядали. Результати досліджень та їх обговорення. Під час виконання дослідження провели систематичний огляд та аналіз останніх публікацій, в основному зарубіжної наукової медичної, біологічної та технічної літератури щодо видів, принципів роботи, розробки та можливостей застосування сенсорів у реабілітаційній медицині. Сенсорні технології продовжують всебічно розвиватися і пропонують зручні можливості у використанні для поліпшення функціонального стану здоров’я. Широкий спектр досліджень, включених і відображених у цьому огляді, включав різні типи сенсорів. На сьогодні пристрої, що використовують для моніторингу фізичної активності, розділяють на сенсори, які вимірюють такі біологічні показники, як тиск, частоту серцевих скорочень, частоту дихання – пульсометр, тонометр, спірометр, та датчики руху – педометри, акселерометри, трекери активності. Деякими з найчастіших у використанні сенсорів у реабілітації є електроміографія, гальванічна реакція шкіри, електрокардіографія, електроенцефалографія та сенсорні датчики і системи, які контролюють рухову і фізіологічну активність людини. У статті для прикладів розглянуто: 1 – типовий алгоритм роботи пристроїв для моніторингу функціонального стану здоров’я людини, 2 – діагностичний прилад ALLADIN з сенсорами, який включає дев’ять компонентів. В електронних базах даних: Science Direct, PubMed, Scopus і Google Scholar не знайдено жодної роботи, раніше опублікованої, де б автори узагальнювали поєднання сенсорів із апаратними засобами, робототехнічними, комп’ютерними, системами для реабілітації пацієнтів різних вікових категорій. Висновки. При аналізі сучасної вітчизняної та зарубіжної літератур щодо видів сенсорів у реабілітаційній медицині вивчено й описано розвиток і застосування сенсорних приладів у фізичній та медичній реабілітації. В усіх публікаціях вказується, що сенсорні датчики прикріплюються до пристроїв, які дають змогу вимірювати функціональні показники стану здоров’я людини. Тому сенсорні технології у реабілітаційній медицині продовжують всебічно розвиватися і часто застововуються для діагностики, оцінки стану здоров’я людини та її реабілітації.
APA, Harvard, Vancouver, ISO, and other styles
4

Шевчук, В. В., О. М. Сукач, Ю. І. Габрієль, and Г. А. Худавердян. "ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ДІАГНОСТИКИ ЕЛЕТРОННОЇ СИСТЕМИ КЕРУВАННЯ СІВАЛКОЮ HORSCH PRONTO DC." СІЛЬСЬКОГОСПОДАРСЬКІ МАШИНИ, no. 46 (May 30, 2021): 111–23. http://dx.doi.org/10.36910/acm.vi46.499.

Full text
Abstract:
У статті запропоновано методику діагностики електронних систем керування, якими оснащені сучасні посівні комплекси. Використання електронних систем дозволяє в автоматичному режимі контролювати якість посіву, адаптувати роботу сівалки до зміни параметрів руху, відображати основні параметри системи під час роботи, сигналізувати про несправності чи недотримання агротехнічних вимог. Для вивчення будови, принципу роботи, налаштувань й технічного обслуговування сівалки зручно використовувати навчальні стенди, перевагою яких є компактність та зручність розташування основних елементів електронної системи керування, а його використання не потребує значних затрат часу й ресурсів, застосування додаткового обладнання й техніки. Визначено характеристики та параметри вихідних сигналів сенсорів за різних режимів роботи. З’ясовано принципи роботи бортової мережі та технології передачі даних основних елементів електронної системи керування сівалкою. За характером та закономірностями зміни отриманих осцилограм інформаційних сигналів встановлено нормативні діагностичні параметри сенсорів сівалки, що в подальшому забезпечить швидку та ефективну діагностику. Встановлено, що оптичні сенсори використовують UART протокол передачі даних. Один із контактів роз’єму сенсора контролю висіву є приймачем (RX), а другий – є передавачем (TX) цифрового сигналу, відповідно, це дозволяє розташувати велику кількість сенсорів на одній лінії передачі даних. Результати досліджень забезпечать швидку діагностику техніки.
APA, Harvard, Vancouver, ISO, and other styles
5

Tsyzh, B. R., M. R. Dzeryn, and Yu Yu Horbenko. "Газочутливість плівок поліортотолуїдину." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 19, no. 75 (January 7, 2017): 59–64. http://dx.doi.org/10.15421/nvlvet7512.

Full text
Abstract:
Електропровідні полімери, в тому числі поліпірол, поліанілін, політіофен та їхні похідні, використовують як активні шари для газових сенсорів ще з 1980-х років. Порівняно з комерційно доступними сенсорами на основі неорганічних речовин, зокрема високовартісних напівпровідників і оксидів металів, чутливі елементи, отримані на основі спряжених полімерів, привертають увагу завдяки простішому та дешевшому способу виготовлення. У цій роботі запропоновано чутливі елементи сенсорних пристроїв на основі електропровідного полімеру – поліортотолуїдину (ПоТ) та вивчено зміну оптичних характеристик тонких плівок ПоТ на прозорих поверхнях під впливом газів NH3, HCl, H2S. Показано, що внаслідок дії парів аміаку та хлороводню в оптичних спектрах ПоТ відбуваються суттєві зміни інтенсивності та зсув максимуму оптичного поглинання.
APA, Harvard, Vancouver, ISO, and other styles
6

Прімін, Михайло Андрійович. "Сучасні сенсорні системи та інформаційні технології в медицині, біології та техніці. Перспективи розвитку." Visnik Nacional noi academii nauk Ukrai ni, no. 5 (May 24, 2021): 46–52. http://dx.doi.org/10.15407/visn2021.05.047.

Full text
Abstract:
У доповіді наведено найважливіші результати проведених в Інституті кібернетики ім. В.М. Глушкова НАН України досліджень з теорії і практики створення інформаційно-діагностичних технологій на основі реєстрації й аналізу магнітних, оптичних та електричних сигналів. Запропоновані методи реєстрації та інформаційна технологія перетворення магнітометричної інформації є по суті універсальними і можуть використовуватися в медицині, біології, промисловості, для створення систем пошуку корисних копалин, діагностики підземних інженерних комунікацій, дослідження магнітних властивостей матеріалів тощо.
APA, Harvard, Vancouver, ISO, and other styles
7

Bovgyra, O. V., and M. V. Kovalenko. "Electronic Structure, Optical and Sensor Properties of ZnO Nanowires." Journal of Nano- and Electronic Physics 8, no. 2 (2016): 02031–1. http://dx.doi.org/10.21272/jnep.8(2).02031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

AKSIMENTYEVA, Olena, Galyna MARTYNIUK, Bohdan TSIZH, Yaroslav KOVALSKY, and Mykola YATSKOV. "FORMATION OF FLEXIBLE ELEMENTS OF OPTICAL SENSORS BASED ON POLYAMINOARENES AND POLYVINYL ALCOHOL COMPOSITES." Proceedings of the Shevchenko Scientific Society. Series Сhemical Sciences 2021, no. 66 (September 30, 2021): 7–18. http://dx.doi.org/10.37827/ntsh.chem.2021.66.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Danko, V. A., I. Z. Indutnyi, Yu V. Ushenin, P. M. Lytvyn, V. I. Mynko, P. Ye Shepeliavyi, M. V. Lykanyuk, A. A. Korchovyi, and R. V. Khristosenko. "Development of Technology for Sensor Chip Production with Increased Sensitivity and Improved Physical and Mechanical Characteristics for Optical Sensors Based on Surface Plasmon Resonance." Nauka ta innovacii 13, no. 6 (November 30, 2017): 25–35. http://dx.doi.org/10.15407/scin13.06.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Борщевич, Лариса Вікторівна, and Надія Вікторівна Стець. "Мультимедійні засоби в науці та освіті." Theory and methods of e-learning 4 (February 13, 2014): 13–18. http://dx.doi.org/10.55056/e-learn.v4i1.363.

Full text
Abstract:
Серед пріоритетних напрямів розвитку галузі освіти, визначених у «Національній доктрині розвитку освіти», важливе місце займає застосування освітніх інновацій, інформаційних технологій, створення індустрії сучасних засобів навчання та виховання. Комп’ютеризація та інформатизація є новітніми процесами, що впроваджуються у сферу навчання, набуваючи статус не лише об’єкта вивчення, але й засобу навчання тієї чи іншої дисципліни, зокрема хімії.Мультимедійні технології є на сьогоднішній день найбільш необхідним та новим напрямом використання інформаційно-комп’ютерних технологій у сфері освіти. Мультимедійному навчанню присвячений багато фундаментальних досліджень [1; 2] як в теорії педагогіки, так і в частинних методиках викладання окремих навчальних дисциплін. Однак, незважаючи на це, проблема використання мультимедіа, як в теорії навчання, так і в реальній педагогічній практиці залишається дуже актуальною і викликає гострі дискусії.З 2012-2013 навчального року на хімічному факультеті Дніпропетровського національного університету ім. О. Гончара введена нова дисципліна «Мультимедійні засоби в науці та освіті». Вона викладається студентам ІІІ курсу (34 години лекційні та 34 години відведено на практичні заняття) та IV курсу (відповідно 32 та 16 годин).Цілями даної дисципліни є застосування знань у сфері комп’ютерних технологій при проведенні наукових досліджень та в освітньому процесі. Завданнями вивчення дисципліни є формування загальнотеоретичного кругозору, професійних знань і практичних навичок, необхідних бакалавру, спеціалісту та магістру напряму підготовки «Хімія» для успішної професійної діяльності в інформаційному суспільстві.Дисципліна «Мультимедійні засоби в науці та освіті» належить до вибіркової частини загальнонаукового циклу. Вона базується на знанні наступних предметів, що викладаються в рамках бакалаврату: педагогіка, інформатика, методологія наукових досліджень, методика викладання хімії тощо. Ця дисципліна носить узагальнюючий характер. Знання та навички, отримані при вивченні дисципліни, сприяють більш успішній роботі над дипломними та магістерськими роботами.У результаті освоєння дисципліни «Мультимедійні засоби в науці та освіті» студент повинен знати базис сучасних комп’ютерних технологій, основи організації сучасних інформаційних мереж, перспективи розвитку комп’ютерних технологій в науці та освіті. Студенти повинні вміти використовувати мережні та мультимедіа-технології в освіті і науці, виконувати підготовку документів (тези доповідей, реферати, аналітичні довідки, плани-конспекти уроків, лекцій та практичних занять, науково-дослідні роботи), використовуючи різні методи обробки інформації.Після вивчення даної дисципліни студенти володітимуть методами розв’язування спеціальних завдань із застосуванням комп’ютерних та мультимедіа-технологій у професійній і науковій діяльності з хімії, термінологією сучасних інформаційних технологій та навичками забезпечення інформаційної безпеки науково-технічної та освітньої інформації. Засоби мультимедіа сприяють:– стимулюванню когнітивних аспектів навчання, таких як сприйняття та усвідомлення інформації;– підвищенню мотивації студентів до навчання;– розвитку навичок самостійної роботи студентів;– глибшому підходу до навчання, формуванню глибшого розуміння навчального матеріалу [3].У широкому сенсі «мультимедіа» означає спектр інформаційних технологій, що використовують різноманітні програмні та технічні засоби з метою найбільш ефективного впливу на користувача. Завдяки застосуванню в мультимедійних продуктах і послугах одночасної дії графічної, аудіо (звукової) і візуальної інформації, ці засоби мають великий емоційний заряд і активно включають увагу користувача.Засобами мультимедіа можна осмислено і гармонійно інтегрувати різні види інформації. Це дозволяє за допомогою комп’ютера подавати інформацію в різноманітних формах: зображення, включаючи відскановані фотографії, креслення, карти і слайди; звукозапис, звукові ефекти і музику; відео, складні відеоефекти; анімації та анімаційне імітування [4].До засобів мультимедіа можна віднести практично будь-які засоби, здатні привнести в навчання та інші види освітньої діяльності інформацію різних видів. В даний час широко використовуються:– засоби для запису і відтворення звуку (електрофони, магнітофони, CD-програвачі);– системи та засоби телефонного, телеграфного та радіозв’язку (телефонні апарати, факсимільні апарати, телетайпи, телефонні станції, системи радіозв’язку);– системи та засоби телебачення, радіомовлення (теле- та радіоприймачі, навчальне телебачення і радіо, DVD-програвачі);– оптична та проекційна кіно- і фотоапаратура (фотоапарати, кіно-камери, діапроектори, кінопроектори, епідіаскопи);– поліграфічна, копіювальна, розмножувальна та інша техніка, призначена для документування і розмноження інформації (ротапринти, ксерокси, різографи, системи мікрофільмування);– комп’ютерні засоби, що забезпечують можливість електронного подання, обробки і зберігання інформації (комп’ютери, принтери, сканери, графічні пристрої), телекомунікаційні системи, що забезпечують передачу інформації по каналах зв’язку (модеми, мережі дротових, супутникових, радіорелейних та інших видів каналів зв’язку, призначених для передачі інформації) [5].Про всі ці мультимедійні засоби навчання студенти отримують інформацію під час вивчення дисципліни «Мультимедійні засоби в науці та освіті».Крім того, вони знайомляться з різноманітними програмними продуктами, що використовуються при викладанні хімічних дисциплін та в хімічних наукових дослідженнях. Ці продукти можна умовно класифікувати за основним призначенням (рис. 1) [6].Рис. 1. Програми, що використовуються при викладанні хімічних дисциплін Значна частина курсу «Мультимедійні засоби в науці та освіті» присвячена застосуванню мультимедійних засобів навчання у викладанні хімічних дисциплін, оскільки випускники хімічного факультету отримують після закінчення університету спеціальність «хімік, викладач хімії».Головним питанням сьогодення в системі нової освіти є опанування учнями вмінь і навичок саморозвитку особистості, що значною мірою досягається шляхом впровадження інноваційних технологій, організації процесу навчання. Нові форми розвитку вимагають нових правил і нових шляхів досягнення результатів. Така позиція вимагає від сучасної освіти реформаційних кроків щодо оновлення її змісту та застосування нових педагогічних підходів, впровадження інформаційних і комунікаційних технологій, що модернізують навчальний процес. У зв’язку з цим студенту, як майбутньому вчителю, слід вміти застосовувати інформаційні технології у викладанні хімії. Ці вміння вони формують при вивченні дисципліни «Мультимедійні засоби в науці та освіті».Мультимедійні засоби навчання є універсальними, оскільки можуть бути використані на різних етапах заняття:– під час мотивації як постановка проблеми перед вивченням нового матеріалу;– у поясненні нового матеріалу як ілюстрації;– під час закріплення та узагальнення знань;– для контролю знань.Майбутнім учителям та викладачам слід дати уявлення стосовно методичних аспектів застосування мультимедійних засобів на різних етапах викладання хімії. Студенти повинні засвоїти, що використання засобів мультимедіа з метою повторення, узагальнення та систематизації знань не тільки допомагає створити конкретне, наочно-образне уявлення про предмет, явище чи подію, які вивчаються, але й доповнити відоме новими даними. При цьому відбувається не лише процес пізнання, відтворення та уточнення вже відомого, але й поглиблення знань. Студенти повинні усвідомлювати, що під час роботи з навчальною програмою важливо зосередити увагу учнів на найбільш складну для засвоєння частину, активізувати самостійну пошукову діяльність учнів [7].Метою застосування відеоматеріалів та інших мультимедійних засобів є ліквідація прогалин у наочності викладання хімії в середніх загальноосвітніх та вищих навчальних закладах. На одному з практичних занять з дисципліни «Мультимедійні засоби в науці та освіті» студенти створюють відеофрагменти хімічних демонстраційних дослідів, які можна використовувати на уроках хімії в середніх навчальних закладах та на лекціях з курсу «Загальна та неорганічна хімія». При розробці та виготовленні відеофрагментів студенти застосовують основні принципи створення відеоматеріалів з демонстраційного експерименту:– ілюстративність (надають можливість ілюструвати матеріал, що викладається, не розкриваючи зміст теми замість викладача);– фрагментарність (надають можливість дозовано викладати матеріал, залежно від швидкості сприйняття учнями та студентами);– методична інваріантність (відео фрагменти можна використовувати на розсуд викладача на різних етапах заняття);– лаконічність (ефективного викладення більшої кількості інформації за короткий час);– евристичність (подання нового матеріалу настільки зрозуміло, щоб нові знання виявились доступними для свідомого засвоєння учнями та студентами).Створені студентами відео продукти розглядаються на узагальнюючому занятті, обговорюються всіма членами групи та викладачем, що проводить практичне заняття. Найкращі з них застосовуються під час проведення педагогічного практикуму та на заняттях з «Методики викладання хімії».Використовуючи мультимедійні засоби навчання, можна проводити повноцінні уроки і заняття з хімії поза кабінетом хімії або в кабінетах без спеціального обладнання: витяжної шафи, демонстраційного стола, водопроводу тощо. Це дає змогу розширити можливості проведення уроків хімії в інших навчальних кабінетах, забезпечуючи мобільність.Засоби мультимедіа дозволяють одночасно використовувати різні канали обміну інформацією між комп’ютером і навколишнім середовищем. Одним із достоїнств застосування засобів мультимедіа в освіті є підвищення якості навчання.Розвиток сучасної освіти дозволяє чітко визначити місце та роль мультимедійних технологій у системі засобів навчання. Викладачі різних дисциплін використовують мультимедійні засоби в процесі відбору й накопичення інформації з даного предмету, систематизації й передачі знань, організації навчальної діяльності, створення різних її видів і форм. Це сприяє розробленню різноманітних мультимедійних навчальних продуктів та методичних рекомендацій щодо їх застосування в загальноосвітній та вищій школі. Модернізація системи освіти, яка характеризується впровадженням мультимедійних технологій у навчальний процес, призводить до значної корекції навчальних планів, програм, підручників, методичних розробок. Усвідомлення особливої ролі мультимедійних технологій приведе до ще більшої суттєвої інтеграції навчальних дисциплін. У зв’язку із зростаючим значенням комп’ютеризації виникає потреба в усвідомленому використанні цього потужного інтелектуального засобу. А це під силу буде лише досвідченому кваліфікованому спеціалісту-викладачу. Саме введення нової дисципліни «Мультимедійні засоби в науці та освіті» дозволить майбутнім фахівцям з хімії набути відповідних знань і вмінь.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Оптичний сенсор"

1

Сушко, О. А. "Перспективи використання квантових точок як детекторних елементів нанофотонних сенсорів." Thesis, ППНД, 2016. http://openarchive.nure.ua/handle/document/8983.

Full text
Abstract:
За останнє десятиліття у світі, в тому числі і в Україні, з’явилася тенденція щодо дослідження та практичного використання нанотехнологій. Особливо стрімко цей напрям розвивається у екологічних та біомедичних галузях при створенні різного роду високоселективних та чутливих сенсорів. Впровадження нанотехнологій у біомедичне приладобудування дозволить значно удосконалити виробництво сучасного обладнання, а також створити принципово нове, з недосяжними на даний момент характеристиками. Розвиток високоточної техніки і технологій, що дозволяють маніпулювати нанометровими об’єктами, дав можливість отримувати напівпровідникові нанокристали, так звані квантові точки (КТ). КТ представляє собою частку напівпровідникового матеріалу з розміром 1÷10 нм. Одним з актуальних напрямків практичного використання напівпровідникових КТ в аналітиці є створення на їх основі нанофотонних сенсорів для визначення канцерогенних органічних речовин, таких як поліциклічні ароматичні вуглеводні (ПАВ), що дозволяє суттєво підвищити якість проведення лабораторного аналізу, діагностики та попередження захворювань за рахунок надання додаткової, розширеної інформації щодо наявності у зразку певних компонентів (аналітів), які підлягають дослідженню.
APA, Harvard, Vancouver, ISO, and other styles
2

Воробйов, Владислав Євгенійович. "Оптичні рідкокристалічні сенсори." Bachelor's thesis, КПІ ім. Ігоря Сікорського, 2020. https://ela.kpi.ua/handle/123456789/35117.

Full text
Abstract:
Дипломна робота присвячена питанням підвищення ефективності одного з основних виконавчих елементів електроніки. Ознайомлення з основними характеристиками сесорів. Аналіз шляхів оптимізації технічних параметрів датчиків рідкокристалічного градієнта тиску. Аналіз рідких кристальних сензорів акселерації, вібрацій і включення. У роботі розглянуто башато типів сенсорів та віддано перевашу оптичному рідкокристалічному сесору в зв’язку з легкою уніфікаціею його конструкції та широким використанням в побуті. Використовуючи властивості рідкокристалічних матеріалів вдалося досягти надзвичано чутливих ті презиційних сенсорів.
Thesis is devoted to improving the efficiency of one of the main executive elements of electronics. Introduction to the main characteristics of sessors. Analysis of ways to optimize the technical parameters of liquid crystal pressure gradient sensors. Analysis of liquid crystal sensors of acceleration, vibration and inclusion. The paper considers many types of sensors and prefers the optical liquid crystal sensor due to the easy unification of its construction and widespread use in the home. Using the properties of liquid crystal materials, it was possible to achieve extremely sensitive sensing sensors.
APA, Harvard, Vancouver, ISO, and other styles
3

Сушко, О. А., О. М. Білаш, and М. М. Рожицький. "Оптичні сенсори фізичних та хімічних величин на базі напівпровідникових наноматеріалів." Thesis, ХНУРЕ, 2013. http://openarchive.nure.ua/handle/document/8871.

Full text
Abstract:
In abstract a development of a portable optical sensor based on semiconductor quantum dots (QD) is considered. QDs are used as the detector elements of nanophotonic sensor for analyte detection in the environmental objects. The principle of nanophotonic sensor operation is based on electrochemical and electrochemiluminescence methods using modern nanomaterials and nanotechnologies. The operation of nanophotonic sensor is based on a process of QDs transfer to ionic forms in a consequence of electrochemical processes, subsequent reactions with oppositely charged ionic forms of the analyte, resulting in the emission of an analytical optical signal. The number of quanta emitted at the given period of time is a measure of analyte content. Optical sensor with nanomaterials as detector elements has such advantages as assay reproducibility, low limit of detection, cheapness of construction and versatility. It can be used in ecology for investigation and monitoring of water object for dangerous carcinogenic substances content detection.
APA, Harvard, Vancouver, ISO, and other styles
4

Голобородько, Н. С. "Сенсори хвильового фронту з високою просторовою роздільною здатністю для дослідження оптично неоднорідних об"єктів." Diss. of Candidate of Physical and Mathematical Sciences, КНУТШ, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Булавінець, Тетяна Олександрівна. "Фотодинамічні властивості наноструктур в умовах плазмонного резонансу для біомедичних застосувань." Diss., Національний університет "Львівська політехніка", 2020. https://ena.lpnu.ua/handle/ntb/56113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography