Journal articles on the topic 'Нейроні мережі'

To see the other types of publications on this topic, follow the link: Нейроні мережі.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Нейроні мережі.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Бажинов, О., Р. Заверуха, and Т. Бажинов. "Інформаційна комплексна система діагностики гібридних і електромобілів." Науковий журнал «Інженерія природокористування», no. 2(16) (December 1, 2020): 12–18. http://dx.doi.org/10.37700/enm.2020.2(16).12-18.

Full text
Abstract:
Розглянуто штучні нейроні мережі в системі управління силовою установкою транспортного засобу з метою зменшення витрати енергії та діагностики off-line технічного стану тягової акумуляторної батареї. Отримано метод діагностики технічного стану силової установки, який використовує штучні нейронні мережі та системи нечіткого висновку для визначення технічного стану ДВЗ та тягової акумуляторної батареї.Метою роботи є підвищення ефективності діагностики функціональних систем гібридного та електромобіля шляхом оперативного синтезу управляючих впливів за енергетичними і якісними критеріями з урахуванням зовнішніх умов експлуатації. Обґрунтування методу діагностики технічного стану силової установки гібридного та електромобіля з використанням штучної нейронної мережі та системи нечіткого висновку. Дати наукове обґрунтування діагностичних параметрів силової установки гібридного автомобіля. В роботі використано штучні нейронні мережі в системі управління силовою установкою транспортного засобу з метою зменшення витрати енергії та діагностики off-line технічного стану тягової акумуляторної батареї. За допомогою симулятора навчається нейромережева модель автомобіля, яка використовує off-line навчання нейроконтролера. Якість навчання нейроконтролера визначається симулятором. При подальшому функціонуванні системи управління параметри нейронних мереж не змінюються. Відсутність адаптації вагових коефіцієнтів при функціюванні системи управління обґрунтовано тим, що це веде до втрати довго часовоїпам’яті системи управління при виникненні кратко часової несправності, а також можливості виникнення біфуркації при адаптації в нелінійних системах наведено на рисунку 1.Цільова функція оптимізації управління має на увазі мінімізацію витрати енергії при збереженні ступеню заряду тягової акумуляторної батареї при обмеженому діапазоні руху транспортного засобу в заданих умовах експлуатації.За результатами випробувань метода нейроуправління отримано, що нейроконтролер забезпечує зменшення витрати палива на 17 % і скорочує діапазон зміни ступеня зарядженості тягової акумуляторної батареї на 35 %, а також забезпечує мінімізацію викидів токсичних речовин.
APA, Harvard, Vancouver, ISO, and other styles
2

Hlavcheva, D., and V. Yaloveha. "КАПСУЛЬНІ НЕЙРОННІ МЕРЕЖІ." Системи управління, навігації та зв’язку. Збірник наукових праць 5, no. 51 (October 30, 2018): 132–35. http://dx.doi.org/10.26906/sunz.2018.5.132.

Full text
Abstract:
Предметом вивчення є історія становлення та розвиток теорії нейронних мереж, сучасні підходи до проблем розпізнавання та класифікації зображень. Особлива увага приділяється якісному огляду капсульних та згорткових нейронних мереж, принципів їх роботи та визначення основних відмінностей. Метою роботи є аналіз сучасного стану досліджень нейронних мереж та можливих перспектив розвитку цієї галузі. Завдання: проаналізувати історичний розвиток теорії нейронних мереж. Провести порівняння між типами нейронних мереж, що базуються на концепції глибокого навчання: згортковими та капсульними. Методом проведення дослідження є аналіз сучасної літератури та основних тенденцій розвитку глибокого навчання. Результатами проведеного дослідження є виявлення значущих відкриттів, що вплинули на розвиток нейронних мереж. Функціонування нейронних мереж базується на роботі нервової системи біологічних організмів. Зокрема, це принцип активності біологічного нейрону, ансамблі нейронів, виявлення «простих клітин» у зоровій корі мозку. На даний момент найбільший розвиток мають нейронні мережі, що засновані на концепції глибокого навчання, яка дозволяє багатошаровим обчислювальним моделям вивчати дані з кількома рівнями абстракції. Згорткові мережі, що використовують цю концепцію досягли значних успіхів у розпізнаванні зображень, відео та аудіо. Рекурентні мережі виявилися кращі у аналізі тексту та мови. Згорткові нейронні мережі маються низку недоліків, на яких наголошено у роботі. Капсульні нейронні мережі є вдосконаленням концепції згорткових нейронних мереж. В їх основі покладено «капсули», які призначені для виявлення характеристик об’єкта. Капсули як група нейронів характеризуються вектором активації. Запропонований відомими ученими векторний підхід дозволяє врахувати поворот та трансляцію об’єктів. Капсульні нейронні мережі потребують значно меншу навчальну вибірку, ніж згорткові. У висновках роботи визначаються основні перспективи розвитку теорії нейронних мереж, а також можливий стрімкий розвиток неконтрольованого навчання нейронних мереж. Наголошується на важливості критичного аналізу проблем нейронних мереж як вирішального фактору їх майбутнього розвитку.
APA, Harvard, Vancouver, ISO, and other styles
3

Pogrebnyak, S. V., and O. O. Vodka. "Моделювання механічної поведінки еластомірних матеріалів за допомогою штучної нейронної мережі." Scientific Bulletin of UNFU 28, no. 11 (December 27, 2018): 130–34. http://dx.doi.org/10.15421/40281123.

Full text
Abstract:
У ХХІ ст. нейронні мережі широко використовують у різних сферах, зокрема в комп'ютерному моделюванні та механіці. Така популярність через те, що вони дають високу точність, швидко працюють та мають дуже широкий спектр налаштувань. Створено програмний продукт із використанням елементів штучного інтелекту для інтерполяції та апроксимації експериментальних даних. Програмне забезпечення повинно коректно працювати та давати результати з мінімальною похибкою. Інструментом розв'язання задачі було використання елементів штучного інтелекту, а точніше – нейронних мереж прямого поширення. Збудовано нейронну мережу прямого поширення. Її навчив вчитель із використанням методу зворотного розповсюдження похибки на основі навчаючої вибірки попередньо проведеного експерименту. Для тестування було побудовано декілька мереж різної структури, що отримували на вхід однаковий набір даних, якого не використовували під час навчання, але він був відомий з експерименту. Отже, було знайдено похибку мережі за кількістю виділеної енергії та середньоквадратичним відхиленням. Докладно описано тип мережі та її топологію. Метод навчання і підготовки навчаючої вибірки також описано математично. Внаслідок проведеної роботи збудовано та протестовано програмне забезпечення з використанням штучної нейронної мережі та визначено її похибку.
APA, Harvard, Vancouver, ISO, and other styles
4

Лєві, Л. І. "ФОРМАЛІЗАЦІЯ ВОЛОГОПЕРЕНОСУ В НЕНАСИЧЕНІЙ ЗОНІ МОДУЛЬНОЇ ДІЛЯНКИ ҐРУНТУ ЯК ОБ’ЄКТУ КЕРУВАННЯ НА ОСНОВІ НЕО-ФАЗЗІ МЕРЕЖ." Вісник Полтавської державної аграрної академії, no. 3 (September 27, 2019): 248–55. http://dx.doi.org/10.31210/visnyk2019.03.34.

Full text
Abstract:
Метою статті є дослідження модульної ділянки ґрунту як об’єкту керування, яка є складною ро-зподіленою у просторі системою. Однією з характерних ознак складності об’єкта керування є неви-значеність у представленні його структури та поведінки. У рамках сучасної методології системно-го моделювання невизначеність може характеризувати наступні аспекти модельних уявлень: неяс-ність або нечіткість границі системи; неоднозначність семантики окремих термінів; неповнота модельних уявлень щодо певної складної системи; наявність протиріч між окремими компонентами модельних уявлень або вимог, які повинна задовольняти модель складної системи; невизначеність настання певних подій, які належать до можливості знаходження системи ‒ оригіналу в певному стані в майбутньому; лінгвістична невизначеність. На модульну ділянку ґрунту як об’єкт керування здійснюють вплив змінні збурення − погодні умови (температура й вологість повітря, швидкість ві-тру, сонячна радіація, опади). Від них залежить вихідний параметр − всмоктуючий тиск (вологість) ґрунту. Цьому об՚єкту керування притаманна стохастична невизначеність, оскільки його властиво-сті змінюються випадково. На сьогодні, крім класичних нейронних мереж, розвиваються гібридні, зокрема, нечіткі нейронні мережі. Вони об’єднують у собі переваги нейронних мереж і систем нечі-ткого виведення. Тому для моделювання ненасиченої зони модульної ділянки ґрунту як об’єкту керу-вання ґрунту застосовано саме гібридну нейро-нечітку мережу на основі нео-фаззі нейрона. Розроб-лені нео-фаззі моделі ненасиченої зони модульної ділянки ґрунту як об’єкта керування для прогнозу-вання всмоктуючого тиску ґрунту забезпечують вищу точність роботи, ніж багатошарові мережі прямого поширення. Водночас вони мають простішу архітектуру, що забезпечує легшу практичну реалізацію та більшу швидкість навчання. Розроблені нео-фаззі моделі можуть бути використані у складі автоматизованого робочого місця диспетчера зрошувальної системи і слугувати зручним ін-струментом для планування й керування режимами зволоження сільськогосподарських культур.
APA, Harvard, Vancouver, ISO, and other styles
5

Федоряка, М., and K. Мелкумян. "Гібридний метод обробки зображень на конволюційних нейронних мережах." Адаптивні системи автоматичного управління 1, no. 38 (May 31, 2021): 72–76. http://dx.doi.org/10.20535/1560-8956.38.2021.233198.

Full text
Abstract:
Стаття присвячена опису моделі конволюційної нейронної мережі для покращення роздільної здатності зображень на мобільних пристроях. В наш час мобільна фотографія стає все більш і більш популярною. Багато людей вибирають у якості основного пристрою для створення фото свій смартфон, оскільки це значно зручніше, швидше та дешевше за спеціалізовану камеру. Нажаль, висока роздільна здатність і якість фото доступна лише покупцям дорогих смартфонів. Саме тому актуальною є проблема покращення роздільної здатності та чіткості фотографій є неймовірно актуальною. Традиційні алгоритми без використання машинного навчання демонструють непогані результати і не потребують великого обсягу часу, потрібного на підбір наборів даних, що необхідні для тренування нейронної мережі, та, власне, на сам процес тренування. Проте, іх ефективність та якість результату значно гірша ніж у підходів з використанням нейронних мереж. Саме тому пропонується застосувати гібридний метод обробки зображень, що базується на конволюційних нейронних мережах. Структура мережі відрізняється від класичних підходів комбінацією обробки нейронною мережею та одним з більш традиційних алгоритмів обробки зображень. Запропонавана системавикористовує конволюційні нейронні мережі замість традиційних генеративних змагальних мереж. Запропонована архітектура мережі використовує автокодувальник, який вчиться на різких зображеннях шляхом вилучення ознак. Після навчання вихідне зображення пропускається через автокодувальник. Після видалення шумів та застосування корекцій, декодер створює з цих даних необхідне різке зображення. Після обробки нейронною мережею, застосовується алгоритм Unsharp Masking з буфером глибини для покращення контрасту і яскравості результуючого зображення. У статті наведено перелік переваг використання вищезазначеної системи. Бібл. 5, іл. 1.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhukovskyy, V. V., S. V. Shatnyi, and N. A. Zhukovska. "Нейронна мережа для розпізнавання та класифікації картографічних зображень ґрунтових масивів." Scientific Bulletin of UNFU 30, no. 5 (November 3, 2020): 100–104. http://dx.doi.org/10.36930/40300517.

Full text
Abstract:
Запропоновано нейронну мережу для розпізнавання картографічних зображень ґрунтових масивів та класифікації ландшафтних ділянок за типами ґрунтових масивів із використанням нейронної мережі. Описано підходи до проектування архітектури, методів навчання, підготовки даних для проведення навчання, тренування та тестування нейронної мережі. Розроблено структурно-функціональну схему нейронної мережі, яка складається із вхідного, прихованих та вихідного шарів, кожен окремий нейрон описано відповідною активаційною функцією із підібраними ваговими коефіцієнтами. Показано доцільність застосування кількості нейронів, їх тип та архітектуру для проведення задачі розпізнавання та класифікації ділянок на кадастрових картах. Як вихідні дані використано відкриті державні інформаційні ресурси, в яких виділено окремі ділянки за типами ґрунтів, їх поширення та сформовано базу даних для навчання та тренування нейронної мережі. Проаналізовано ефективність, швидкодію та точність роботи нейронної мережі, зокрема, проведено комп'ютерну симуляцію із використанням сучасного програмного забезпечення та математичне моделювання обчислювальних процесів у середині структури нейронної мережі. Розроблено програмні засоби для попередньої підготовки та оброблення вхідних даних, подальшого тренування та навчання нейронної мережі та безпосередньо процесу розпізнавання та класифікації. Відповідно до отриманих результатів, розроблена модель та структура нейромережі, її програмні засоби реалізації показують високу ефективність як на етапі попереднього оброблення даних, так і загалом на етапі класифікації та виділення цільових ділянок ґрунтових масивів. Надалі наступним етапом досліджень є розроблення та інтеграція програмно-апаратної системи на основі розпаралелених та частково розпаралелених засобів обчислювальної техніки, що дасть змогу значно пришвидшити обчислювальні операції, досягти виконання процесів навчання та тренування нейронної мережі в режимі реального часу та без втрати точності. Подані наукові та практичні результати мають високий потенціал для інтеграції в сучасні інформаційно-аналітичні системи, системи аналізу та моніторингу за станом навколишнього середовища, технологічними об'єктами та об'єктами промисловості.
APA, Harvard, Vancouver, ISO, and other styles
7

Харченко, Н., and В. Сердаковський. "Нейронна мережа для діагностики хвороби Паркінсона за зображенням спіралі Архімеда." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 45 (December 23, 2021): 54–58. http://dx.doi.org/10.36910/6775-2524-0560-2021-45-08.

Full text
Abstract:
У статті розглянуто актуальну проблему встановлення діагнозу Паркінсона на ранніх стадіях захворювання. Вибір теми дослідження обумовлено невиліковністю хвороби Паркінсона, отже вкрай гостро, на думку авторів є нагальне виявлення захворювання на ранніх стадіях. Констатовано, що діагностики, для точного встановлення діагнозу нині не існує, тому залишається проведення тестів для виявлення симптомів. Одним з таких, як слушно зауважують автори є малювання спіралі Архімеда, яке має доволі високу точність під час виявлення тремору спокою. Створення алгоритму для автоматичної обробки таких зображень може допомогти у проведені діагностики, а також моніторингу розвитку хвороби. Поєднання штучного інтелекту та інтернет медичних речей з часом зробить підключені пристрої для моніторингу стану здоров’я більш інтелектуальними. Нейронні мережі та величезні обсяги даних, що генеруються інтернет медичних речей, також можуть використовуватися для встановлення діагнозу. Авторами статті наголошено на фундаментальних можливостях нейронних мереж, їх сприятливій ролі у трансформації сфери радіології, шляхом заощадження часу та грошей медичних організацій. Розроблено нейронну мережу, яка зможе за зображенням намальованої спіралі Архімеда встановити діагноз. Дану мережу можна використовувати для проведення ранньої діагностики, а також подальшого моніторингу стану хвороби. Зважаючи на невелику вибірку зображень для навчання та тренування моделі авторами статті було прийняте рішення про збільшення вибірки шляхом перетворення зображень, а також використання згорткової нейронної мережі з попереднім навчанням. У результаті проведеної роботи було створено модель, яка має точність 93.7 відсотків яка дозволить автоматизувати процес діагностики хвороби на ранніх стадіях.
APA, Harvard, Vancouver, ISO, and other styles
8

Koshel, А. "Перспективні напрямки застосування нейронних мереж у конструкторській діяльності." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 46 (April 1, 2022): 57–63. http://dx.doi.org/10.36910/6775-2524-0560-2022-46-08.

Full text
Abstract:
У статті описано перспективні напрямки застосування нейронних мереж у конструкторській діяльності. Наголошено, що в умовах сьогодення нейромережеві технології знайшли застосування в економіці, медицині, промисловості, багатьох інших галузях науки і техніки, здатні вирішувати практично будь-які завдання, пов'язані з моделюванням, прогнозуванням, оптимізацією. Наголошено на проблематиці дослідження, підкреслено, що виробничі процеси характеризуються величезним розмаїттям динамічно взаємодіючих параметрів і зазвичай надто складні до створення адекватних аналітичних моделей, а у деяких випадках вдалі з погляду адекватності описуваному процесу аналітичні математичні моделі виявляються неспроможними через високі вимоги до обчислювальної потужності. Запропоновано дві моделі нейронних мереж: глибока нейронна мережа та згорткова нейронна мережа, робота яких направлена на використання у конструкторській діяльності яка спрямована на проектування лонжерону автомобіля. Описано та схематично запропоновано блок-схему зворотного проектування профілів лонжеронів, а також сформовано багатошарову архітектуру згорткової нейронної мережі, яка використовується у конструкторській діяльності, яка складається із згорткового шару, шару об’єднання та повністю пов’язаного шару та сформовано архітектуру глибокої нейронної мережі, яка використовується у конструкторській діяльності направленій на проектування лонжерону автомобіля. Наголошено, що на відміну від моделі згорткової нейронної мережі, дані навантаження розглядаються як ціле, а не поділяються на статичні та динамічні, а зворотне проектування з використанням глибокої нейронної мережі здійснюється за допомогою стандартних бібліотек. Підкреслюється, що нейромережеві технології можуть бути корисними при створенні набору базових програмних моделей-блоків, наділених певними властивостями, що відповідають деяким реальним процесам або явищам, для подальшого їх комбінування в більш складних системах конструювання. Причому найскладніша частина такого набору модулів це саме середовище взаємодії таких блоків, яке у перспективі також може бути побудовано на основі нейронних мереж.
APA, Harvard, Vancouver, ISO, and other styles
9

Dmitrienko, V., S. Leonov, and V. Brechko. "ВИКОРИСТАННЯ АСОЦІАТИВНОЇ ПАМ’ЯТІ ПРИ ПРОЕКТУВАННІ ТЕХНОЛОГІЧНОГО ПРОЦЕСУ." Системи управління, навігації та зв’язку. Збірник наукових праць 3, no. 55 (June 21, 2019): 99–103. http://dx.doi.org/10.26906/sunz.2019.3.099.

Full text
Abstract:
При проектуванні технологічних процесів механообробки використовується банк даних, в якому необхідно знайти потрібну інформацію та скомпонувати її в залежності від задачі. При цьому виникає необхідність побудови багаторівневої структури обробки даних. Також необхідно забезпечити швидкий пошук необхідної інформації, яка знаходиться в банку даних. Вирішити цю проблему можна за допомогою асоціативної пам'яті, застосувати яку можна як при пошуку інформації, так і при подальшому збереженні отриманого технологічного процесу. Метою роботи є розробка нейронних мереж асоціативної пам'яті для проектування і зберігання технологічних процесів для високоточних і унікальних деталей. Результати. За допомогою запропонованих нейронних мереж асоціативної пам'яті розроблено технологічний процес для виробництва конкретної деталі. Алгоритм навчання окремих модулів багатошарової мережі являє собою процес визначення навчального набору зображень і побудови матриць вагів зв’язків між вхідним і вихідними шарами нейронів. При використанні асоціативної пам'яті збільшується швидкість роботи з даними за рахунок паралельної обробки інформації. Математичне моделювання технологічного процесу виробництва деталі підтвердило правильність теоретичних положень. Висновки. Розроблені нейронні мережі для проектування і зберігання технологічних процесів для виробництва високоточних деталей.
APA, Harvard, Vancouver, ISO, and other styles
10

Давидько, О. Б., А. О. Ладік, В. Б. Максименко, М. І. Линник, О. В. Павлов, and Є. А. Настенко. "КЛАСИФІКАЦІЯ УРАЖЕНЬ ЛЕГЕНЬ ПРИ COVID-19 НА ОСНОВІ ТЕКСТУРНИХ ОЗНАК ТА ЗГОРТКОВОЇ НЕЙРОННОЇ МЕРЕЖІ." Біомедична інженерія і технологія, no. 6 (November 17, 2021): 19–28. http://dx.doi.org/10.20535/2617-8974.2021.6.231887.

Full text
Abstract:
Реферат – Проблематика. Визначення структури ураження легеневої тканини хворих на COVID-19 по типовим ознакам «матове скло», «бруківка», «консолідація» є важливою складовою обґрунтування діагнозу та лікувальних заходів на поточний момент терапії пацієнта. Найбільш поширеним засобом визначення стадії та типу ураження дихальних шляхів є аналіз рентген зображень та комп’ютерної томографії (КТ). Оскільки особливістю вірусної пневмонії SARS-CoV-2 є швидкий перехід від легких стадій до важких з розвитком цитокинового шторму і розповсюдження вірусу в артеріальний кровотік, то надійний та швидкий аналіз КТ зображень легень пацієнта є запорукою прийняття своєчасних лікувальних заходів. В даній роботі розглядаються можливості застосування засобів штучного інтелекту для вирішення задачі класифікації уражень легень при захворюванні COVID-19. Мета. Метою роботи є створення класифікаційної системи типу уражень легень при COVID-19 по типовим ознакам «матове скло», «бруківка», «консолідація» на основі згорткової нейронної мережі CNN та текстурних ознак, джерелом яких є матриці суміжності GLCM при різних значеннях кутів напрямку аналізу. Методика реалізації. Оскільки основою відмінностей різних типів ураження легеневої тканини на КТ зображеннях є відмінності у їх текстурних характеристиках, то в основу простору ознак класифікаційної системи закладемо елементи гістограм на основі матриць суміжності областей інтересу КТ зображень легень. У зв’язку з високими якостями перетворення простору ознак до потреб задач класифікації згортковими шарами мережі, засобом побудови класифікатора пропонується застосувати згорткову нейронну мережу. Для навчання системи ДУ “«Національний інститут фтизіатрії і пульмонології ім. Ф.Г. Яновського НАМН України» було надано 794 КТ зрізів від 20 пацієнтів із масками зображень, на яких виділені 4714 зони інтересу з означеними типами уражень легень. Була побудована модель семишарової згорткової нейронної мережі: із чотирма згортковими шарами, після перших трьох з яких йдуть агрегувальні шари. На вхід згорткової нейронної мережі одночасно подаються текстурні ознаки двох GLCM, які були отримані із сегментованих КТ зображень під різними кутами. В якості функції втрат була використана NLLLOSS. Шар активації Softmax визначає результат задачі класифікації. Результати дослідження. Побудована згорткова нейронна мережа на тестовій вибірці з 472 зображень має загальну точність класифікації у 83%, на класі «матове скло» - 90,1%, «бруківки» - 70,5%, «консолідація» – 54,2% та на робочій вибірці з 4714 ROI зображень має загальну точність у 98%, на класі «матове скло» - 98,6%, «бруківка» - 96,8%, «консолідація» – 95,4% Висновки. В роботі одержано модель з високою ефективністю класифікації типу уражень легень при COVID-19. Класифікатор побудовано на основі згорткової нейронної мережі та ознак текстури, джерелом яких є матриці суміжності областей інтересу КТ зображень легень. Ключові слова – GLCM, матриця суміжності, область інтересу, комп’ютерна томографія, COVID-19, згорткова нейронна мережа, ураження легень, матове скло, бруківка, консолідація.
APA, Harvard, Vancouver, ISO, and other styles
11

Nazirova, T. O., and O. B. Kostenko. "Нейрономережева інформаційна технологія опрацювання медичних даних." Scientific Bulletin of UNFU 28, no. 8 (October 25, 2018): 141–45. http://dx.doi.org/10.15421/40280828.

Full text
Abstract:
Швидкий розвиток комп'ютерної техніки формує передумови для розробок нейрокомп'ютерів (тобто комп'ютерів 6-го покоління), які, за прогнозами в галузі штучного інтелекту, активно будуть використані для перероблення будь-якої інформації, за тими ж принципами, що й біологічні нейронні мережі – такі як людський мозок. Тому попит на використання нейромережеві технології поступово охоплює дедалі ширший коло користувачів зокрема й у галузі охорони здоров'я. Досліджено можливості застосування штучних нейронних мереж для оброблення даних регіональної охорони здоров'я. Нейронні мережі – потужний метод моделювання, що дає змогу відтворювати складні нелінійні залежності, що актуально для систем прийняття рішень управління пацієнтопотоком у медичних закладах. Запропоновано інформаційну технологію оброблення медичних даних за допомогою штучних нейронних мереж, що дасть змогу підвищити ефективність надання медичної допомоги під час профілактичних медоглядів, ніж відомі інформаційні технології класифікації. Розглянуті такі положення: принципи дії штучних нейронних мереж, переваги і недоліки їх використання та основні функції. Також наведено перспективи використання штучних нейронних мереж щодо класифікації пацієнтів для проходження профілактичного медичного огляду.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhuk, М. М., H. V. Pivtorak, and І. І. Hits. "ЗАСТОСУВАННЯ НЕЙРОМЕРЕЖЕВОГО МОДЕЛЮВАННЯ ДЛЯ ПРОГНОЗУВАННЯ ТРИВАЛОСТІ ПЕРЕБУВАННЯ ТРАНСПОРТНОГО ЗАСОБУ НА ЗУПИНЦІ ГРОМАДСЬКОГО ТРАНСПОРТУ." Transport development, no. 1(12) (May 3, 2022): 156–67. http://dx.doi.org/10.33082/td.2022.1-12.13.

Full text
Abstract:
Вступ. Підвищення попиту на громадський транспорт серед міського населення можна досягнути комплексом різних заходів, одним з яких є вдосконалення системи перевезень та підвищення якості обслуговування пасажирів на різних ланках перевізного процесу. Сучасні методи опрацювання та аналізу параметрів функціонування транспортних систем дозволяють оцінити вплив різноманітних чинників на транспортні процеси та спрогнозувати результати такого впливу. Більшість транспортних процесів мають стохастичну, нелінійну структуру. У таких випадках доцільно використовувати методи штучного інтелекту, зокрема штучні нейронні мережі. Мета. Метою статті є визначення тривалості перебування транспортного засобу на зупинці громадського транспорту з використанням нейромережевого моделювання. Результати. У роботі розкрито основні принципи функціонування штучних нейронних мереж та правила їх використання. Проаналізовано доцільність застосування нейромережевого моделювання для прогнозування тривалості перебування транспортного засобу на зупинках громадського транспорту. Зокрема, проаналізовано вплив таких чинників, як: довжина маршруту, відстань від початку маршруту до досліджуваної зупинки, інтервал між транспортними засобами певного маршруту та пасажирообмін на зупинці. На основі зібраної під час натурних спостережень інформації в програмному середовищі Deductor створено нейронну мережу та проведено прогнозування тривалості перебування транспортного засобу на зупинці. Проведено оцінку якості отриманої моделі. Висновки. Нейромережеве моделювання є ефективним інструментом для дослідження транспортних процесів. Отримані результати свідчать про достатню точність отриманої моделі (середня тривалість перебування транспортного засобу на зупинці становить 24 с у ранковий період та 21 с – в обідній, відхилення в межах від 5 до 9,6 %). Подальші дослідження спрямовуватимуться на підвищення точності моделі шляхом, зокрема, розширення переліку вхідних параметрів.
APA, Harvard, Vancouver, ISO, and other styles
13

Мальцев, A. "Щодо застосування глибокого навчання з підкріпленням у сучасних системах." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 44 (October 28, 2021): 37–43. http://dx.doi.org/10.36910/6775-2524-0560-2021-44-06.

Full text
Abstract:
У статті розкрито принципи застосування глибокого навчання з підкріпленням у сучасних системах. Підкреслено, що у функції навчання з підкріпленням входить адаптація немарківської моделі прийняття рішень до ситуації, що склалася за рахунок аналізу передісторії процесу прийняття рішень, внаслідок чого підвищується якість прийнятих рішень. Описано принцип реалізації навчання з підкрі.пленням та схематично розкрито схему взаємодії агента з навколишнім середовищем. Для детального опису запропоновано використання 2D-задачі балансування полюсів, яку покладено в основу математичного аспекту. Наголошено, що у сучасних системах найбільш часто використовується дві схеми навчання з підкріпленням це метод часових різниць та метод Монте-Карло. Здійснено математичне обґрунтування кожного методу окремо та запропоновано архітектуру глибокої Q-мережі. Описано модельні та безмодельні методи, підкреслено, що модельні методи засновані на моделях навчання з підкріпленням, що змушують агента намагатися зрозуміти світ і створити модель для його подання. Безмодельні методи намагаються захопити дві функції, функцію переходу від станів і функцію винагороди, з цієї моделі агент має посилання і може планувати відповідно. Проте, зазначається, що немає необхідності вивчати модель, і агент може замість цього вивчати політику безпосередньо, використовуючи такі алгоритми, як Q-навчання або градієнт політики. Глибока Q-мережа, використовує згорткову нейронну мережу для прямої інтерпретації графічного представлення вхідного стану з навколишнім середовищем. Обґрунтовано, що глибоку Q-мережу можна розглядати як параметризовану мережу політики, яка постійно навчається для наближення оптимальної політики, а, математично, глибока Q-мережа використовує рівняння Беллмана для мінімізації функції втрат, що є ефективним для зниження часу. Однак використання нейронної мережі для наближення функції значення виявилося нестабільним і може призвести до розбіжностей через зміщення, що походить від корелятивних вибірок
APA, Harvard, Vancouver, ISO, and other styles
14

Чумаченко, Олена Іллівна. "Інтелектуальна система оцінки тривалості обслуговування запитів." Адаптивні системи автоматичного управління 1, no. 20 (November 23, 2012): 24–31. http://dx.doi.org/10.20535/1560-8956.20.2012.30700.

Full text
Abstract:
В даній статті виконано дослідження методів вирішення задачі управління дзвінками в колл-центрі при використанні інтелектуальних нейронних мереж. Виконано огляд існуючих рішень для колл-центрів та приведені їх недоліки. Враховуючи вимоги колл-центрів до модулю управління зроблена постановка задачі та виконано огляд методів її вирішення. Для реалізації модулю «інтелектуального додзвону» вибрані нейронні мережі, а саме багатошаровий персептрон. Приведена архітектура мережі, проведено її навчання та виконано аналіз результатів її роботи. Виходячи з середньоквадратичних відхилень між фактичними та прогнозованими результатами, пр. збільшенні розмірів навчальної вибірки похибка прогнозів мережі прямує до 0, це значить що архітектура нейромережі підібрана вірно.
APA, Harvard, Vancouver, ISO, and other styles
15

Пчелянський, Д. П., and С. А. Воінова. "ШТУЧНИЙ ІНТЕЛЕКТ: ПЕРСПЕКТИВИ ТА ТЕНДЕНЦІЇ РОЗВИТКУ." Automation of technological and business processes 11, no. 3 (November 11, 2019): 59–64. http://dx.doi.org/10.15673/atbp.v11i3.1500.

Full text
Abstract:
У статті подано основні дослідження в галузі штучного інтелекту як науки, що займається створенням автоматизованих інтелектуальних систем. Досліджено технологічні аспекти створення систем штучного інтелекту, розкрито різні підходи до їх конструювання. Показано місце експертних систем і нейромережевих технологій у цьому процесі. У статті розкрито сутність та уявлення про штучний інтелект, який постійно змінюється, трансформується бачення шляхів його розвитку, підходи до вивчення та функціонування в цілому. Найбільш перспективними напрямками в пізнанні штучного інтелекту, є нейронні мережі, еволюційні обчислення, експертні системи. Нейронні мережі здатні вирішувати такі прикладні задачі, як: фінансове прогнозування, контроль за діяльністю мереж, шифрування даних, діагностика систем. Розробка інтелектуальних експертних систем і нейронних мереж - це лише перші кроки на шляху до створення сильного штучного інтелекту. В межах цього змінюються вимоги до сучасних інформаційних інтелектуальних систем. У статті подано загальну картину розвитку різних напрямків штучного інтелекту шляхом аналізу європейських і американських конференцій по штучному інтелекту за останні кілька років. Проаналізовано та надано статистичну інформацію за даними Німецької дослідницької компанії IPlytics про компанії, які лідирують в галузі штучного інтелекту. В статті наведено інформацію про стан розвитку штучного інтелекту в Україні.
APA, Harvard, Vancouver, ISO, and other styles
16

Ялова, Катерина, Ксенія Яшина, Тетяна Говорущенко, and Олександр Тарасюк. "СЕНТИМЕНТ АНАЛІЗ ЗАСОБАМИ НЕЙРОННОЇ МЕРЕЖІ." Математичне моделювання, no. 1(44) (July 1, 2021): 30–37. http://dx.doi.org/10.31319/2519-8106.1(44)2021.235906.

Full text
Abstract:
У статті здійснено постановку завдання аналізу тональності вхідної текстової інформації, яке відноситься до розділу прикладної лінгвістики та обробки природньої мови. Розроблено двонаправлену нейронну мережу з довгою короткотривалою пам’яттю для розв’язання завдання сентимент аналізу. Обґрунтовано доцільність застосування додаткового шару для нейронної мережі з умовно випадковими полями. Для проведення навчання нейронної мережі застосовано корпус текстових повідомлень з соціальної мережі. Описано результати навчання, валідації та тестування розробленої нейронної мережі. Для оцінювання якості розпізнавання сентиментів застосовано метрики повноти (precision), точності (recall) та збалансованої міри F1. Найкращі значення розпізнавання на тестовому наборі даних були отримані для позитивного сентименту і склали precision = 61,92 %, recall = 69,21 %, F1 = 65,36 %.
APA, Harvard, Vancouver, ISO, and other styles
17

Мельник, B., К. Мельник, and Б. Шульга. "Дослідження моделювання ідентифікатора емоцій людини за допомогою згорткової нейронної мережі з використанням KERAS." КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, no. 36 (November 26, 2019): 109–22. http://dx.doi.org/10.36910/6775-2524-0560-2019-36-11.

Full text
Abstract:
В даній статті наведено результати досліджень визначення емоцій людини за допомогою нейронних мереж. Розробка моделі для аналізу зображень проводилась за допомогою TensorFlow, а тренування реалізовувалось з використанням Keras. Вхідні дані використано з архіву kaggle.com - FER2013. Для аналізу зображеннь використано бібліотеку OpenCV. Мова програмування – Python 3. Даний набір інструментів вважається найпопулярнішим і найзручнішим для побудови нейронних мереж, а також систем глибинного навчання. Нейронні мережі і машинне навчання - найпопулярніші технології на даний момент. Особливо великих результатів можна досягнути поєднуючи цю технологію з іншими відомими – наприклад, з технологією об’єктно-орієнтованого програмування. Це поєднання технологій має широкий спектр застосування в різних областях, починаючи від звичайних фотосвітлин викладених в соціальних мережах, і закінчуючи контролем поведінки громадян держави або навіть планети. Аналіз емоцій дає можливість продуктовим і рекламним компаніям значно збільшити об’єм продаж, що в свою чергу збільшить прибутки [12]. Бути геніальним співбесідником, маючи можливість маніпулювати людьми знаючи що вони думають, проводити стрес-тести співробітників та оцінювати їхню реакцію, визначати реакцію людини на рекламу, оголошення, промову збирати обробляти і робити висновки. Список сфер використання обмежений лише фантазією і очікуємим результатом, тому тема цієї наукової роботи є актуальною.
APA, Harvard, Vancouver, ISO, and other styles
18

Kochubey, S. О. "Вплив синхронного та асинхронного сигналів від пірамідних нейронів на синхронізацію в мережах ГАМКергічних інтернейронів гіпокампа." Biosystems Diversity 21, no. 2 (December 1, 2013): 95–100. http://dx.doi.org/10.15421/011316.

Full text
Abstract:
Дослідили вплив рівня стохастичності збуджувального синаптичного сигналу від пірамідних нейронів на генерацію коливань у мережах інтернейронів гіпокампа з шунтувальними ГАМКергічними синапсами. Використовували модифікацію математичної моделі мережі інтернейронів (Vida et al. 2006) і модель зовнішнього синаптичного сигналу з пуасонівським розподілом часового інтервалу між подіями. Повністю синхронізований синаптичний сигнал, коли кожний інтернейрон у мережі отримував струм з однаковою амплітудою та частотою, викликав у мережі коливання з високою синхронізацією (k > 0,9). Збільшення частоти синаптичного сигналу викликало відповідне збільшення частоти коливань у мережі. Поступове збільшення стохастичності синаптичного струму з 0,001 до 0,200 викликає зменшення синхронізації коливань у мережі інтернейронів з 0,89 до 0,11 при однаковій частоті сигналу (6 Гц). Частота коливань у мережі інтернейронів також зменшується з 55,6 до 35,7 Гц відповідно для рівня стохастичності 0,001 та 0,200 та частоти збудження 58 Гц. Зменшення частоти та синхронізації коливань у мережі може бути пояснено нездатністю шунтувальних ГАМКергічних синапсів синхронізувати роботу окремих інтернейронів при значному зростанні стохастичності зовнішнього збудження. Крім того, продемонстровано наявність діапазону частот вхідного сигналу 30–40 Гц, в межах якого відбувається значне зростання синхронізації коливань у мережі незалежно від ступеня стохастичності зовнішнього збудження.
APA, Harvard, Vancouver, ISO, and other styles
19

Shostak, A. "ПРО ОСОБЛИВОСТІ ФОРМУВАННЯ ДЕСКРИПТОРІВ У СІАМСЬКІЙ НЕЙРОННІЙ МЕРЕЖІ." Системи управління, навігації та зв’язку. Збірник наукових праць 4, no. 66 (December 1, 2021): 79–82. http://dx.doi.org/10.26906/sunz.2021.4.079.

Full text
Abstract:
Предмет дослідження ̶ процеси розпізнавання зображень рукописних цифр із застосуванням нейронних мереж. Додаток для розпізнавання ґрунтується на архітектурі сіамської мережі з нейронними згортковими підмережами. Мета статті ̶ обґрунтування вибору N-вимірних векторних уявлень вхідних зображень для опису їх властивостей, порівняння та їхнього розпізнавання. Завдання: експериментальне дослідження розпізнавання зображень рукописних цифр із використанням архітектури сіамської нейронної мережі. Методи досліджень: метод прямого пошуку для функцій з декількома змінними для визначення N-вимірних векторних представлений вхідних зображень. Методи досліджень: метод прямого пошуку для функцій з декількома змінними для визначення N-вимірних векторних уявлень вхідних зображень. Результати досліджень. Результати досліджень. Проведено визначення N-вимірних векторних уявлень вхідних зображень рукописних цифр та досліджено їх характеристики. Виконано експериментальне дослідження розпізнавання зображень із використанням векторних уявлень зображень у рамках архітектури сіамської нейронної мережі. Показано, що запропоновані методи визначення векторних N-вимірних уявлень вхідних зображень є робастними і незначно впливають на кількість помилок при тестуванні розпізнавання. Під час тестування використовувалися зображення рукописних цифр із тестового набору MNIST. Визначено, що використання наперед вибраних еталонних уявлень вхідних зображень дозволяє спростити архітектуру сіамської мережі. Висновки. Результати, отримані в роботі, можуть бути використані при порівняльній оцінці та визначенні N-вимірних векторних уявлень різних класів вхідних зображень з метою розпізнавання їх з використанням архітектури сіамської нейронної мережі.
APA, Harvard, Vancouver, ISO, and other styles
20

Karpa, D. М., I. H. Tsmots, and Yu V. Opotiak. "Нейромережеві засоби прогнозування споживання енергоресурсів." Scientific Bulletin of UNFU 28, no. 5 (May 31, 2018): 140–46. http://dx.doi.org/10.15421/40280529.

Full text
Abstract:
Досліджено та обґрунтовано вибір нейромережевих структур для оброблення статистичних даних з метою прогнозування та виявлення аномальних показників споживання енергоресурсів. Показано, що системам на основі нейронних мереж завжди протиставлялись експертні системи, які, на відміну від перших, очевидно програмувались. Середовище, в якому працює система, не завжди є статичним і потрібні методи опрацювання даних, які могли б адекватно реагувати на зміну середовища та вміти відповідно адаптувати отримувані результати. Нейронні мережі володіють такою особливістю, як вміння навчатись. Ця особливість і є основним аргументом для застосування таких структур у системах управління енергоефективністю. Розроблена архітектура мережі та застосований процес навчання дав змогу прогнозувати показники спожитої електроенергії з урахуванням багатьох параметрів. Особливістю розробленої архітектури є можливість здійснювати перенавчання у процесі функціонування, не перериваючи його. Використання адаптивного та безперервного навчання нейромережі дасть змогу виявляти аномальні показники даних. Точність такого виявлення було перевірено на реальній вибірці даних. Аналіз отриманих результатів показує, що використання нейронних мереж хоч і потребує швидкодії і часу на навчання, проте, під час класифікації вхідного вектора, швидкодія нейронної мережі перевищує будь-який алгоритм кластеризації.
APA, Harvard, Vancouver, ISO, and other styles
21

Molodets, Bohdan, and Тatyana Bulanaya. "Аналіз існуючих варіантів класифікації хворих на серцево-судинними захворюваннями за допомогою нейронними мережами." System technologies 5, no. 130 (May 4, 2020): 71–78. http://dx.doi.org/10.34185/1562-9945-5-130-2020-09.

Full text
Abstract:
Робота присвячена аналізу інформаційних технологій хронобіологічного моніторингу кардіосистем, розробці систему підтримки прийняття рішень для лікаря-дослідника на базі методів класифікації з використанням нейронних мереж таких як імовірностна неронна мережа PNN (Probabilistic Neural Networks), багатошаровий персептрон MLP NN (Multi-Layer Perceptron), каскадно-кореляційна мережа CasCor (Cascade Correlation). У результаті отримано наступне: найкращим класифікатором є нейромережа каскадної кореляції з 85-88% точністю класифікації. Найгіршим класифікатором стала ймовірнісна нейронна мережа, оскільки точність цього алгоритму залежить від розміру набору даних.
APA, Harvard, Vancouver, ISO, and other styles
22

Галкін, О. В. "Нейронні мережі в економічному моделюванні." Компьютерная математика, Вып. 1 (2013): 69–74.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Бeлоус, Р., Є. Крилов, and В. Анікін. "Поняття глибинного навчання та його використання для розпізнавання елементів на картографічних зображеннях." Адаптивні системи автоматичного управління 2, no. 37 (May 31, 2021): 3–7. http://dx.doi.org/10.20535/1560-8956.37.2020.226788.

Full text
Abstract:
Об’єктом дослідження є процес оцифрування картографічних схем та зображень. У статті зроблено огляд основних рішень на сьогоднішній день, та їх недоліки. Також визначено варіант, для вирішення даної проблеми, запропоновано використати нейрону мережу, для розпізнавання зображення, а саме глибоке навчання. Глибоке навчання в свою чергу є класом алгоритмів машинного навчання, який використовує в собі багатошарову систему нелінійних фільтрів для відокремлення необхідних характеристик з перетвореннями.Метою роботи є зменшення часу на процес оцифровування архівів картографічних схем, за допомогою створення та навчання нейронної мережі з використання глибинного навчання. Бібл. 5, іл. 5.
APA, Harvard, Vancouver, ISO, and other styles
24

Vitynskyi, P. B., R. O. Tkachenko, and I. V. Izonin. "Ансамбль нейромереж GRNN на підставі зміщених поверхонь відгуку для задач електронної комерції." Scientific Bulletin of UNFU 29, no. 9 (December 26, 2019): 142–46. http://dx.doi.org/10.36930/40290925.

Full text
Abstract:
Розв'язок задач електронної комерції, які здебільшого характеризуються нелінійними поверхнями відгуку, є важливим завданням. Застосування сучасних засобів обчислювального інтелекту не завжди є доречним зважаючи на складність реалізації процедур навчання і налагодження. Неітеративні засоби та нейронні мережі без навчання також не забезпечують задовільної точності результату. З огляду на це у роботі описано новий ансамбль на підставі нейронних мереж узагальненої регресії. Основна ідея розробленого ансамблю полягає в лінеаризації поверхні відгуку, що задається даними наявної вибірки. Для цього отримана за допомогою мережі GRNN поверхня подається на вхід лінійної нейроподібної структури. Така комбінація забезпечує підвищення точності роботи ансамблю під час розв'язання поставленої задачі. Описаний ансамбль застосовано для розв'язання задачі прогнозування ціни на вживані автомобілі. Експериментальним способом підібрано оптимальні параметри його роботи. Шляхом порівняння із відомими методами встановлено найвищу точність його роботи. Результати експериментальних досліджень порівняно з теоретичними оцінками на підставі висновків теореми Кондорсе про журі присяжних. Розроблений ансамбль нейронних мереж узагальненої регресії на підставі зміщення поверхонь відгуку та з додатковим використанням нейроподібних структур Моделі послідовних геометричних перетворень варто застосовувати під час розв'язання різноманітних задач електронної комерції підвищеної точності.
APA, Harvard, Vancouver, ISO, and other styles
25

Nazirova, T. A., and A. B. Kostenko. "Застосування технології Neural Network для управління пацієнтопотоком у медичній установі." Scientific Bulletin of UNFU 28, no. 6 (June 27, 2018): 136–39. http://dx.doi.org/10.15421/40280627.

Full text
Abstract:
На сьогодні на основі технології Neural Network розроблено безліч програмних комплексів для прогнозування різних явищ, статистичного оброблення даних, методів класифікації даних, розпізнавання образів, оптимізації деяких процесів тощо. Здатність до самонавчання та вилучення знань з даних є одним з найкорисніших та вражаючих властивостей штучних нейронних мереж, успадкованих ними від мозку, як від свого прототипу. Світова практика використання штучного інтелекту свідчить про можливості отримувати нові, невідомі раніше закономірності, які не відразу знаходять пояснення, а іноді і не вкладаються в рамки офіційної науки. У багатьох параметрах технології нейронних мереж перевершують наявні традиційні алгоритми, тому по праву вважаються актуальними для активного застосування на цей час. Нейронні мережі – потужний метод моделювання, що дає змогу відтворювати складні нелінійні залежності, що актуально для систем прийняття рішень в управлінні пацієнтопотоком у медичних установах. У цьому дослідженні розглянуто сутність нейронних мереж, їх особливості здатності до навчання (налаштування архітектури і синаптичних зв'язків). Також виявлено і перспективи розвитку застосування і використання штучних нейронних мереж для застосування розподілу пацієнтів для здійснення профілактичного медичного огляду.
APA, Harvard, Vancouver, ISO, and other styles
26

Воронкін, Олексій Сергійович. "Конективізм і масові відкриті дистанційні курси." Theory and methods of e-learning 4 (February 13, 2014): 30–39. http://dx.doi.org/10.55056/e-learn.v4i1.366.

Full text
Abstract:
Вступ. Останнім часом теорія складних мереж стала ефективним інструментом дослідження складних структур: технологічних (наприклад, Інтернет-мережа, www, транспортні мережі), соціальних (мережі співробітництва, мережі мобільного телефонного зв’язку), біологічних (екологічні мережі, функціональні мережі мозку, мережі білкових взаємодій) [1]. Вузли в таких мережах – це елементи складних систем, а зв’язки між вузлами – взаємодії між елементами.Web 2.0 дозволив створити навчальні системи, засновані на принципах, так званої, кібернетики другого порядку. Учень тепер став активним елементом системи, яка не тільки контролює й направляє його діяльність, але й дозволяє своєю думкою впливати на функціонування й наповнення самої системи. Такий підхід є основою для виникнення системних ефектів [2].Дж. Сіменс і С. Даунс у власній теорії конективізму багато в чому продовжують ідеї, висловлені німецьким філософом В. Флуссером. У рамках конективізму, навчання – це процес створення мережі. Вузлами можуть бути люди, організації, бібліотеки, web-сайти, книги, журнали, бази даних або будь-яке інше джерело інформації. Сукупність зв’язаних вузлів стає мережею. Мережі можуть поєднуватися між собою. Кожний вузол у мережі може бути мережею більш низького рівня. Вузли, що втратили актуальність і цінність поступово зникають. Комплекси вузлів збуджують або гальмують один одного й у результаті їхнього взаємозв’язку утворюється блок. Збуджуючий або гальмуючий вплив один на одного можуть чинити й блоки – групи вузлів, кожен з яких видає власний загальний вихідний сигнал, що відповідає результуючій вазі всіх вхідних сигналів, отриманих від інших вузлів. Блоки організовані ієрархічно. Оскільки величезна кількість вузлів функціонує одночасно й на різних рівнях організації, обробка носить паралельний характер. Утворюючи персональну навчальну мережу, в мозкових структурах слухача згідно конекціонізму формується нейронна мережа.Конективізм і масові відкриті дистанційні курси. Застосування ідей конективізму знайшло відображення у практиці масових відкритих дистанційних курсів (МВДК), які останнім часом досить широко використовуються у закордонній педагогічній діяльності.З метою вивчення тенденцій розвитку МВДК в листопаді 2012 року автором було проведено дослідження «Конективізм і масові відкриті дистанційні курси» [3]. У результаті Інтернет-анкетування було опитано 62 респондента з України, Росії, Білорусії, Азербайджану, Грузії, Лівану та Німеччини (рис. 1). Переважну кількість учасників опитування (77 %) склали викладачі й наукові співробітники, 8 % – керівники відділів освітніх установ, 5 % – аспіранти (рис. 2). Враховуючи те, що були задіяні респонденти зайняті в сфері дистанційної освіти, можна говорити про високу вірогідність відомостей, отриманих у ході дослідження (випадково опинилися на сайті з опитуванням лише 2% учасників). а бРис. 1. Розподіл учасників: а – за країнами, б – за віком При перебуванні в Інтернет-мережі переважна більшість опитаних витрачає значну долю свого часу на пошук інформації (92 %), а вже потім на навчання й спілкування (рис. 3). Рис. 2. Склад вибіркової сукупностіРис. 3. Розподіл витрат часу учасників при перебуванні в Інтернет Особливістю отриманих результатів є те, що 71 % респондентів не вважають конективізм повноцінною (самостійною) теорією навчання, з них 45 % відносять конективізм до різновиду неформального навчання, що реалізується в контексті концепції освіти впродовж всього життя, 18% вважають конективізм педагогічною ідеєю (рис. 4). Рис. 4. Чи можна вважати конективізм повноцінною теорією навчання 60 % респондентів приймали участь у МВДК, з них 40 % задоволені результатами свого навчання, 18 % не можуть оцінити результат, а 2 % залишилися розчарованими (рис. 5).76 % вважають, що ідеї конективізму сприяють підвищенню ефективності навчальної діяльності (рис. 6). Рис. 5. Задоволеність від власної участі в МВДКРис. 6. Чи сприяють конективістські ідеї підвищенню рівня ефективності навчальної діяльності 40 % вважають, що найголовніше у МВДК – це уміння працювати в співробітництві, 32 % вважають, що найголовнішим є вміння самостійно організовувати та проводити такі курси, 24 % вважають, що МВДК – це засіб для апробацій положень конективізму (рис. 7).На питання, чи можливо отримати реальні знання при навчанні у МВДК думки учасників розділилися майже порівну: 52 % вважають, що це цілком можливо, а 42 % вважають, що отримані знання можуть бути тільки фрагментарними (рис. 8). Рис. 7. Найважливіше при навчанні в МВДК Рис. 8. Чи можливо отримати реальні знання при навчанні в МВДК Понад 50 % вважають, що велику кількість учасників МВДК можна пояснити нульовою ціною та відсутністю зобов’язань сторін (рис. 9).До основних переваг процесу навчання у масових відкритих дистанційних курсах учасники віднесли:відсутність вікових, територіальних, освітніх і професійних обмежень,відкритість і безкоштовність, гнучкість навчання,отримання нової інформації безпосередньо від фахівців предметної області,самомотивація та самоорганізація слухачів,обмін досвідом і колективна робота у співробітництві,формування умов взаємного навчання в спілкуванні,охоплення широкої (масової) аудиторії,пряме використання всіх переваг комп’ютерної підтримки навчального процесу (від електронних підручників до віртуальних середовищ),процес участі й навчання в МВДК допускає обмін не тільки інформацією, але й, що особливо цінно, напрямами її пошуку,розширення персональної навчальної мережі,можливість неформального підвищення знань,можливість оцінювання робіт інших слухачів курсу,використання в курсах різноманітного навчального контенту (текстова, аудіо-, відео- і графічна інформація), а також форумів і блогів,основний інформаційний матеріал знаходиться поза сайтом курсу. Рис. 9. Чи можна пояснити ріст числа учасників МВДК тільки нульовою ціною та відсутністю зобов’язань сторін До основних недоліків процесу навчання в масових відкритих дистанційних курсах учасники віднесли:відсутність особистого контакту конкретного слухача й педагога, як наслідок, довіри (міжособистісне телекомунікаційне спілкування в силу свого опосередкованого характеру не здатне (з ряду причин технічного, економічного й психологічного плану) повною мірою заповнити відсутність безпосереднього спілкування),використовування різних платформ,високі вимоги до професіоналізму викладачів (тьюторів),надлишок та хаотичність навчальної інформації,відсутність у слухачів навичок самоосвіти, фільтрації й взаємодії,неможливість проконтролювати автора виконаних робіт (ідентифікації),обмежений адміністративний вплив з боку викладача,не вміння спілкуватися інформативно й результативно (закритість вітчизняних викладачів),трудомісткий і тривалий процес розробки навчального курсу (контенту), його супроводу і консультація великої кількості слухачів,технічні проблеми забезпечення практичних (лабораторних) занять,труднощі моніторингу процесу підготовки слухача,необхідність достатньої сформованості мотивації навчання (актуально для молодших за віком і менш критично для дорослих слухачів),імовірність появи технічних проблем доступу до курсів,обмежений зворотний зв’язок з педагогом (тьютором),більшість МВДК на сьогодні розраховані на можливості техніки, а не на людину як індивіда,недостатня кількість часу на обробку всіх наявних навчальних матеріалів,кожний учасник самостійно регулює свою діяльність в курсі.Проблеми конективізму як теорії навчання. Із результатів дослідження зрозуміло, що комплекс ідей конективізму навряд чи можна вважати повноцінною (самостійною) теорією навчання, скоріше це один із різновидів неформального навчання в рамках концепції освіти впродовж всього життя. Розглянемо деякі положення [4].I. Слухач сам установлює мету навчання, читає тільки той матеріал, що йому доступний і подобаєтьсяПринципи автодидактики розроблені В. О. Курінським в рамках т. з. «постпсихології» [5]. Як визначає сам автор, «автодидактикою здавна називають самонавчання. Нікому з нас не вдається її уникнути – всім доводиться доходити до чогось самостійно, розраховуючи на свої власні сили. У кінцевому рахунку, в яких би вчителів ми ні вчилися, ми перш за все учні самих себе».Із 8 правил, сформульованих В. О. Курінським, наведемо деякі загальні положення:а) необхідно робити тільки те, що викликає інтерес (спочатку треба створити актуалізацію інтересу). Інтерес створюється не з якогось зовнішнього матеріалу, а в нас самих, коли ми перемикаємо свою увагу з однієї частини предмета або тексту – на іншу;б) не слід намагатися все запам’ятовувати одразу (але треба намагатися, щоб сприйняття було як можна повнішим). Треба управляти своєю увагою;в) не слід прагнути повного засвоєння матеріалу;г) треба прагнути до самоспостереження. Людина обов’язково повинна стежити за тим, як ставляться до її вчинків інші люди (результати спостереження свого внутрішнього стану і того, що думають інші доповнюють один одного);д) незасвоєння попереднього матеріалу не є причиною того, щоб не ознайомитися з матеріалом наступним.II. Знання перебувають у співтовариствах і комп’ютерних мережахНа нашу думку, тут відбувається деяка підміна понять, адже в комп’ютерних мережах розміщені дані. А чи стануть вони знаннями? Можуть стати, але в результаті перетворення й аналізу цих даних при вирішенні конкретних завдань. Ми можемо прослухати передачу (лекцію) на незнайомій для нас мові, при цьому одержимо дані, але не інформацію (і відповідно не знання). Ми можемо записати ці дані на компакт-диск – зміниться форма подання даних, відбудеться нова реєстрація, а відповідно сформуються й нові дані.Д. Вайнбергер зазначає: «Коли знання стає мережевим, самий розумний у кімнаті вже не лектор, що виступає перед слухачами, і навіть не колективний розум всіх присутніх. Сама розумна людина в кімнаті – це сама кімната, тобто мережа, утворена із зв’язків між людьми та їхніми ідеями, які, у свою чергу, пов’язані з тим, що перебуває за межами кімнати. Це зовсім не означає, що мережа стає наділеною інтелектом. Однак знання стають буквально немислимими без мережі, яка їх забезпечує…» [6].Отже, потенційні знання є технічним і технологічним заручником (програмно-апаратна й ментальна складові). Згідно принципу канадського філософа М. Маклюена, «засіб передачі повідомлення і є зміст повідомлення»: для того, щоб зрозуміти зміст повідомлення, необхідно розуміти, як саме влаштований інформаційний канал, по якому надходить повідомлення та як специфіка цього каналу впливає на саму інформацію.III. Акт навчання полягає у створенні зовнішньої мережі вузлів, які слухачі підключають у формі джерел інформації й знаньЧи може підключення до джерела інформації структурувати та сформувати знання учня? Очевидно, що це тільки елемент процесу навчання – можна підключитися до будь-яких потенційних джерел інформації, але не аналізувати і не обробляти їх у подальшому. На нашу думку, інтерес представляє застосування поняття цінності створюваної слухачем мережі.Ще на початку XX століття на можливість кількісної оцінки цінності соціальної мережі звернув увагу Д. А. Сарнов, який показав, що цінність радіо- або телевіщальної мережі зростає пропорційно кількості глядачів (слухачів) n. Дійсно цінність мережі тим вище, чим вище число її елементів (вузлів). Пізніше Р. Меткалф звернув увагу на те, що цінність всієї системи зростає навіть швидше, ніж число її елементів n. Адже кожен елемент мережі може бути з’єднаний з n−1 іншими елементами, і, таким чином, цінність для нього пропорційна n−1. Оскільки в мережі всього n елементів, то цінність всієї мережі пропорційна n(n−1).На основі цього закону Д. Рід сформулював закон для мереж, які утворюють групи. Цінність такої мережі пропорційна 2n−n−1, що визначається числом підмножин (груп) множини з n агентів за винятком одиночних елементів і порожньої множини. Закон Ріда виражає зв’язок між обчислювальними та соціальними мережами. Коли мережа віщає щось людям, цінність її послуг зростає лінійно. Коли ж мережа дає можливість окремим вузлам вступати в контакт один з одним, цінність зростає у квадратичній залежності. А коли та ж сама мережа має у своєму розпорядженні засоби для створення її учасникам груп, цінність зростає експоненціально.У роботі [7] пропонується оцінювати ріст цінності логарифмічно – nln(n) (закон Ципфа). Головний аргумент на користь цього закону полягає в тому, що на відміну від перших трьох законів, тут ранжуються цінності зв’язків. Якщо для довільного агента соціальної мережі, створеної з n елементів, зв’язки з іншими n−1 агентами мають цінності від 1 до 1/(n–1), то внесок цього агента в загальну цінність мережі становить (для великого n): Підсумувавши за всіма агентами, одержимо повну цінність мережі порядку nln(n).Однак, цінність соціальної мережі як величина, що залежить від потенційних зв’язків всіх агентів, очевидно має зростати зі збільшенням кількості можливих конфігурацій (потенційних можливостей) цих зв’язків у мережі. У роботі [8] показано, що для великої кількості агентів n цінність соціальної мережі (у якості ентропії) може бути визначена якВисновкиУ конективізмі зв’язки повинні формуватися природно (через процес асоціацій). Очевидно, що це можливо тільки в контексті розвитку безперервної освіти і навчання протягом всього життя. Це не просто «передача знань» («побудова знань»), притаманна сьогоднішньому програмованому навчанню, тут навчання більш схоже на розвиток особистості. Як писав В. Ф. Турчин: «Коли навчається людина, вона сам йде назустріч навчанню. Не тому, що вона знає, що “вчитися корисно». Дитина цього не знає, але навчається найбільш легко й активно. Асоціації утворюються в неї «просто так», без усякого підкріплення. Це працює механізм управління асоціюванням, що вимагає собі їжі. Якщо її не має, людині стає нудно, а це негативна емоція. Учителеві немає потреби нав’язувати що-небудь дитині або людині взагалі, його завдання лише в тому, щоб дати їжу її уяві. Одержуючи цю їжу, людина зазнає насолоди. Таким чином, вона завжди вчиться сама, зсередини. Це активний, творчий процес» [9].Головна роль у конективізмі приділяється самому учню – саме він повинен прагнути здобувати нові знання постійно, створювати й використовувати персональну навчальну мережу, розрізняти головну інформацію від другорядної та псевдонаучної, оцінювати отримані знання й т. д. Виникла нова проблема – маючи можливість використати нові засоби для навчання, людина може виявитися просто не здатною ними скористатися (проблема інформаційної компетентності, проблема інформаційного вибуху). У свою чергу педагог (тьютор) повинен мати певні навички по створенню й підготовці навчальних матеріалів та їхньому використанню в дистанційних курсах.На сучасному етапі конективізм як повноцінна теорія навчання вивчений недостатньо. Крім того нормативно-правова база орієнтована тільки на традиційні форми навчання. Проте, позитивно, що знання у цьому підході порівнюються не тільки із структурою, а і з процесом. Прояв гнучкості в навчанні й оцінюванні, а також розвиток міжпредметних зв’язків із «інформаційного хаосу» безсумнівно дозволяє активізувати різні форми інтелекту учнів.
APA, Harvard, Vancouver, ISO, and other styles
27

Кочан, Орест Володимирович. "Нейромережевий метод керування для термоелектричного перетворювача з керованим профілем температурного поля." Адаптивні системи автоматичного управління 2, no. 21 (November 22, 2012): 35–45. http://dx.doi.org/10.20535/1560-8956.21.2012.30666.

Full text
Abstract:
В статі запропоновано нейромережевий метод підтримання заданого профілю температурного поля вздовж головної термопари (ГТП) термоелектричного перетворювача з керованим профілем температурного поля (ТЕП з КПТП). ГТП безпосередньо вимірює температуру об’єкта вимірювання. Підтримання заданого профілю температурного поля не дає змоги проявити себе похибці від набутої термоелектричної неоднорідності електродів ГТП. Основними особливостями методу є: (і) подача на відповідні входи нейронної мережі не тільки значень відхилення температур зон від заданих, а і самих значень температури (це дозволяє врахувати нелінійні властивості ТЕП з КПТП як об’єкта керування); (іі) формування навчальних векторів для нейронної мережі шляхом формування для виконавчих пристроїв випадкових приростів керуючої дії з наступним вимірюванням отриманих змін температури окремих зон (що дає змогу навчати нейронну мережу без побудови достатньо точної математичної моделі теплових процесів у ТЕП з КПТП).
APA, Harvard, Vancouver, ISO, and other styles
28

Поляченко, A. "Згорткова нейронна мережа для класифікації томографічних і рентгенівських знімків в системі розпізнавання." КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, no. 36 (November 27, 2019): 128–33. http://dx.doi.org/10.36910/6775-2524-0560-2019-36-15.

Full text
Abstract:
У роботі запропоновано та побудовано систему розпізнавання томографічних і рентгенівських знімків для пошуку і локалізації патологій. Дана система включає блоки: введення інформації про пацієнта, обробки медичних зображень, для встановлення висновку, для класифікації виявлених патологій, базу даних, підготовки звіту. У статті приділено увагу особливостям розробки згорткової нейронної мережі для класифікації томографічних і рентгенівських знімків в системі розпізнавання, призначеної для пошуку і локалізації патологій. В результаті, було запропоновано згорткову нейронну мережу для класифікації томографічних і рентгенівських знімків в запропонованій системі розпізнавання, призначеної для пошуку і локалізації патологій.
APA, Harvard, Vancouver, ISO, and other styles
29

Tomashevskyi, Yurii, Oleksander Burykin, Volodymyr Kulyk, Juliya Malogulko, and Vladyslav Hrynyk. "ІНФОРМАЦІЙНА СИСТЕМА РОЗПОДІЛЬНОЇ ЕЛЕКТРИЧНОЇ МЕРЕЖІ НА БАЗІ КОНЦЕПЦІЇ SMART METERING ІЗ ЗАСТОСУВАННЯМ ТИПОВИХ ГРАФІКІВ НАВАНТАЖЕННЯ." TECHNICAL SCIENCES AND TECHNOLOGIES, no. 3(21) (2020): 229–41. http://dx.doi.org/10.25140/2411-5363-2020-3(21)-229-241.

Full text
Abstract:
Актуальність теми дослідження. Використання інформаційних систем та баз даних стає невід’ємною складовою діяльності енергетичних компаній. Інформація про виробництво та споживання електроенергії зберігається в агрегованому вигляді. Це не дає змоги визначати складові балансових витрат електроенергії методом поелементних розрахунків та аналізувати їх структуру. Таким чином, вдосконалення математичного та програмного забезпечення інформаційних систем обліку електроенергії з метою підвищення адекватності визначення втрат електроенергії у розподільних мережах є актуальним завданням. Постановка проблеми. Оснащення розподільних електричних мереж засобами моніторингу їхніх параметрів часто виявляється недостатнім для розв’язування задач планування та ведення режимів. Тому метою дослідження є аналіз можливості застосування системного підходу до створення інформаційних систем РЕМ з використанням даних автоматизованих систем комерційного обліку електроенергії та інших наявних джерел інформації для підвищення точності моделювання характерних режимів мереж та складових балансу електроенергії. Аналіз останніх досліджень і публікацій. Нині використовуються декілька підходів для перевірки та відновлення даних щодо електричних навантажень у системах АСКОЕ та Smart Metering: 1) технологія великих даних (Big Data Technology – data management); 2) глобальне обчислення на основі не втрачених даних; 3) статистичні методи; 4) штучні нейронні мережі; 5) кластерний аналіз; 6) застосування методів оцінювання стану; 7) використання типових графіків електричних навантажень. Наведені підходи можуть комбінуватися для отримання додаткових переваг. Виділення недосліджених частин загальної проблеми. Необхідною умовою для використання наявних підходів є наявність невтрачених даних. Це робить принципово неможливим застосування відомих підходів для дослідження режимних параметрів РЕМ з прийнятною точністю. Постановка завдання. Отже, основним завданням є дослідження можливості використання системного підходу до побудови інформаційних систем РЕМ із застосуванням технології Smart Metering, а також методів та алгоритмів, які використовуючи наявну інформацію, агреговану за часовими періодами, дадуть змогу визначати режимні параметри РЕМ з необхідною точністю.Виклад основного матеріалу. Для розгортання агрегованих даних у графіки навантаження та генерування, у роботі запропоновано використовувати типові графіки енергообміну споживачів та місцевих джерел енергії. Для узгодження виміряних параметрів режиму та псевдовимірювань, розрахованих за типовими графіками, запропоновано використовувати алгоритм на основі методу найменших квадратів. Оцінювання точності проводилося шляхом зіставлення втрат електроенергії для цілком спостережної мережі з результатами імітаційних розрахунків. Висновки відповідно до статті. Встановлено, що застосування типових графіків навантаження та генерування дає змогу відновлювати графіки енергообміну споживачів та місцевих джерел енергії з прийнятною точністю. Використання типових графіків навантаження та генерування (псевдовимірювань) дає змогу зменшити вартість систем моніторингу розподільних мереж.
APA, Harvard, Vancouver, ISO, and other styles
30

Teslyuk, V. M., and A. G. Kazarian. "Вибір оптимального типу штучної нейронної мережі для автоматизованих систем "розумного" будинку." Scientific Bulletin of UNFU 30, no. 5 (November 3, 2020): 90–93. http://dx.doi.org/10.36930/40300515.

Full text
Abstract:
Розроблено метод вибору оптимального типу ШНМ, ідеєю якого є практичне використання декількох типів ШНМ, подальшого обчислення похибок роботи кожного типу з використанням ідентичних наборів даних для навчання ШНМ, що унеможливлює вплив на результати роботи алгоритму і специфіки даних у навчальній вибірці. Запропонований метод дає змогу визначити оптимальний тип ШНМ для керування побутовими приладами у будинку. Розглянуто особливості процесу розроблення програмного забезпечення, що дає змогу провести процеси навчання, випробування та отримати вихідні результати роботи алгоритму штучної нейронної мережі. Вибір штучної нейронної мережі використовують для автоматизації обчислення значень оптимальних температурних режимів у кімнатах будинку, налаштувань параметрів освітлювальних приладів та режимів роботи системи безпеки "розумного" будинку. Наведено результати дослідження взаємозв'язку між різними типами нейронних мереж, кількістю внутрішніх шарів штучної нейронної мережі і кількістю нейронів на кожному внутрішньому шарі та зміни похибки обчислень параметрів налаштувань відносно очікуваних результатів роботи. Вирішення кожної окремої поставленої задачі за допомогою систем "розумного" будинку потребує використання різних алгоритмів машинного навчання. Великі обсяги даних, що генеруються у системах "розумного" будинку, та різноманітність типів і форматів цих даних не дає змоги створити універсальний автоматизований механізм з використанням алгоритмів штучного інтелекту, який вирішував би проблеми безпеки, енергоефективності та підтримки комфортних умов проживання користувачів. Тому використання запропонованого методу вибору оптимального типу нейронної мережі, що найкраще підходить для вирішення кожної окремої задачі, забезпечує високі показники ефективності роботи систем "розумного" будинку з мінімальними значеннями похибки отриманих автоматизованих рішень порівняно з рішеннями, що прийняла людина.
APA, Harvard, Vancouver, ISO, and other styles
31

Мажара, І. П., and О. І. Тимочко. "Модель процесу управління повітряним рухом на основі нейронних нечітких мереж." Наука і техніка Повітряних Сил Збройних Сил України, no. 2(43), (May 11, 2021): 61–65. http://dx.doi.org/10.30748/nitps.2021.43.08.

Full text
Abstract:
Нейронні мережі мають ряд переваг, необхідних для вирішення задачі моделювання інформаційної системи управління повітряним рухом. Але процес навчання мережі часто відбувається досить повільно. Для прискорення процесу навчання мережі ввести будь-яку апріорну інформацію (знання експерта) неможливо. До того ж аналіз навченої нейронної мережі досить складний, зазвичай вона являє собою чорний ящик для користувача. Усунути або мінімізувати існуючі недоліки нейронної мережі здатні системи на базі нечіткої логіки, які вирішують погано формалізовані задачі і пояснюють одержувані висновки роботи системи.
APA, Harvard, Vancouver, ISO, and other styles
32

Терейковська, Л. "Метод нейромережевого аналізу клавіатурного почерку." КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, no. 37 (December 28, 2019): 53–59. http://dx.doi.org/10.36910/6775-2524-0560-2019-37-8.

Full text
Abstract:
Стаття присвячена питанням вдосконалення засобів розпізнавання емоцій і аутентифікації користувачів інформаційно-управляючих систем. Обґрунтовано можливість впровадження в засоби розпізнавання сучасних нейромережевих рішень на базі згорткових нейронних мереж. Розроблено метод нейромережевого аналізу клавіатурного почерку, який за рахунок запропонованих принципів адаптації і процедури кодування параметрів клавіатурного почерку, дозволяє впровадити в засоби розпізнавання згорткову нейронну мережу, архітектура якої адаптована до очікуваних умов використання. Проведені експериментальні дослідження показали, що використання розробленого методу дозволяє забезпечити помилку розпізнавання емоцій і особи користувача на рівні кращих сучасних систем розпізнавання.
APA, Harvard, Vancouver, ISO, and other styles
33

Gryshmanov, Е. "ВИБІР МАТЕМАТИЧНОГО АПАРАТУ ДЛЯ ПОБУДОВИ МОДЕЛІ ПРОГНОЗУВАННЯ НЕСПРИЯТЛИВИХ АВІАЦІЙНИХ ПОДІЙ ПІД ЧАС ПОЛЬОТУ." Системи управління, навігації та зв’язку. Збірник наукових праць 5, no. 51 (October 30, 2018): 20–23. http://dx.doi.org/10.26906/sunz.2018.5.020.

Full text
Abstract:
Мета статті. Проведення дослідження та вибір найбільш ефективного математичного апарату для побудови моделі прогнозування несприятливих авіаційних подій під час польоту. Результати. В статті проведений аналіз відомих методів, що використовуються для вирішення задач класифікації даних с точки зору доцільності їх застосування для побудови моделі прогнозування несприятливих авіаційних подій під час польоту на основі аналізу текстових повідомлень. Розглянуто наступні методи: логістична регресія, метод опорних веторів, наївний байєсівський класифікатор, випадковий ліс (random forest). Крім того для вирішення подібного класу задач розглянуто згорткові та рекурентні нейронні мережі в яких застосовуються алгоритми глибокого навчання. Висновки. В результаті аналізу вказаних методів для побудови моделі прогнозування несприятливих авіаційних подій під час польоту на основі аналізу текстових повідомлень обрано математичний апарат глибоких нейронних мереж. Завдяки застосуванню в них алгоритмів глибокого навчання вони володіють найбільш високою точністю у порівнянні з традиційними підходами.
APA, Harvard, Vancouver, ISO, and other styles
34

Boiko, Serhii, Yevhen Volkanin, Oleksiy Gorodny, Oksana Borysenko, and Leonid Vershniak. "ЗАСТОСУВАННЯ НЕЙРОННИХ МЕРЕЖ ПРИ АВТОМАТИЗАЦІЇ ДІАГНОСТИКИ СТАНУ АВІАЦІЙНОГО ГЕНЕРАТОРА ГВИНТОКРИЛА." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 3(13) (2018): 152–60. http://dx.doi.org/10.25140/2411-5363-2018-3(13)-152-160.

Full text
Abstract:
Актуальність теми дослідження. З огляду на те, що за останні десятиліття кількість нещасних випадків, збоїв обладнання, у тому числі нещасних випадків на вертольотах, становило понад десять, актуальною науково-практичною задачею являється діагностика і прогнозування змін стану авіаційного генератора. Постановка проблеми. Основна мета цієї роботи – розробка нейронної мережі, яка буде враховувати основні технічні та експлуатаційні характеристики авіаційного генератора вертольота з метою діагностики і подальшого прогнозування його стану, скорочуючи час обчислень і збільшуючи рівень достовірності результатів. Аналіз останніх досліджень і публікацій. Проблема інформаційної діагностики авіаційної техніки описана в роботах, в яких застосовуються різні методи визначення несправностей авіаційної техніки. Використання нейронних мереж у вирішенні завдань управління динамічними системами вивчається вченими і дослідниками, робота яких демонструє високий потенціал об'єднання двох обчислювальних технологій – штучних нейронних мереж і генетичних алгоритмів для вирішення задач синтезу інтелектуальних систем керування. Виділення недосліджених частини загальної проблеми. Нині є безліч підходів до проблеми діагностики складних динамічних об'єктів, у тому числі авіаційного генератора вертольота, найбільш поширеним з яких є інформаційна діагностика, одним із методів якої є використання нейронних мереж. Використання нейронних мереж управління дозволяє істотно усунути математичні проблеми аналітичного синтезу та аналізу властивостей досліджуваного об'єкта. Це пояснюється тим, що якість процесів управління в нейронних системах багато в чому залежить від фундаментальних властивостей багатошарових нелінійних нейронних мереж, а не від аналітичних розрахованих оптимальних законів. Багатошарові нейронні мережі мають ряд переваг, що дозволяє їх використовувати в задачах управління динамічними об’єктами. Постановка завдання. Метою цієї роботи є створення нейронної мережі, яка буде враховувати основні технічні та експлуатаційні характеристики авіаційного генератора вертольота. Виклад основного матеріалу. При діагностуванні авіаційного генератора вертольота повинні враховуватися такі параметри: теплові параметри генератора, рівень шуму генератора, частота обертання генератора, опір ізоляції контурів ротора, струм зворотної послідовності, рівень вібрації генератора, биття валу генератора, відхилення напруги, коливання напруги, коефіцієнт несинусоїдальності кривої напруги, коефіцієнт n-й гармонійної складової напруги непарного (парного) порядку, коефіцієнти нульової послідовності, відхилення частоти імпульсної напруги. Водночас необхідно швидко обчислити вихідний стан генератора в поточному режимі роботи для даної функції. Найбільш оптимальним методом вирішення проблеми є використання нейронних мереж, що скоротить час обчислень, підвищить рівень надійності результатів. Висновки відповідно до статті. У статті виконано синтез нейрорегулятора прогнозу NN Prediction Controller для вирішення завдання автоматизації діагностики стану авіаційного генератора вертольота в реальних режимах роботи шляхом розробки моделі нейромережевої системи в Simulink програмного пакету MATLAB. Також встановлено, які параметри істотно впливають на якість регулювання та визначено оптимальні значення параметрів. Використання нейромережевої моделі для автоматизації діагностики стану авіаційного генератора вертольота забезпечило високу якість ідентифікації параметрів нейрорегулятора. Це дозволило вибрати оптимальні значення параметрів нейрорегулятора, що забезпечить високі динамічні характеристики системи діагностики стану авіаційного генератора вертольота.
APA, Harvard, Vancouver, ISO, and other styles
35

Kuznietsova, N. V., and P. I. Bidyuk. "Нейронні та мережі Байєса у задачі аналізу кредитних ризиків." Реєстрація, зберігання і обробка даних 17, no. 2 (March 27, 2015): 61–71. http://dx.doi.org/10.35681/1560-9189.2015.17.2.100321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Мінцер, О. П., В. М. Заліський, and Л. Ю. Бабінцева. "СИСТЕМНІ МЕХАНІЗМИ ФОТОРЕГУЛЯЦІЇ ОСЦИЛЯТОРНИХ МЕРЕЖ КЛІТИННОГО МЕТАБОЛІЗМУ ТА ЗДОРОВ'Я ЛЮДИНИ." Medical Informatics and Engineering, no. 4 (June 4, 2020): 6–25. http://dx.doi.org/10.11603/mie.1996-1960.2019.4.11015.

Full text
Abstract:
Дослідження присвячено розумінню фізіологічного походження осциляції та функціональної ролі таких коливань. Відповідно за мету дослідження визначено концептуалізацію ролі коливальних сигналів у різних частотних діапазонах станів мережі. Відмічено, що циркадний годинник є біологічним осцилятором, що присутній у всіх фоточутливих видах істот. Він здатний здійснювати 24-годинний цикл транскрипції ферментів метаболізму світло-темнової періодичності; залишається невирішеним головне питання: яким чином центральні циркадні програми транскрипції ферментів метаболізму інтегровано у фізіологічні відповіді окремих нейронів і як ансамблі периферичних циркадних осциляторів вирівнюють часові гармоніки взаємодії організму з навколишнім середовищем; положення регульованих світлом мережевих нейронних осциляторів у контурі SCN і пов'язаний із ним баланс синаптичного входу можуть змінювати мембранний потенціал, рівень Ca2+ і цАМФ або інші сигнали, визначаючи тим самим регіон-специфічні варіанти «ритмічних» фенотипів, що спостерігаються в природних (in vitro) умовах; накопичені знання про тонкі механізми, за допомогою яких SCN та інші відділи мозку адаптуються до фотоперіодичних сезонних змін, залишаються неповними. Поряд із традиційними формами нейропластичності (формування нових міжнейронних зв'язків, зміна синаптичної стабільності та кількості синапсів) великого значення набувають механізми фазових нейромедіаторних перемикань між циркадними клітинними осциляторами в SCN і в інших областях (гіпоталамус, гіпокамп) мозку. Отже, подальші дослідження можуть розкрити особливості того, як взаємодія цих форм пластичності нейронів (опосередкована сезонними змінами) бере участь у поведінкових і фізіологічних реакціях фоторегуляції осциляторних мереж, оптимізуючи розвиток програм хронотерапії — як структурного елемента системної біомедицини.
APA, Harvard, Vancouver, ISO, and other styles
37

Корнієнко, О. В., and С. О. Субботін. "ЗГОРТКОВА НЕЙРОМЕРЕЖА ДЛЯ ВИЯВЛЕННЯ ШАХРАЙСЬКИХ ОПЕРАЦІЙ З КРЕДИТНИМИ КАРТКАМИ." Automation of technological and business processes 11, no. 3 (November 11, 2019): 65–74. http://dx.doi.org/10.15673/atbp.v11i3.1503.

Full text
Abstract:
В роботі вирішено завдання створення математичного забезпечення для побудови моделей кількісних залежностей на основі згорткових нейронних мереж. Запропоновано архітектуру згорткової нейронної мережі, що може використовуватися для даних, в яких вхідні значення не пов’язані між собою. В запропонованій архітектурі в якості першого шару використовується повнозв’язний шар. Завдяки цьому в процесі навчання нейронної мережі між вихідними значеннями нейронів першого шару можуть з’явитись зв’язки, що необхідні для роботи наступних згорткових шарів. Як і в звичайних згорткових нейромережах, згорткові шари можуть чергуватися із шарами підвибірки, але при цьому використовується одновимірна згортка. Після згорткових шарів використовуються повнозв’язні. В якості функції активації останнього шару використовується функція softmax, що дозволяє визначати ймовірності належності розпізнаваного екземпляра до кожного з класів. Вирішено практичне завдання виявлення шахрайських операцій з кредитними картками. Виконано побудову нейромережевих моделей, їх навчання та тестування на даних за транзакціями протягом 2 діб. Зазвичай кількість шахрайських операцій складає невелику частину від усіх операцій, тому метрика точності (accuracy) не може використовуватися для оцінки якості побудованої моделі. Для цього використано метрику AUPRC, що розраховується як площа під кривою залежності значень precision та recall. Завдяки використанню функції активації softmax на останньому шарі нейромережі, побудувати туку криву набагато простіше, ніж при використанні інших функцій активації. Порівняно результати тестування всіх побудованих моделей. За результатами тестування визначено, що якість запропонованої моделі вища, але на її навчання поребується більше часу.
APA, Harvard, Vancouver, ISO, and other styles
38

Соловйов, Володимир Миколайович, and Вікторія Володимирівна Соловйова. "Теорія складних систем як основа міждисциплінарних досліджень." Theory and methods of learning fundamental disciplines in high school 1 (April 2, 2014): 152–60. http://dx.doi.org/10.55056/fund.v1i1.424.

Full text
Abstract:
Наукові дослідження стають ефективними тоді, коли природу подій чи явищ можна розглядати з єдиних позицій, виробити універсальний підхід до них, сформувати загальні закономірності. Більшість сучасних фундаментальних наукових проблем і високих технологій тісно пов’язані з явищами, які лежать на границях різних рівнів організації. Природничі та деякі з гуманітарних наук (економіка, соціологія, психологія) розробили концепції і методи для кожного із ієрархічних рівнів, але не володіють універсальними підходами для опису того, що відбувається між цими рівнями ієрархії. Неспівпадання ієрархічних рівнів різних наук – одна із головних перешкод для розвитку дійсної міждисциплінарності (синтезу різних наук) і побудови цілісної картини світу. Виникає проблема формування нового світогляду і нової мови.Теорія складних систем – це одна із вдалих спроб побудови такого синтезу на основі універсальних підходів і нової методології [1]. В російськомовній літературі частіше зустрічається термін “синергетика”, який, на наш погляд, означує більш вузьку теорію самоорганізації в системах різної природи [2].Мета роботи – привернути увагу до нових можливостей, що виникають при розв’язанні деяких задач, виходячи з уявлень нової науки.На жаль, теорія складності не має до сих пір чіткого математичного визначення і може бути охарактеризована рисами тих систем і типів динаміки, котрі являються предметом її вивчення. Серед них головними є:– Нестабільність: складні системи прагнуть мати багато можливих мод поведінки, між якими вони блукають в результаті малих змін параметрів, що управляють динамікою.– Неприводимість: складні системи виступають як єдине ціле і не можуть бути вивчені шляхом розбиття їх на частини, що розглядаються ізольовано. Тобто поведінка системи зумовлюється взаємодією складових, але редукція системи до її складових спотворює більшість аспектів, які притаманні системній індивідуальності.– Адаптивність: складні системи часто включають множину агентів, котрі приймають рішення і діють, виходячи із часткової інформації про систему в цілому і її оточення. Більш того, ці агенти можуть змінювати правила своєї поведінки на основі такої часткової інформації. Іншими словами, складні системи мають здібності черпати скриті закономірності із неповної інформації, навчатися на цих закономірностях і змінювати свою поведінку на основі нової поступаючої інформації.– Емерджентність (від існуючого до виникаючого): складні системи продукують неочікувану поведінку; фактично вони продукують патерни і властивості, котрі неможливо передбачити на основі знань властивостей їх складових, якщо розглядати їх ізольовано.Ці та деякі менш важливі характерні риси дозволяють відділити просте від складного, притаманного найбільш фундаментальним процесам, які мають місце як в природничих, так і в гуманітарних науках і створюють тим самим істинний базис міждисциплінарності. За останні 30–40 років в теорії складності було розроблено нові наукові методи, які дозволяють універсально описати складну динаміку, будь то в явищах турбулентності, або в поведінці електорату напередодні виборів.Оскільки більшість складних явищ і процесів в таких галузях як екологія, соціологія, економіка, політологія та ін. не існують в реальному світі, то лише поява сучасних ЕОМ і створення комп’ютерних моделей цих явищ дозволило вперше в історії науки проводити експерименти в цих галузях так, як це завжди робилось в природничих науках. Але комп’ютерне моделювання спричинило розвиток і нових теоретичних підходів: фрактальної геометрії і р-адичної математики, теорії хаосу і самоорганізованої критичності, нейроінформатики і квантових алгоритмів тощо. Теорія складності дозволяє переносити в нові галузі дослідження ідеї і підходи, які стали успішними в інших наукових дисциплінах, і більш рельєфно виявляти ті проблеми, з якими інші науки не стикалися. Узагальнюючому погляду з позицій теорії складності властиві більша евристична цінність при аналізі таких нетрадиційних явищ, як глобалізація, “економіка, що заснована на знаннях” (knowledge-based economy), національні і світові фінансові кризи, економічні катастрофи і ряд інших.Однією з інтригуючих проблем теорії є дослідження властивостей комплексних мережеподібних високотехнологічних і інтелектуально важливих систем [3]. Окрім суто наукових і технологічних причин підвищеної уваги до них є і суто прагматична. Справа в тому, що такі системи мають системоутворюючу компоненту, тобто їх структура і динаміка активно впливають на ті процеси, які ними контролюються. В [4] наводиться приклад, коли відмова двох силових ліній системи електромережі в штаті Орегон (США) 10 серпня 1996 року через каскад стимульованих відмов призвели до виходу із ладу електромережі в 11 американських штатах і 2 канадських провінціях і залишили без струму 7 млн. споживачів протягом 16 годин. Вірус Love Bug worm, яких атакував Інтернет 4 травня 2000 року і до сих пір блукає по мережі, приніс збитків на мільярди доларів.До таких систем відносяться Інтернет, як складна мережа роутерів і комп’ютерів, об’єднаних фізичними та радіозв’язками, WWW, як віртуальна мережа Web-сторінок, об’єднаних гіперпосиланнями (рис. 1). Розповсюдження епідемій, чуток та ідей в соціальних мережах, вірусів – в комп’ютерних, живі клітини, мережі супермаркетів, актори Голівуду – ось далеко не повний перелік мережеподібних структур. Більш того, останнє десятиліття розвитку економіки знань привело до зміни парадигми структурного, функціонального і стратегічного позиціонування сучасних підприємств. Вертикально інтегровані корпорації повсюдно витісняються розподіленими мережними структурами (так званими бізнес-мережами) [5]. Багато хто з них замість прямого виробництва сьогодні займаються системною інтеграцією. Тому дослідження структури та динаміки мережеподібних систем дозволить оптимізувати бізнес-процеси та створити умови для їх ефективного розвитку і захисту.Для побудови і дослідження моделей складних мережеподібних систем введені нові поняття і означення. Коротко опишемо тільки головні з них. Хай вузол i має ki кінців (зв’язків) і може приєднати (бути зв’язаним) з іншими вузлами ki. Відношення між числом Ei зв’язків, які реально існують, та їх повним числом ki(ki–1)/2 для найближчих сусідів називається коефіцієнтом кластеризації для вузла i:. Рис. 1. Структури мереж World-Wide Web (WWW) і Інтернету. На верхній панелі WWW представлена у вигляді направлених гіперпосилань (URL). На нижній зображено Інтернет, як систему фізично з’єднаних вузлів (роутерів та комп’ютерів). Загальний коефіцієнт кластеризації знаходиться шляхом осереднення його локальних значень для всієї мережі. Дослідження показують, що він суттєво відрізняється від одержаних для випадкових графів Ердаша-Рені [4]. Ймовірність П того, що новий вузол буде приєднано до вузла i, залежить від ki вузла i. Величина називається переважним приєднанням (preferential attachment). Оскільки не всі вузли мають однакову кількість зв’язків, останні характеризуються функцією розподілу P(k), яка дає ймовірність того, що випадково вибраний вузол має k зв’язків. Для складних мереж функція P(k) відрізняється від розподілу Пуассона, який мав би місце для випадкових графів. Для переважної більшості складних мереж спостерігається степенева залежність , де γ=1–3 і зумовлено природою мережі. Такі мережі виявляють властивості направленого графа (рис. 2). Рис. 2. Розподіл Web-сторінок в Інтернеті [4]. Pout – ймовірність того, що документ має k вихідних гіперпосилань, а Pin – відповідно вхідних, і γout=2,45, γin=2,1. Крім цього, складні системи виявляють процеси самоорганізації, змінюються з часом, виявляють неабияку стійкість відносно помилок та зовнішніх втручань.В складних системах мають місце колективні емерджентні процеси, наприклад синхронізації, які схожі на подібні в квантовій оптиці. На мові системи зв’язаних осциляторів це означає, що при деякій критичній силі взаємодії осциляторів невелика їх купка (кластер) мають однакові фази і амплітуди.В економіці, фінансовій діяльності, підприємництві здійснювати вибір, приймати рішення доводиться в умовах невизначеності, конфлікту та зумовленого ними ризику. З огляду на це управління ризиками є однією з найважливіших технологій сьогодення [2, 6].До недавніх часів вважалось, що в основі розрахунків, які так чи інакше мають відношення до оцінки ризиків лежить нормальний розподіл. Йому підпорядкована сума незалежних, однаково розподілених випадкових величин. З огляду на це ймовірність помітних відхилень від середнього значення мала. Статистика ж багатьох складних систем – аварій і катастроф, розломів земної кори, фондових ринків, трафіка Інтернету тощо – зумовлена довгим ланцюгом причинно-наслідкових зв’язків. Вона описується, як показано вище, степеневим розподілом, “хвіст” якого спадає значно повільніше від нормального (так званий “розподіл з тяжкими хвостами”). У випадку степеневої статистики великими відхиленнями знехтувати вже не можна. З рисунку 3 видно, наскільки добре описуються степеневою статистикою торнадо (1), повені (2), шквали (3) і землетруси (4) за кількістю жертв в них в США в ХХ столітті [2]. Рис. 3. Системи, які демонструють самоорганізовану критичність (а саме такі ми і розглядаємо), самі по собі прагнуть до критичного стану, в якому можливі зміни будь-якого масштабу.З точки зору передбачення цікавим є той факт, що різні катастрофічні явища можуть розвиватися за однаковими законами. Незадовго до катастрофи вони демонструють швидкий катастрофічний ріст, на який накладені коливання з прискоренням. Асимптотикою таких процесів перед катастрофою є так званий режим з загостренням, коли одна або декілька величин, що характеризують систему, за скінчений час зростають до нескінченності. Згладжена крива добре описується формулою,тобто для таких різних катастрофічних явищ ми маємо один і той же розв’язок рівнянь, котрих, на жаль, поки що не знаємо. Теорія складності дозволяє переглянути деякі з основних положень ризикології та вказати алгоритми прогнозування катастрофічних явищ [7].Ключові концепції традиційних моделей та аналітичних методів аналізу і управління капіталом все частіше натикаються на проблеми, які не мають ефективних розв’язків в рамках загальноприйнятих парадигм. Причина криється в тому, що класичні підходи розроблені для опису відносно стабільних систем, які знаходяться в положенні відносно стійкої рівноваги. За своєю суттю ці методи і підходи непридатні для опису і моделювання швидких змін, не передбачуваних стрибків і складних взаємодій окремих складових сучасного світового ринкового процесу. Стало ясно, що зміни у фінансовому світі протікають настільки інтенсивно, а їх якісні прояви бувають настільки неочікуваними, що для аналізу і прогнозування фінансових ринків вкрай необхідним став синтез нових аналітичних підходів [8].Теорія складних систем вводить нові для фінансових аналітиків поняття, такі як фазовий простір, атрактор, експонента Ляпунова, горизонт передбачення, фрактальний розмір тощо. Крім того, все частіше для передбачення складних динамічних рядів використовуються алгоритми нейрокомп’ютинга [9]. Нейронні мережі – це системи штучного інтелекту, які здатні до самонавчання в процесі розв’язку задач. Навчання зводиться до обробки мережею множини прикладів, які подаються на вхід. Для максимізації виходів нейронна мережа модифікує інтенсивність зв’язків між нейронами, з яких вона побудована, і таким чином самонавчається. Сучасні багатошарові нейронні мережі формують своє внутрішнє зображення задачі в так званих внутрішніх шарах. При цьому останні відіграють роль “детекторів вивчених властивостей”, оскільки активність патернів в них є кодування того, що мережа “думає” про властивості, які містяться на вході. Використання нейромереж і генетичних алгоритмів стає конкурентноздібним підходом при розв’язанні задач передбачення, класифікації, моделювання фінансових часових рядів, задач оптимізації в галузі фінансового аналізу та управляння ризиком. Детермінований хаос пропонує пояснення нерегулярної поведінки і аномалій в системах, котрі не є стохастичними за природою. Ця теорія має широкий вибір потужних методів, включаючи відтворення атрактора в лаговому фазовому просторі, обчислення показників Ляпунова, узагальнених розмірностей і ентропій, статистичні тести на нелінійність.Головна ідея застосування методів хаотичної динаміки до аналізу часових рядів полягає в тому, що основна структура хаотичної системи (атрактор динамічної системи) може бути відтворена через вимірювання тільки однієї змінної системи, фіксованої як динамічний ряд. В цьому випадку процедура реконструкції фазового простору і відтворення хаотичного атрактора системи при динамічному аналізі часового ряду зводиться до побудови так званого лагового простору. Реальний атрактор динамічної системи і атрактор, відтворений в лаговому просторі по часовому ряду при деяких умовах мають еквівалентні характеристики [8].На завершення звернемо увагу на дидактичні можливості теорії складності. Розвиток сучасного суспільства і поява нових проблем вказує на те, що треба мати не тільки (і навіть не стільки) експертів по деяким аспектам окремих стадій складних процесів (професіоналів в старому розумінні цього терміну), знадобляться спеціалісти “по розв’язуванню проблем”. А це означає, що істинна міждисциплінарність, яка заснована на теорії складності, набуває особливого значення. З огляду на сказане треба вчити не “предметам”, а “стилям мислення”. Тобто, міждисциплінарність можна розглядати як основу освіти 21-го століття.
APA, Harvard, Vancouver, ISO, and other styles
39

Шаркаді, М. М. "Нейро-нечiтке моделювання у системi управлiння фiнансово- економiчною безпекою." Науковий вісник Ужгородського університету. Серія: Математика і інформатика 38, no. 1 (May 27, 2021): 157–66. http://dx.doi.org/10.24144/2616-7700.2021.38(1).157-166.

Full text
Abstract:
Подається вирішення актуальної проблеми визначення рівня фінансово-економічної безпеки для компаній через призму нейро-фазі моделювання. Моделі, побудовані за допомогою нейро-нечітких мереж, є ефективним інструментом оцінки фінансово-економічної безпеки і дають можливість своєчасно виявити і подолати проблеми. Крім того, дані моделі є адаптивними, оскільки пристосовуються до змін економічного середовища, що дуже важливо в умовах нестабільної економіки. У даному дослідженні для цього пропонується використання багатошарової нейромережі, кожний шар якої вирішує свою низку завдань. Запропонований підхід дасть можливість визначати рівень фінансової безпеки компанії у різні моменти її функціонування. Розроблена модель дозволяє кожній компанії використовувати свою сукупність фінансових показників для визначення рівня безпеки. Кожний шар нейромережі є автономною одиницею, що дозволяє розвивати мережу. Для запропонованої моделі характерні властивості гнучкості та адаптивності до мінливих умов економічного середовища, що є необхідною умовою для її ефективного застосування в діяльності підприємства.
APA, Harvard, Vancouver, ISO, and other styles
40

Добровська, Л., and А. Руденко. "ІДЕНТИФІКАЦІЯ КОРИСТУВАЧІВ ПІДСИСТЕМИ РОЗПІЗНАВАННЯ НА ОСНОВІ СІТКІВКИ ОКА." Біомедична інженерія і технологія, no. 6 (December 11, 2021): 121–29. http://dx.doi.org/10.20535/2617-8974.2021.6.246909.

Full text
Abstract:
Забезпечення біометричної безпеки має важливе значення в більшості сценаріїв перевірки справжності користувача та його ідентифікації. Розпізнавання, засноване на зразках райдужної оболонки, є важливою областю досліджень, покликаної забезпечити надійну, просту і швидку підсистему ідентифікації користувачів системи, яка використовує камеру (її можна використовувати у будь-якій системі, яка має механізм авторизації, де необхідна гарантія підвищеної безпеки). Мета роботи полягає у встановленні основних етапів алгоритму ідентифікації (класифікації) користувачів системи на основі обробки зображення сітківки ока із зіницею. Алгоритм розпізнавання райдужної оболонки ока для реєстрації користувачів системи включає такі етапи - попередня обробка зображення: зображення проходить різні фільтри (серед них фільтр Гауса та низько-частотні фільтри, гістограмні перетворення); - препроцессінг: 1) локалізація внутрішніх і зовнішніх меж області райдужної оболонки ока з використанням генетичного алгоритму; 2) нормалізація зображення, 3) виокремлення значущої інформації; - класифікація (або зіставлення із елементами БД) - виконана на основі двошарового персептрону (ДП). Для оцінки алгоритмів розпізнавання райдужної оболонки використано базу даних оцифрованих 100 зображень очей у відтінках сірого від 50 різних людей (класів). Експерименти проводилися у два етапи: 1) сегментація і 2) розпізнавання райдужної оболонки. На першому етапі для локалізації райдужних оболонок застосовується алгоритм прямокутної області. На другому етапі виконується класифікація малюнка райдужної оболонки за допомогою мережі. Сформовані множини навчання й тестування (відповідно 60 зображень очей від 30 різних людей; 40 зображень очей від 20 різних людей). Виявлені райдужки для класифікації після нормалізації та посилення масштабуються за допомогою усереднення. Це допомагає зменшити розмір мережі. Потім зображення подаються матрицями, які є вхідним сигналом для мережі. Виходами ДП є класи візерунків райдужки. Для класифікації райдужної оболонки використовується алгоритм нейронного навчання. Точність розпізнавання на множині навчання становила 95,25%; на множині тестування - 89%. Ключові слова - біометрія, розпізнавання райдужної оболонки ока, нейронна мережа
APA, Harvard, Vancouver, ISO, and other styles
41

Прочухан, Д. В. "Нейромережеве моделювання в реалізації системи визначення правильності носіння медичної маски." Системи обробки інформації, no. 1(164) (March 17, 2021): 65–72. http://dx.doi.org/10.30748/soi.2021.164.07.

Full text
Abstract:
Розглянуто актуальну проблему визначення правильності одягнення медичної маски у людини. Для її вирішення запропоновано побудування моделі з використанням штучного інтелекту. Розглянуто механізм класифікації та обробки вхідних даних. Розроблено структуру згорткової нейронної мережі у вигляді моделі послідовної реалізації шарів згортки, агрегування, повного зв’язку. Обґрунтовано доцільність використання функції ReLU для активації вузлів. Застосовано метод Dropout для запобігання перенавчанню нейронної мережі. Вихідний шар реалізовано у вигляді одного нейрону з використанням функції активації сигмоїда. Оптимізація згорткової нейронної мережі здійснена методом стохастичного градієнтного спуску. Використано метод зворотного поширення помилки для навчання нейронної мережі. Розроблено програмний додаток на мові програмування Python. Використано бібліотеку Keras для забезпечення точності, правильності, повноти побудованої моделі. Проведено компіляцію з використанням бінарної перехресної ентропії в якості цільової функції. За допомогою розробленого додатку проведено ефективне навчання згорткової нейронної мережі на тестових вхідних зображеннях. Зважаючи на значні вимоги до апаратного забезпечення і програмних ресурсів, цей процес було здійснено під керуванням операційної системи Linux. Обмежена кількість періодів навчання забезпечила зменшення підсумкового часу навчання. Здійснено перевірку побудованої системи на контрольній множині. Отримано високі показники розпізнавання зображень. Працездатність програмного додатку перевірена з використанням різної апаратної і програмної конфігурації. Розроблена система може бути використані у галузях, які потребують контролю виконання правил безпеки під час пандемії.
APA, Harvard, Vancouver, ISO, and other styles
42

Пікуляк, Микола Васильович, Микола Васильович Кузь, and Оксана Дмитрівна Ворощук. "УДОСКОНАЛЕННЯ ІНФОРМАЦІЙНОЇ ТЕХНОЛОГІЇ ПОБУДОВИ СИСТЕМИ ДИСТАНЦІЙНОЇ ОСВІТИ ІЗ ЗАСТОСУВАННЯМ ГІБРИДНОГО АЛГОРИТМУ НАВЧАННЯ." Information Technologies and Learning Tools 88, no. 2 (April 29, 2022): 167–85. http://dx.doi.org/10.33407/itlt.v88i2.4434.

Full text
Abstract:
У статті виконано теоретичний аналіз нейро-нечітких систем, узагальнено та систематизовано їх основні характеристики, деталізовано особливості відомих алгоритмів розробки та обґрунтовано актуальність їх використання для побудови комп’ютеризованих навчальних програм. Представлено структурну модель адаптивної навчальної системи та описано систему вхідних навчальних правил, змодельованих за результатами проведеного експерименту. З метою визначення оцінки поточного рівня навченості студента введено ряд якісних показників (глибина навчання, ступінь та якість засвоєння), використання яких дозволило забезпечити повноту бази вхідних правил для здійснення нечіткого логічного виведення. Запропоновано метод на базі нечіткої нейронної мережі для побудови адаптивного модуля дистанційної системи передачі знань, застосування якого дає можливість підвищити швидкість та точність виконання обрахунків на етапі визначення навчального режиму відповідно до поточного рівня знань студента. Реалізовано адаптивний механізм побудови індивідуальної траєкторії навчання у системі дистанційної освіти на основі нечіткої нейронної мережі Мамдані. Розроблено гібридний алгоритм навчання нейро-нечіткої мережі та наведені етапи його функціонування. Досліджено особливості застосування гібридного алгоритму для визначення навчального режиму та встановлено переваги його використання шляхом паралельного й одночасного уточнення параметрів мережі. Запропоновано блок-схему гібридного алгоритму адаптивного навчального модуля, яка дозволяє мережі під час навчання модифікувати правила виведення відповідно до заданої точності навчання. Проведено експериментальне дослідження застосування гібридного алгоритму з використанням нечіткої нейронної мережі ANFIS в програмі MATLAB, що дозволило підтвердити ефективність запропонованої технології. Визначено перспективи використання математичного апарату нейромережевих технологій у дослідженні адаптивних характеристик автоматизованих навчальних систем.
APA, Harvard, Vancouver, ISO, and other styles
43

Фльора, А. С., М. О. Семенюк, В. С. Данилюк, and Є. А. Толкаченко. "ОГЛЯД СУЧАСНИХ МЕТОДІВ ВСИСТЕМАХВИЯВЛЕННЯ ВТОРГНЕНЬ ДЛЯ ПОТРЕБ ІНФОРМАЦІЙНО-ТЕЛЕКОМУНІКАЦІЙНИХ СИСТЕМ СПЕЦІАЛЬНОГО ПРИЗНАЧЕННЯ." Vodnij transport, no. 2(33) (December 14, 2021): 57–61. http://dx.doi.org/10.33298/2226-8553.2021.2.33.06.

Full text
Abstract:
Устатті представлено аналіз сучасних реалізацій алгоритмів систем виявлення вторгнень та їх перспективність використання у інформаційно телекомунікаційних мережах спеціального призначення.Необхідність в надійних системах виявлення вторгнення стоїть досить гостро. Особливо в сучасних тенденціях збільшення ролі інформаційних технологій в силових відомствах держави та на об’єктах критичної інфраструктури. Застарілі системи захисту дозволяють без особливих труднощів проводити кібератаки, що спонукає до необхідності тримати системи виявлення та захисту інформаційних систем в актуальному стані.В умовах постійної боротьби з вторгненнями у світі було запропоновано безліч методів та алгоритмів для виявлення атаки на інформаційно-телекомунікаційні системи. Так найбільшу розповсюдженість отримали методи виявлення аномалій в роботі системи. Передовими з таких методів є інтелектуальні. Нейронні мережі, нечітка логіка, імунні системи отримали велику кількість варіантів реалізації в таких системах виявлення вторгнень.Вдале поєднання переваг методів виявлення для конкретної інфраструктури може дозволити отримати значну перевагу над атакуючим, та зупинити проникнення. Проте на шляху всеохоплюючої реалізації подібних систем стоїть їх висока вартість у сенсі обчислювальної потужності. Питання застарілого парку комп’ютерної техніки і її повільна заміна ставлять в ситуацію постійного компромісу між передовими досягненнями в галузі захисту системи і можливостей самої системи щодо підтримки таких систем. Ключовіслова:інформаційно-телекомунікаційна система, інформаційна безпека, кібератака, система виявлення вторгнень, загроза інформаційним системам.
APA, Harvard, Vancouver, ISO, and other styles
44

Savka, N. Ya. "Artificial Neural Networks for Modeling of Crisis Management of National Economy." Èlektronnoe modelirovanie 42, no. 2 (April 9, 2020): 109–20. http://dx.doi.org/10.15407/emodel.42.02.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ялова, Катерина Миколаївна, Ксенія Володимирівна Яшина, and Вікторія Олександрівна Коротка. "НЕЙРОННА МЕРЕЖА ДЛЯ КРИПТОГРАФІЧНОЇ СИСТЕМИ З ВІДКРИТИМ КЛЮЧЕМ." Математичне моделювання, no. 1(42) (June 11, 2020): 137–44. http://dx.doi.org/10.31319/2519-8106.1(42)2020.207015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Шликов, Владислав, and Олег Воляник. "НЕЙРОННА МЕРЕЖА ДЛЯ ВИЯВЛЕННЯ АРТЕФАКТІВ НА КТ-ЗОБРАЖЕННЯХ." Біомедична інженерія і технологія, no. 3 (February 16, 2020): 17–24. http://dx.doi.org/10.20535/2617-8974.2020.3.195555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Артеменко, С. В., and В. О. Мазур. "EN Машинне навчання для властивостей холодоагентів." Refrigeration Engineering and Technology 57, no. 3 (October 15, 2021): 138–46. http://dx.doi.org/10.15673/ret.v57i3.2164.

Full text
Abstract:
Міждисциплінарний характер нових цілей, спрямованих на розробку робочих матеріалів для екологічно чистих технологій вимагає більш динамічного використання інформаційних технологій (ІТ) для забезпечення правильних компромісних рішень у конкурентному середовищі. Машинне навчання (ML) — це частина методологій штучного інтелекту (AI), яка використовує алгоритми, які не є прямим рішенням проблеми, а навчаються за допомогою рішень незліченної кількості подібних проблем. Машинне навчання відкрило новий шлях у дослідженні термодинамічної поведінки нових речовин. Різні обчислювальні інструменти були застосовані для вирішення актуальної проблеми - прогнозування фазової поведінки soft речовин під значними екзогенними впливами. Метою цього дослідження є розробка нової точки зору щодо прогнозування термодинамічних властивостей м'яких речовин за допомогою методології, яка передбачає штучні нейронні мережі (ANN) та глобальну фазову діаграму для забезпечення кореляції між структурою та властивостями. В роботі представлено застосування машинного навчання в інженерній термодинаміці для прогнозування азеотропної поведінки бінарних холодоагентів і визначення коефіцієнта продуктивності (COP) для роботи органічного циклу Ренкіна (ORC). За даними про кипіння та критичні точки. Запропоновано новий підхід до прогнозування утворення азеотропного стану в суміші, який розроблено та представлено. Цей підхід використовує синергію нейронних мереж та методології глобальної фазової діаграми для кореляції азеотропних даних для бінарних сумішей на основі лише критичних властивостей та ацентричного коефіцієнта окремих компонентів у сумішах холодоагентів. Це не вимагає інтенсивних розрахунків. Побудова кореляцій ANN між інформаційними атрибутами робочих рідин та критеріями ефективності циклу Ренкіна звужує область компромісів у просторі конкурентних економічних, екологічних та технологічних критеріїв
APA, Harvard, Vancouver, ISO, and other styles
48

Lopatko, Olha, and Ihor Mykytyn. "Neural networks as a tool for the temperature value prediction using transition process." Measuring Equipment and Metrology 77 (2016): 65–70. http://dx.doi.org/10.23939/istcmtm2016.77.065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zghoba, M. I., and Yu I. Hrytsiuk. "Прогнозування попиту на пасажирські перевезення таксі методами нейронної мережі." Scientific Bulletin of UNFU 31, no. 3 (April 29, 2021): 109–19. http://dx.doi.org/10.36930/40310317.

Full text
Abstract:
Розглянуто особливості прогнозування попиту на пасажирські перевезення таксі методами нейронної мережі за різних наборів вхідних даних, складу параметрів архітектури мережі, конфігурації апаратного забезпечення та його потужності. З'ясовано, що для зменшення тривалості очікування нових замовлень та відстані до клієнтів доцільно використовувати відповідні інформаційно-аналітичні системи, робота яких ґрунтується на штучному інтелекті. Це дасть змогу вирішити проблему попиту на перевезення таксі у відповідний період доби з врахуванням погодних умов, святкових, вихідних і робочих днів, а також пори року. Врахування ж наявних транспортних об'єктів – авіарейсів, потягів чи автобусів значно покращують роботу такої дорадчої системи. Використана в роботі гібридна архітектура нейро-фаззі мережі дає змогу одночасно вирішувати завдання короткотермінового прогнозування попиту на пасажирські перевезення таксі, а також проводити діагностику самої мережі, що полягає у виявленні різких змін властивостей обчислювального процесу. Для досягнення відповідної точності прогнозу в роботі опрацьовано набори вхідних даних у кількості 4,5 млн поїздок таксі. Для зменшення тривалості процедури навчання нейронної мережі організовано паралельні обчислення між різними вузлами мережі за допомогою графічних процесорів. Проведено навчання нейронної мережі на центральному процесорі, одному та двох графічних процесорах відповідно. З'ясовано, що організація паралельних обчислень на декількох графічних процесорах не завжди зменшує тривалість процедури навчання мережі, оскільки витрати на синхронізацію градієнтів між активними процесами значно перевищують користь від паралельних розрахунків. Встановлено, що за умови великого обсягу даних для організації паралельних обчислень та відповідної архітектури нейронної мережі можна досягти деякого зменшення тривалості процедури її навчання. Визначено, що зменшення тривалості процедури навчання нейронної мережі залежить від таких чинників: її архітектури, кількості параметрів навчання, конфігурації апаратного забезпечення та організації паралельних розрахунків.
APA, Harvard, Vancouver, ISO, and other styles
50

BATIUK, TARAS, and VICTORIA VYSOTSKA. "СИСТЕМА ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ ДЛЯ ПІДТРИМКИ КОРИСТУВАЧІВ СОЦІАЛЬНИХ МЕРЕЖ НА ОСНОВІ ПОДІБНИХ СПІЛЬНИХ ІНТЕРЕСІВ ТА ВПОДОБАНЬ." Computer systems and information technologies, no. 1 (April 14, 2022): 11–22. http://dx.doi.org/10.31891/csit-2022-1-2.

Full text
Abstract:
На сьогодення соціалізація особистостей за спільними інтересами є надзвичайно важливим процесом під час ізоляції людей із-за подовженості світової пандемії. Паралельно більшість людей завжди намагаються спростити та автоматизувати всі основні життєві процеси, які зазвичай займають багато вільного часу. Це ж стосується і процесу соціалізації особистості. Машинне навчання та SEO-технології на даний момент є надзвичайно важливими в контексті розроблення ІС опрацювання та аналізу великих даних . Практично кожна популярна серед великої кількості людей ІС використовує відповідні механізми соціалізації. Головною функцією ІС соціалізації особистостей за спільними інтересами є пошук релевантних користувачів, тому основним завданням є написати оптимізований алгоритм, який максимально автоматизує процес соціалізації користувачів. В даному випадку створений спеціальний алгоритм на основі таких алгоритмів, як алгоритм Левенштейна, розширення вибірки, N-грам та моделі Noisy Channel. До наукової новизни одержаних результатів варто віднести розроблення нового алгоритму аналізу користувацької інформації та пошуку найбільш релевантних користувачів ІС відповідно до проаналізованого тексту повідомлень профілю на основі вже існуючих алгоритмів Левенштейна, розширення вибірки, N-грам та моделі Noisy Channel. Для створення динамічної ІС соціалізації використано шаблон асинхронного програмування. Удосконалено згорткову нейронну мережу, що дозволило ефективно здійснювати пошук людських обличь на фото та перевіряти наявність вже існуючих людей в БД ІС. Система дозволить ефективно та швидко здійснювати підбір, аналіз, опрацювання текстових даних та формування кінцевого результату. В системі використовуються SEO-технології для ефективного та якісного інтелектуального пошуку та опрацювання відповідних даних за потребою конкретного користувача. Нейронна мережа дозволяє ефективно здійснювати ідентифікацію користувача по його фото. Загалом використовувані алгоритми дозволяють створити зручну ІС соціалізації з використанням необхідних для цього алгоритмів. Варто зазначити важливість оптимізації наявної в ІС, в першу чергу це повна асинхронність системи, що дозволить уникнути всіх довгих очікувань та важких в плані опрацювання та аналізу запитів, система дозволяє ефективно та динамічно працювати з різними обсягами великих даних, здійснювати їх аналіз, опрацювання та формування нових даних необхідних користувачам ІС. Також використовується хмарний сервіс, який дозволить здійснити розподіл даних, відповідно можна буде зберігати всі найбільш важкі дані в хмарному середовищі і з використанням простого програмного інтерфейсу ІС за допомогою запитів здійснювати завантаження всіх необхідних даних. Таким чином, можна стверджувати, що створення даної ІС є важливим як і в соціальному плані, так і в плані реалізації всіх алгоритмів, які забезпечують необхідний функціонал ІС.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography