To see the other types of publications on this topic, follow the link: Насоси теплові.

Journal articles on the topic 'Насоси теплові'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Насоси теплові.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Сірко, З. С., В. А. Коренда, І. Ю. Вишняков, О. С. Протасов, and Н. В. Бірківська. "ВИКОРИСТАННЯ ТЕПЛОВИХ НАСОСІВ ДЛЯ ОПАЛЕННЯ БУДІВЕЛЬ НА ПІДПРИЄМСТВАХ." СІЛЬСЬКОГОСПОДАРСЬКІ МАШИНИ, no. 43 (January 10, 2020): 120–29. http://dx.doi.org/10.36910/agromash.vi43.210.

Full text
Abstract:
Стаття присвячена висвітленню сутності та змісту такої проблеми, як використання установок, що працюють на альтернативних джерелах енергії для опалення, вентиляції та гарячого водопостачання будівель, а саме теплових насосів. Теплові насоси використовують для своєї роботи низькопотенційне тепло, яке береться з повітря, водойм та надр землі. Підприємства та організації мають різноманітні джерела низькопотенційної теплової енергії: пожежні водойми, вільні земельні ділянки на територіях.
APA, Harvard, Vancouver, ISO, and other styles
2

Морозов, Ю. П., Д. М. Чалаєв, Н. В. Ніколаєвська, and М. П. Добровольський. "ОЦІНКА ЕФЕКТИВНОСТІ ВИКОРИСТАННЯ ТЕПЛОВОГО ПОТЕНЦІАЛУ ДОВКІЛЛЯ ТА ВЕРХНІХ ШАРІВ ЗЕМЛІ УКРАЇНИ." Vidnovluvana energetika, no. 4(63) (December 28, 2020): 80–88. http://dx.doi.org/10.36296/1819-8058.2020.4(63).80-88.

Full text
Abstract:
Проведено оцінку ефективності комбінованого використання низькопотенційної теплоти ґрунту та атмосферного повітря для роботи установки теплонасосного теплопостачання. Проведено аналіз основних положень нормативних документів ЄС та законодавчих актів України в частині віднесення теплових насосів до обладнання, яке використовує відновлювані джерела енергії та вибору критерію такого віднесення. Розглянуто мінімально допустиме значення середнього розрахункового сезонного коефіцієнту корисної дії. Проаналізовано вплив тривалості температур повітря різних градацій на теплопродуктивність теплового насосу та визначено часові інтервали ефективної роботи кожного з низькопотенційних джерел. Для підвищення ефективності роботи двоконтурної теплонасосної системи запропоновано схему вилучення низькопотенційної теплоти з використанням ґрунтової теплової труби і повітряного теплообмінника на базі двофазного гравітаційного термосифону. Розглянуто вихідні дані та припущення для оцінки теплового потенціалу верхніх шарів Землі, який може використовуватись для геотермального теплопостачання з застосуванням теплових насосів. Виконано порівняння енергетичних характеристик геотермального і повітряного теплового насосу при їх автономної і комбінованої роботи протягом року в кліматичних умовах міста Києва і показано, що комбіноване використання низькопотенційної теплоти атмосферного повітря і ґрунту дозволяє в 1,2 рази збільшити річну теплопродуктивність теплонасосної системи. На підставі проведених досліджень встановлено, що перевагою повітря, як теплоносія, є те, що повітряні теплові насоси можуть працювати практично повсюди і не вимагають облаштування низькотемпературного контуру. Перспективним способом підвищення ефективності теплового насоса при річному циклі його роботи є комбіноване використання низькопотенційної теплоти ґрунту та повітря. Теплонасосна система з двома джерелами енергії забезпечує високу теплопродуктивність теплового насоса протягом всього року і має більш високий показник енергетичної ефективності у порівнянні з традиційними рішеннями. Бібл.11, табл.2, рис.4.
APA, Harvard, Vancouver, ISO, and other styles
3

Пазюк, В. М. "СУЧАСНІ ПІДХОДИ ДО ВИРІШЕННЯ ПРОБЛЕМИ ПІДВИЩЕННЯ ЕНЕРГОЕФЕКТИВНОСТІ СУШІННЯ НАСІННЄВОГО ЗЕРНА." Vidnovluvana energetika, no. 4(67) (December 25, 2021): 90–99. http://dx.doi.org/10.36296/1819-8058.2021.4(67).90-99.

Full text
Abstract:
В статті запропоновані сучасні методи низькотемпературного сушіння зернових культур. Найбільш поширені для сушіння зернових культур бункери та силоси для вентилювання, сушарки колонкового та шахтного типу. Приведені енергетичні витрати зерносушарок у найбільш відомих виробників, що становлять в залежності від типу зерносушарки 4350 – 5000 кДж/кг випареної вологи. Розроблена енергетична класифікація існуючих зерносушарок в залежності від заходів направлених на зниження енергетичних витратах теплоти, але цього недостатньо. Витрати теплоти в існуючих зерносушарках потрібно зменшувати, тому розроблені заходи із зниження витрат теплоти на процес сушіння, серед яких доцільно застосувати теплові насоси, які вирішують комплексно проблему енергоефективності. Ефективність теплонасосної установки підтверджується проведеними експериментальними дослідженнями, в якій розраховані енергетичні витрати на 1 кг випареної вологи, що становлять 3675–3700 кДж/кг випареної вологи. Процес сушіння насіння зернових культур в теплонасосній сушильній установці проходить періоди нагрівання, постійної та падаючої швидкості сушіння. Найбільш доцільна температура сушильного агента 50°С, швидкість сушіння 1,5 м/с та шар матеріалу в 20 мм. Насіннєві властивості зернових культур після теплової обробки зберігаються на рівні 99–100 %. Вирішення проблеми енергоефективності сушіння насіння зернових культур досягається встановленням в технологічну схему сушіння теплонасосної установки. Зерносушильна установка складається з 3-х зон, перша зона з температурою 80°С необхідна для швидкого підігрівання насіння зернових культур, друга зона із температурою теплоносія 50°С від конденсатора теплового насосу дозволяє сушити насіння, третя зона використовується для охолодження матеріалу від випарника теплового насосу. Бібл. 10, рис. 6.
APA, Harvard, Vancouver, ISO, and other styles
4

Роганков, О. В. "Конденсаційна генерація тиску в літієвих контурних теплових трубах." Refrigeration Engineering and Technology 56, no. 3-4 (January 11, 2021): 100–113. http://dx.doi.org/10.15673/ret.v56i3-4.1950.

Full text
Abstract:
Звичайні і контурні теплові труби відносяться до найбільш ефективних способів передачі тепла від таких джерел, як активна зона ядерного реактора. Конвективні потоки маси і теплоти, утворені у випарнику, передаються конденсатору потоком пари робочої речовини, яка розширюється (v), і потім сконденсована рідина (l) повертається у випарник через вузькі пористі канали ґніту. Зміна капілярного тиску в ґноті вважається єдиним (крім опціонного впливу гравітації) рушійним фактором для повернення рідини і забезпечення стійкої роботи теплової труби. У даній статті обґрунтовується наявність додаткового рушійного фактора, так званого конденсаційного теплового насосу, у будь-яких реальних випарно-конденсаційних циклах при відносно невеликих перепадах температури і тиску. Це підтверджується детальним розглядом контурної теп­лової труби з літієвим теплоносієм та її термодинамічного циклу, який функціонує головним чином в області вологої та перегрітої пари. В роботі проведено аналіз способів передачі тепла від активної зони реактору, визначено обмежуючі фактори та наведено можливі шляхи їх усунення у реалізації малогабаритних потужних автономних джерел енергії. У згаданому контексті розглянуто особливості та переваги роботи контурних теплових труб у порівнянні з протиточними тепловими трубами і надана нова інтерпретація їх термодинамічного циклу. Вона заснована на результатах нещодавніх робіт [10-12], в яких обґрунтовується існування області гетерогенних станів перегрітої парової фази, так званої v-інтерфази. Показана асиметрія (незворотність) теплоти фазового переходу дозволяє ввести таке поняття, як конденсаційний тепловий насос в доповнення до капілярного насосу ґніту теплових труб. Запропоновано модифіковані способи оцінки оптимальних температур робочих циклів з урахуванням зазначених термодинамічних ефектів
APA, Harvard, Vancouver, ISO, and other styles
5

ГРЕЧИХИН, Леонид, Надежда КУЦЬ, Юрий БУЛИК, and Александр ДУБИЦКИЙ. "Транспорт и вихревой тепловой насос." СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, no. 14 (August 31, 2020): 78–85. http://dx.doi.org/10.36910/automash.v1i14.349.

Full text
Abstract:
У роботах [1, 2] для транспорту запропоновано застосувати вихровий тепловий насос на штучно створеному вітрові. В результаті показано, що такий вихровий насос перетворює не механічну енергію вітру в електричну потужність, а теплову складову потоку повітря, що прокачується. Розглянуто загальний принцип роботи такого вихрового теплового насоса. Конкретний розрахунок перетворення енергій виконаний для повітряних вітрогенераторів. Вихровий тепловий насос, який може бути застосований на транспорті, описаний якісними параметрами. У зв'язку з цим виникла необхідність провести розрахунок енергій перетворення вихровим тепловим насосом із застосуванням конкретного електричного двигуна, електричного генератора, повітряного гвинта і лопатей вітрогенератора для транспортних систем. Вентилятор створює повітряний потік, який впливає на лопаті вітрогенератора, вітрогенератор виробляє потужність більше потужності, споживаної електродвигуном вентилятора і витраченої потужності на подолання сил тертя при обертанні якорів в електромоторах, а також тертя об повітря при обертанні лопатей вітрогенератора. В результаті проведених досліджень встановлено, що для збільшення захоплюваної поверхні вентилятором необхідно використовувати високооборотний гвинт порівняно великого діаметра, а обертання такого гвинта повинен забезпечувати електромотор з підвищеною потужністю, але це суттєво зменшить коефіцієнт перетворення. Збільшення числа лопаток в вітрогенераторі можливе при зростанні діаметра електрогенератора, що також знижує коефіцієнт перетворення. Встановлено, що найбільш ефективний спосіб отримання максимального коефіцієнта перетворення енергії - це збільшення швидкості руху потоку повітря до певної межі. Якщо застосувати каскадну схему шляхом розташування двох і більше лопатевих кілець в вітрогенераторі, то різко зросте коефіцієнт перетворення вихрового теплового насоса. Ключові слова: тепловий насос, вітрогенератор, вентилятор, повітряний гвинт, лопаті, зривний потік.
APA, Harvard, Vancouver, ISO, and other styles
6

Kislyakov, A. A., N. K. Simakov, and M. A. Kislyakov. "Increasing the Efficiency of Energy Supply by Using Heat Pumps at Energy Facilities." Intellekt. Sist. Proizv. 16, no. 4 (February 25, 2019): 24. http://dx.doi.org/10.22213/2410-9304-2018-4-24-31.

Full text
Abstract:
Исследования, приведенные в работе, направлены на разработку новых технических решений по использованию абсорбционных тепловых насосов в существующих технологических циклах электростанций на примере конденсационных энергоблоков тепловых электрических станций мощностью 300 МВт, позволяющих повысить их тепловую экономичность. Изучение проблемы, связанной с потерями тепловой энергии и обеспечения эффективности работы основного энергетического оборудования на электростанциях, способствовало развитию научно-исследовательских направлений в данной области, о чем свидетельствуют многочисленные теоретические и технические решения по оптимизации тепловых схем электрических станций. Актуальность eq работы может заключается в eq разработке результатам научно обоснованных eq технических выработки решений, eq направленных компоновкой на повышение eq тепловой размерность экономичности eq работы результаты тепловых электрических станций, за счет eq применения схему абсорбционных eq тепловых местными насосов. В настоящей статье приведено теоретическое обоснование применения тепловых насосов в схемах паротурбинных установок. Проведено исследование целесообразности применения парокомпрессионного теплового насоса в схемах тепловых электрических станций. Предложены новые схемные решения применения теплового насоса в технологических циклах тепловых электрических станций. eq Общим электрическую итогом eq выполнения увеличению исследовательской eq работы охлаждения являются eq научно температуры обоснованные eq технические порядка решения, eq способствующие температуры повышению eq тепловой диапазоне экономичности тепловых электрических станций за eq счет оборудования применения eq абсорбционных повышению тепловых eq насосов математической в составе eq регенеративного общего цикла eq паротурбинной отопительный установки, eq ступени режимные низкого eq давления пределе паровой eq турбины осуществляется и системы eq технического находится водоснабжения eq энергоблоков выручка. Разработаны eq новые переходные схемные eq решения показателей для технологических eq циклов прирост электростанций, eq которые находится отличаются от eq известных развитых применением eq конденсационного переменная контура абсорбционного бромисто-литиевого теплового насоса в системе eq регенерации переменная паротурбинной eq установки описании тепловых электрических станций.
APA, Harvard, Vancouver, ISO, and other styles
7

Мартынова, Н. М., Е. В. Оришевская, and Е. В. Приходько. "АНАЛИЗ ЭФФЕКТИВНОСТИ РАБОТЫ ТУРБОПИТАТЕЛЬНОГО НАСОСА БЛОКА 500 МВТ." Bulletin of Toraighyrov University. Energetics series, no. 2021.3 (September 11, 2021): 73–82. http://dx.doi.org/10.48081/dbtk3972.

Full text
Abstract:
В статье производится анализ эффективности тепловой работы энергоблока проведено на основании тепловых испытаний турбоагрегата К-500-240-2 с целью оценки текущего изменения экономичности оборудования в процессе эксплуатации. Тепловое испытание турбоагрегата включало в себя две серии опытов при режимах: питание турбопитательного насоса от отбора главной турбины и от быстродействующего редукционно-охладительного устройства. Получены зависимости: расхода пара на турбопривод и внутренней мощности турбопривода от расхода питательной воды и давления отработавшего пара в конденсаторе турбопитательного насоса-А от расхода пара на турбопривод. Быстродействующее редукционно-охладительное устройство питательного турбонасоса позволяет подать пар к приводным турбинам питательных насосов и к деаэратору при сбросе нагрузки или при нагрузке ниже 30 %, когда давление пара в отборе на турбонасосы недостаточно. При подключении турбопитательного насоса к четвёртому отбору турбины наблюдается рост расхода пара на турбопривод на 11 % в сравнении с нормативным, причинами чему могут быть снижение внутреннего относительного коэффициента полезного действия, снижение располагаемого теплоперепада, неудовлетворительная работа насоса и повышенное гидравлическое сопротивление сети.
APA, Harvard, Vancouver, ISO, and other styles
8

Лавренченко, Г. К., М. Б. Кравченко, and Б. Г. Грудка. "Термодинамічний аналіз схем повітророзподільних установок для отримання газоподібного кисню під тиском." Refrigeration Engineering and Technology 55, no. 2 (April 30, 2019): 109–20. http://dx.doi.org/10.15673/ret.v55i2.1360.

Full text
Abstract:
Різні споживачі (металургія, великотоннажна хімія, енергетика, медицина і т.п.) потребують газоподібний кисень, стиснений до тисків 0,6...16 МПа. У першій половині 20-го століття створювали кріогенні повітророзподільні установки (ПРУ), в яких вироблений газоподібний кисень на виході з блоку розділення стискувався в кисневому компресорі (поршневому або відцентровому) до необхідного тиску. Після появи кріогенних насосів кисень стали стискати в них, а потім газифікувати з використанням теплоти потоку переробляємого повітря. На перший погляд ця схема здавалася досить ефективною, хоча і не позбавленою деяких недоліків. Проведено термодинамічний аналіз повітророзподільних установок для отримання газоподібного кисню під тиском. Виконано порівняння показників ПРУ, які працюють за схемою із стисненням продукційного кисню в компресорі і зі стисненням в насосі рідкого кисню з наступним нагріванням до температури навколишнього середовища в основному теплообміннику. В результаті проведеного аналізу виведено безрозмірний критерій, фізичний зміст якого полягає в тому, що він показує відношення роботи, що витрачається в кисневому компресорі до додаткової роботи, яку необхідно затратити для компенсації термодинамічних втрат, пов'язаних з роботою насоса рідкого кисню. Розглянуто приклад використання отриманих співвідношень для аналізу ПРУ, що працює по циклу середнього тиску і призначеної для отримання газоподібного кисню під тиском 16 МПа. Термодинамічний аналіз такої установки показує, що витрата енергії на стиснення кисню в схемі з насосом може бути в 1,5 рази менше витрати енергії при використанні кисневого компресора. Аналіз ПРУ низького тиску показав, що при тиску продукційного кисню нижче 7-8 МПа схеми з насосом рідкого кисню більш ефективні, ніж традиційні схеми із стисненням продукційного кисню в компресорі. При тиску продукційного кисню вище 7-8 МПа енергетично вигідніше стає схема з кисневим компресором.
APA, Harvard, Vancouver, ISO, and other styles
9

Lipovka, Yuri Lvovich, and Alexey Andreevich Alekseev. "МАТЕМАТИЧЕСКАЯ МОДЕЛЬ УПРАВЛЕНИЯ ГИДРАВЛИЧЕСКИМИ РЕЖИМАМИ ТЕПЛОВОЙ СЕТИ." International Journal of Advanced Studies 9, no. 2 (July 20, 2019): 29. http://dx.doi.org/10.12731/2227-930x-2019-2-29-41.

Full text
Abstract:
Совершенствование методов управления гидравлическими режимами тепловых сети, в частности, управлением положения точки регулируемого давления (ТРД) является актуальной задачей, связанной с регулированием схемы подпитки тепловой сети, заключающейся в изменении положения ТРД путем дросселирования клапанами на байпасе сетевого (циркуляционного) насоса, позволяющие регулировать гидростатическое давление тепловой сети. В работе использована программа Solid works. Основным фактором, влияющим на положение линии гидростатического давления, является узел подпитки, состоящий из подпиточного насоса, регулирующих клапанов, датчика давления, расположенного в нейтральной точке.
APA, Harvard, Vancouver, ISO, and other styles
10

(Vyacheslav I. Maksimov), Максимов Вячеслав Иванович, and Салум Амер (Amer Saloum). "МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ТЕПЛОПЕРЕНОСА ПРИ РАБОТЕ ТЕПЛОНАСОСНЫХ СИСТЕМ ИСПОЛЬЗОВАНИЯ ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ." Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330, no. 4 (April 22, 2019): 126–35. http://dx.doi.org/10.18799/24131830/2019/4/229.

Full text
Abstract:
Актуальность. Использование теплонасосных установок для отопления вместо традиционных систем, которые получают энергию в процессе сжигания различных видов топлива, имеет ряд экологических и экономических преимуществ. Тепловые насосы могут получать энергию из воздуха, грунта и воды. Их сферы применения разнообразны: горячее водоснабжение и кондиционирование помещений, нагрев и охлаждение воды для различных нужд, сушки/осушения воздуха, производства пара, испарения, дистилляции. При применении природных водоёмов (озёра, пруды, водохранилища) в качестве низкопотенциального источника энергии теплонасосных установок на поверхности трубки испарителя образуется лёд. Важно рассматривать закономерности и характеристики процессов теплообмена между водой и трубкой испарителя при образовании льда на её поверхности. Цель: математическое моделирование нестационарного конвективного теплообмена между водой и трубками испарителя теплонасосных установок в условиях формирования льда на их поверхности. Объект: теплообменник испарителя теплового насоса, погружённый в воду. Методы: численное решение задач конвективного теплообмена в условиях фазового перехода воды методом конечных элементов в среде COMSOL. Результаты. Установлены закономерности нестационарного конвективного теплопереноса вблизи трубок испарителя водяного теплового насоса с температурой, при которой образуется лёд на их поверхности. Показана необходимость учета влияния термогравитационной конвекции в воде на тепловой поток и процесс образования льда на поверхности трубки испарителя теплонасосной установки. Получены зависимости числа Нуссельта от характеристики конвективного теплообмена в воде (чисел Рэлея, Фурье и Стефана). Выявлено, что перепад температур в воде вблизи трубки увеличивался при уменьшении глубины её расположения относительно поверхности водного источника при показателях температур воды выше 277 К. При температурах воды ниже 277 К тепловой поток достигал максимального значения у поверхности трубки, которая находилась глубже.
APA, Harvard, Vancouver, ISO, and other styles
11

Зур’ян, О. В. "ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ТЕПЛОВОГО РЕЖИМУ ГІДРОТЕРМАЛЬНОЇ ТЕПЛОНАСОСНОЇ СИСТЕМИ." Vidnovluvana energetika, no. 4(67) (December 25, 2021): 77–89. http://dx.doi.org/10.36296/1819-8058.2021.4(67).77-89.

Full text
Abstract:
Ґрунтові води є високоефективним джерелом відновлюваної низкопотенциальной енергії, проте ефективне використання таких систем багато в чому залежить від попереднього вивчення геологічної будови гірського масиву, а також гідрогеологічних параметрів водоносного горизонту. Метою дослідження є визначання залежності техніко-економічних показників гідротермальної теплонасосної системи від гідрогеологічних параметрів водоносного горизонту. В роботі визначено основні гідрогеологічні параметри, які впливають на тепловий режим гідротермальної теплонасосної системи. Представлено розроблену і сконструйовану в Інституті відновлюваної енергетики НАН України гідротермальну експериментальну теплонасосну систему, яка складається з теплового насоса та двох свердловин, через які забезпечується циркуляція води від підземного горизонту до теплового насоса. Наведено опис характеристик вимірювального обладнання, встановленого на гідротермальній теплонасосній системі, та розробленої автором інтерактивної системи диспетчеризації на базі програмного продукту ESM (Engineering Systems Manager) з використанням язика програмування FBD (Function Block Diagram|Continuous Function Chart), яка була застосована для побудови системи візуалізації та архівації даних, отриманих в процесі цієї науково-дослідницької роботи. Наведено результати проведених експериментальних досліджень. Виконано аналіз ефективності та інвестиційної привабливості гідротермальної системи, де як відновлюване первинне джерело теплової енергії для роботи теплового насоса використовується низькопотенціальна теплова енергія води водоносного горизонту. Показано, що наявні гідротермальні теплонасосні системи не завжди адаптовані до умов експлуатації, місця розташування об’єкта і що відсутня методика проєктування гідротермальних теплонасосних систем і методика проведення попередніх гідрогеологічних досліджень району, вибраного для монтажу даних систем. Мають перспективу подальші експериментальні дослідження впливу дебіту та динаміного рівня свердловини на стабільність та ефективність роботи гідротермальної теплонасосної системи. Бібл. 16, табл. 1, рис. 5.
APA, Harvard, Vancouver, ISO, and other styles
12

Svalova, M. V., E. A. Grinko, and I. S. Korepanov. "On the Method of Studying the Energy Efficiency of Various Heating Systems Using Software." Intellekt. Sist. Proizv. 18, no. 4 (December 29, 2020): 39. http://dx.doi.org/10.22213/2410-9304-2020-39-46.

Full text
Abstract:
В работе рассматривались системы отопления индивидуального жилого дома на основе теплового насоса, однотрубная горизонтальная, двухтрубная горизонтальная в комбинации с системой «теплый пол», лучевая коллекторная. Приведена методика расчета систем отопления индивидуального жилого дома в Удмуртской Республике с применением программного обеспечения. Представлены достоинства и недостатки каждой из систем и на их основе сделана сравнительная характеристика. Подробно описан функционал программного обеспечения для расчета тепловых потерь здания и для гидравлического расчета систем отопления. Описан принцип работы программного обеспечения. Приведена методология расчета капитальных затрат на реализацию каждой из систем отопления. Представлены принципиальные схемы каждой системы отопления и схема работы теплового насоса. Выявлена наиболее технически и экономически эффективная система отопления. Показана перспективность применения тепловых насосов для отопления индивидуального жилого дома. Установлено, что применение нетрадиционных систем отопления на основе теплового насоса будет способствовать выполнению задачи по обеспечению всеобщего доступа к современным источникам энергии. В работе произведен анализ экологических последствий применения различных систем отопления и на основе этого выявлена экологически безопасная система отопления на основе теплового насоса.
APA, Harvard, Vancouver, ISO, and other styles
13

Morozov, Yu, A. Barylo, D. Chalaev, and M. Dobrovolskyi. "ЕНЕРГЕТИЧНА ЕФЕКТИВНІСТЬ ВИКОРИСТАННЯ ПЕРШИХ ВІД ПОВЕРХНІ ВОДОНОСНИХ ГОРИЗОНТІВ ДЛЯ ТЕПЛО- І ХЛАДОПОСТАЧАННЯ." Vidnovluvana energetika, no. 2(57) (September 2, 2019): 70–78. http://dx.doi.org/10.36296/1819-8058.2019.2(57).70-78.

Full text
Abstract:
На підставі експлуатаційних даних двох свердловин, пробурених на території Міжнародного центру відновлювальної енергетики, визначена енергетична ефективність використання підземних вод перших від поверхні землі водоносних горизонтів для отримання теплоти та холоду в системах теплохладопостачання житлових будинків та будівель громадського призначення. Дослідні свердловини розташовані на відстані 11,5 м одна від одної, глибина яких складає 50 і 57 м відповідно. Під час проведення пробних відкачок одержані основні попередні експлуатаційні характеристики горизонту. Статичний рівень встановлюється на глибині 32,0 м, дебіт свердловин складає 2-3 м3/год., початкова температура підземних вод – 12 °С. Були розкриті таки водоносні горизонти та комплекси: горизонт алювіально-делювіальних відкладень першої надзаплавної тераси, що складається кварцовими пісками з лінзами та проверстками суглинків і залягає на глибині від 8 до 12 м; водоносний комплекс у відкладах межигірської, берекської та новопетрівської світ олігоцен-міоцену (полтавська і харківська серії), який залягає на глибині від 32 до 50 м та створений з дрібно-зернистого піску; бучаксько-канівський водоносний горизонт, що залягає на глибині від 90 до 117 м і складається з мілкого та дрібно-зернистого піску. Для оцінки можливості використання підземних вод з метою геотермального тепло- і хладопостачання використано водоносний горизонт полтавського і харківського віку, оскільки цей горизонт ізольований від поверхневих і грунтових вод потужною товщою (до 20 м) щільних глин, що забезпечує йому сталий режим фільтрації і стабільні гідрогеологічні параметри. В роботі показано, що використання підземних вод як джерела низькопотенційної енергії для теплових насосів дозволяє отримати від свердловини в 7...10 разів більшу теплову потужність в порівнянні з традиційними теплонасосними системами на основі ґрунтових зондів. Запропоновано схему роботи теплонасосних агрегатів з ступінчастим спрацьовуванням температурного потенціалу підземних вод від + 12 °С до + 1 °С, що дозволяє майже в півтора рази підвищити енергетичну ефективність процесу генерування теплової енергії. Оцінено ефективність застосування підземних вод для кондиціонування приміщень в літній час. Показано, що для даних свердловин величина СОР процесу «пассивного» кондиціонування перевищує 25. Температуру в приміщенні можна знизити на 5 градусів. Кількість «холоду», яка може бути отримана від однієї свердловини, становить більше 10 кВт. На підставі аналізу гідрогеологічних характеристик та режиму фільтрації перших від поверхні водоносних горизонтів вибрано найбільш придатний для створення систем геотермального тепло- і холодопостачання водносний комплекс та проведено розрахунки, які показали доцільність використання водоносного горизонту у відкладах межигірської, берекської та новопетрівської світ олігоцен-міоцену. Бібл. 3, табл. 3, рис. 4.
APA, Harvard, Vancouver, ISO, and other styles
14

Ковальчук, Д. А., О. В. Мазур, and В. А. Хобін. "Дослідження процесів утилізації тепла пароповітряних сумішей: результати експериментів, структурна та параметрична ідентифікація основних каналів об’єкту." Automation of technological and business processes 11, no. 1 (April 26, 2019): 32–42. http://dx.doi.org/10.15673/atbp.v11i1.1327.

Full text
Abstract:
У статті розглянуто актуальність і необхідність застосування систем, що дозволяють утилізувати тепло пароповітряних сумішей як енергетичних відходів. Розглянуто різні варіанти утилізації на прикладі газових котлів, як джерела великої кількості енергетичних відходів у вигляді димових газів, виділені їх недоліки. Для більш глибокої утилізації тепла пароповітряних сумішей запропоновано можливість застосування теплового насоса, а також удосконалення системи автоматичного керування процесом утилізації тепла димових газів з тепловим насосом у складі, для подальшого підвищення енергетичної ефективності. Представлена параметризована схема технологічного процесу утилізації тепла димових газів. Наведені результати експериментів, по дослідженню процесу утилізації в автоматичному режимі на фізичній моделі, розробленій авторами. Проведено аналіз результатів. Виконана структурна ідентифікація процесу утилізації тепла димових газів як об’єкту керування, виділені основні канали керування, перехресні зв’язки між ними, та найбільш впливові збурення. Складено параметричну схему процесу як об’єкту керування. Проведено параметричну ідентифікацію основних каналів керування, перехресних зв’язків та контрольованих збурень в ході якої отримані математичні моделі основних каналів перетворення координатних дій.
APA, Harvard, Vancouver, ISO, and other styles
15

Сарачева, Диана Азатовна, Роза Ильгизовна Вахитова, and Камил Рахматуллович Уразаков. "ЗАВИСИМОСТЬ ТЕПЛОВОГО СОСТОЯНИЯ ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА ОТ ЧАСТОТЫ ВРАЩЕНИЯ ДВИГАТЕЛЯ." Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330, no. 12 (December 16, 2019): 103–10. http://dx.doi.org/10.18799/24131830/2019/12/2406.

Full text
Abstract:
Актуальность. На нефтедобывающих промыслах РФ в настоящий момент нашли применение станции управления установок электроцентробежных насосов, которые имеют возможность изменения частоты вращения двигателя. Такие станции управления могут применяться при увеличении или снижении частоты вращения установки для оптимизации работы системы «установка электроцентробежного насоса – пласт». Учет теплового состояния установки электроцентробежного насоса имеет значение для оптимизации его эксплуатации. Применение асинхронных электродвигателей, позволяющих регулировать без перегревания погружной части частоту вращения привода, улучшает эксплуатационные показатели погружных установок. На сегодняшний день отсутствуют всесторонние теоретические исследования по применению станции управления с регулируемой частотой вращения двигателя. Цель: исследование теплового режима погружной установки в зависимости от содержания скопившегося на приеме центробежного насоса газа. Объект: установки электроцентробежных погружных насосов (а именно, их тепловой режим). Результаты. Проведены исследования экспериментальных результатов эксплуатации установки электроцентробежного насоса типа ОДИ RА7-110-1500 с газосепаратором на частотах более 50 Гц. Такие промысловые исследования проводились для оценки добывающих способностей скважины. Эксперименты проводились на частотах 50, 52, 55 Гц с учетом содержания скопившегося газа в пластовой нефти на приеме центробежного насоса и его температуры. Анализ результатов проведенных экспериментов показал, что напор центробежной установки не зависит от имеющегося газосепаратора. Исследование температурного режима погружной установки проводилось с учетом содержания воды в добываемой нефти, максимального термодинамического равновесного давления пластовой жидкости, характеризующегося процессом выделения газа из нефти, содержания в нефтяном газе азота и метана и давления на входном модуле насоса. Установлено аналитическими расчетами, что к повышению температурного режима погружной установки ведет большое содержание свободного газа в межтрубном пространстве нефтяной скважины.
APA, Harvard, Vancouver, ISO, and other styles
16

Дибиров, Магомед Гаджимагомедович, Наида Абдуллаевна Амадзиева, and Маржанат Магомедовна Дибирова. "МЕТОДИЧЕСКИЕ ОСНОВЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ СОЛНЕЧНЫХ ТЕПЛОВЫХ УСТАНОВОК." Региональные проблемы преобразования экономики, no. 6 (September 3, 2018): 12. http://dx.doi.org/10.26726/1812-7096-2018-6-12-19.

Full text
Abstract:
Целью данной работы является разработка основ методики оценки эффективности солнечной тепловой установки. Методология проведения работы. Исследование основывается на общенаучной методологии, которая предусматривает применение системного подхода к решению рассматриваемой проблемы. Результаты. В статье представлена методика оценки эффективности солнечных тепловых установок, которые используются для отопления и горячего водоснабжения жилищно-коммунальных, сельскохозяйственных и промышленных зданий и сооружений, расположенных в благоприятных климатических условиях. Наиболее благоприятными для использования солнечной энергии регионами России является Северо-Кавказский федеральный округ. Годовое поступление солнечной энергии на горизонтальную поверхность в этих регионах колеблется от 1280 до 1870 кВт*ч на 1 кв. м в год, а продолжительность солнечного излучения составляет от 2000 до 3000 часов в год. Выполнен расчет эффективности солнечной установки для горячего водоснабжения и частичного отопления жилого дома, в которых использованы разработанные нами солнечные коллекторы. Благодаря широкому использованию полимерных материалов при изготовлении коллекторов и простой технологии изготовления, их стоимость не превышает 5000 руб./кв. м). Капитальные затраты на солнечные установки не превышают 9000 рублей на 1 кв. м, включая стоимость тепловых аккумуляторов, вспомогательного оборудования, монтажных и пуско-наладочных работ. Ежегодные эксплуатационные затраты практически отсутствуют. Поэтому срок окупаемости таких установок не превышает 3 года, а коэффициент замещения – не менее 40 %. Солнечные тепловые установки являются конкурентоспособными и могут обеспечить положительные экономические, социальные и экологические эффекты. Область применения. Проектирование и создание солнечных энергетических установок, комбинированных систем с солнечными тепловыми коллекторами, тепловыми насосами, тепловыми аккумуляторами, простых водонагревательных установок, предназначенных для горячего водоснабжения отопления жилых домов или других потребителей тепловой низкопотенциальной энергии. Развитие этих технологий необходимо для постепенного перехода к домам с полным теплообеспечением за счет возобновляемой солнечной энергии. Выводы. Расчеты экономической эффективности и результаты испытаний солнечных установок в Дагестане определили их высокую энергетическую и экономическую эффективность.
APA, Harvard, Vancouver, ISO, and other styles
17

Гордин, С. А., И. В. Зайченко, К. Д. Хряпенко, and В. В. Бажеряну. "Adaptive control systems for marine thermal installations." MORSKIE INTELLEKTUAL`NYE TEHNOLOGII)</msg>, no. 4(54) (December 2, 2021): 201–5. http://dx.doi.org/10.37220/mit.2021.54.4.052.

Full text
Abstract:
В статье рассмотрен вопрос повышения точности и качества управления приводом сетевых насосов в составе судовых тепловых установок в системе отопления судна путем применения адаптивной системы автоматического управления. При использовании классических систем управления на основе ПИД-регуляторов для управления мощностью электродвигателя по критерию обеспечения заданного давления в системе теплоснабжения в условиях резкопеременных тепловых нагрузок могут возникать ситуации разрегулирования системы вследствии возникновения дополнительного давления в тепловой установке при термическом расширении теплоносителя. Для обеспечения надежности и безаварийности работы судовых тепловых установок при резкоперменных нагрузках авторами рассматривается возможность использования для управления мощностью электропривода адаптивной системы управления. В статье рассмотрена схема управления с адаптацией коэффициентов ПИД-регулятора на базе нейронной сети (нейросетевой оптимизатор). Нейросетевой оптимизатор был применен как надстройка над ПИД-регулятором в схеме управления мощностью сетевого насоса в составе судовой тепловой установки. Рассмотрены зависимости характеристик систем управления от структуры и параметров модифицированных критериев точности и качества управления. Адаптация параметров регулирования позволяет обеспечить достижение желаемых параметров с меньшими затратами мощности при сохранении уровня надежности и исключить разрегулирование системы управления при резкопеременных тепловых нагрузках. The article discusses the issue of improving the accuracy and quality of control of the drive of network pumps as part of ship thermal installations in the ship's heating system by using an adaptive automatic control system. When using classical control systems based on PID regulators to control the power of the electric motor according to the criterion of providing a given pressure in the heat supply system under conditions of sharply varying thermal loads, situations of system maladjustment may occur due to the appearance of additional pressure in the thermal installation during thermal expansion of the coolant. To ensure the reliability and trouble-free operation of ship thermal installations under abruptly variable loads, the authors consider the possibility of using an adaptive control system to control the power of an electric drive. The article describes a control scheme with adaptation of the PID controller coefficients based on a neural network (neural network optimizer). The neural network optimizer was used as a superstructure over the PID controller in the power control circuit of a network pump as part of a ship's thermal installation. The dependences of the characteristics of control systems on the structure and parameters of the modified criteria for the accuracy and quality of control are considered. Adaptation of control parameters allows achieving the desired parameters with lower power consumption while maintaining the level of reliability and eliminating deregulation of the control system at abruptly varying thermal loads.
APA, Harvard, Vancouver, ISO, and other styles
18

А. В. Коломийцева. "ИСПОЛЬЗОВАНИЕ ВЕЩЕСТВ С ФАЗОВЫМ ПЕРЕХОДОМ ДЛЯ АККУМУЛИРОВАНИЯ ТЕПЛОВОЙ ЭНЕРГИИ." Bulletin of Toraighyrov University. Energetics series, no. 1.2022 (March 18, 2022): 111–20. http://dx.doi.org/10.48081/pkdr3218.

Full text
Abstract:
Аккумулирование тепловой энергии - это технология, позволяющая накапливать тепловую энергию путем нагревания или охлаждения носителя, для того, чтобы накопленную энергию можно было использовать позднее для обогрева и охлаждения различных объектов. Эффективным методом хранения тепловой энергии является использование материалов с фазовым переходом. Вещества с фазовым переходом являются изотермическими по своей природе и, таким образом, обеспечивают накопление энергии более высокой плотности, и обладают способностью работать в различных температурных диапазонах. Аккумулирование тепловой энергии с использованием материалов с фазовым переходом широко используется в системах, работающих с солнечными коллекторами, фотогальваническими панелями, тепловыми насосами, системами кондиционирования, системами рекуперации тепла. В данной статье описаны теоретические преимущества процесса использования аккумуляторов тепловой энергии. Рассмотрены вещества с фазовым переходом, которые являются основным компонентом системы, позволяющим эффективно использовать энергетические ресурсы. В статье содержится информация о основных типах веществ с фазовым переходом, их преимуществах и недостатках, а также сферах применения. Кроме того, в статье проводится сравнительный анализ веществ на основе их теплофизических характеристик. Также, приведены основные характеристики, которые необходимо учитывать при выборе вещества для создания теплового аккумулятора.
APA, Harvard, Vancouver, ISO, and other styles
19

Григоровський, П. Є., В. Ю. Луценко, О. В. Бондарчук, Л. Г. Соболевська, М. В. Волчков, А. О. Вольтерс, and М. І. Самойленко. "СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ТЕРМОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ МЕТОДАМИ АЛЬТЕРНАТИВНОЙ ЭНЕРГЕТИКИ." Building production 1, no. 67 (October 30, 2020): 56. http://dx.doi.org/10.36750/2524-2555.67.56-60.

Full text
Abstract:
Развитие альтернативной энергетики и применения ее достижений при проек!тировании и внедрении в составе гражданских объектов на этапе их строительства и эксплуа!тации требует комплексного подхода к определению характеристик качества преобразовате!лей одного вида энергии в другой. В настоящее время активно развивается направление, связан!ное использованием элементов Пельтье в составе тепловых насосов, входящих в системукондиционирования зданий. Высокой эффективностью отличается термоэлектрический обог!рев помещений, поскольку кроме выделения джоулева тепла имеет место дополнительное выде!ление теплоты Пельтье. Одно из перспективных направлений этой отрасли связано с примене!нием термоэлектрических устройств, самыми известными из которых являются термоэлек!трогенераторы и холодильные элементы Пельтье. Получение новых термоэлектрическихматериалов и совершенствование технологий обеспечили повышение эффективности термо!электрического преобразования энергии, что сделало оправданным их применение при строи!тельстве и эксплуатации зданий и сооружений на протяжении их жизненного цикла. Для повы!шения эффективности термоэлектрических преобразователей предложен новый способ иэкспериментальная установка определения комплекса характеристик термоэлектрическихмодулей с использованием тестовой действия, которое формируется с использованием тепло!ты Пельтье. Значение сопротивления модуля, термоэлектрической добротности и постоя!нной времени определяется в ходе анализа переходного процесса, который возникает в резуль!тате периодического изменения полярности пропускаемых через модуль импульсов тока.Разработанный алгоритм обеспечивает уменьшение результирующей погрешности за счетуменьшения влияния на результаты измерения тепла Джоуля и усреднения результатов.И
APA, Harvard, Vancouver, ISO, and other styles
20

Алексеев, Геннадий Валентинович, Ольга Алексеевна Егорова, Анна Геннадьевна Леу, and Иван Петрович Юхник. "МОДЕЛИРОВАНИЕ ТЕМПЕРАТУРНОГО ПОЛЯ НАСЫПИ КРАХМАЛ- ИЛИ ПЕКТИНСОДЕРЖАЩЕГО СЫРЬЯ ПРИ ВНУТРЕННЕМ САМОСОГРЕВАНИИ." KSTU News, no. 59 (January 11, 2020): 111–18. http://dx.doi.org/10.46845/1997-3071-2020-59-111-118.

Full text
Abstract:
Настоящая статья посвящена изучению распределения температур по объему насыпи пищевого, крахмал- или пектинсодержащего сырья при его хранении в специализированных силосах. Объектом исследований явились краевые условия для хранения сырья в среде, максимально соответствующей реальным условиям при активном вентилировании. Несмотря на важность решения вопросов, связанных с прогнозированием формирования тепло-влажностных полей при хранении изучаемых насыпей и зависящих от них изменений технологических свойств сы-рья, в настоящее время имеющихся математических описаний этих сопряженных явлений недостаточно. Это объясняется сложностью и малоизученностью процессов хранения пищевых насыпей как на микро-, так и на макроуровне. Такие массы представляют собой систему с распределенными параметрами. Существенной особенностью, значительно влияющей на изучаемые распределения температур, является возможность возникновения в пищевых насыпях такого рода новых внутренних источников теплоты и влаги. Образование подобных источников обусловлено в некоторых случаях эффектом «самосогревания», появляющимся благодаря происходящим в насыпи биологическим процессам типа «дыхания» отдельных ее элементов, как, например, внутри хранящейся зерновой массы. В связи с этим возможность прогнозирования полей тепло- и влагосодержания зависит, с одной стороны, от полноты необходимой информации о влажности и температуре компонентов массы в исходный момент, с другой – от надежности математической модели, способной на основе этой информации, используемой для задания краевых условий и теплофизических констант, описать реальные процессы теплопереноса в насыпи. Актуальность статьи состоит в том, что анализ характера особенностей тепломассобмена в дискретной насыпи пищевого продукта может быть осуществлен только на основании сформированных аналитических моделей.
APA, Harvard, Vancouver, ISO, and other styles
21

Smirnov, H. F., A. V. Zykov, and D. N. Reznichenko. "ПРОБЛЕМА ВЫБОРА ЛУЧШЕГО ТЕХНИЧЕСКОГО РЕШЕНИЯ ДЛЯ ОБЕСПЕЧЕНИЯ ВАКУУМ-ВЫПАРНОЙ УСТАНОВКИ ПОДВОДОМ ТЕПЛА." Industrial Heat Engineering 38, no. 5 (September 20, 2016): 32–38. http://dx.doi.org/10.31472/ihe.5.2016.04.

Full text
Abstract:
Целью исследований являлась разработка методики определения показателей энергоэффективности различных схем энергообеспечения ВВУ. В результате проведено сравнение одноступенчатой ВВУ и ВВУ с тепловым насосом. Для ВВУ с тепловым насосом определены режимные параметры обеспечивающие минимум выбранного критерия.
APA, Harvard, Vancouver, ISO, and other styles
22

Alekseev, Alexey Andreevich, and Alexander Vitalievich Knyuk. "К ВОПРОСУ УПРАВЛЕНИЯ ГИДРАВЛИЧЕСКИМИ РЕЖИМАМИ ТЕПЛОВОЙ СЕТИ." International Journal of Advanced Studies 9, no. 3 (October 26, 2019): 57. http://dx.doi.org/10.12731/2227-930x-2019-3-57-63.

Full text
Abstract:
Используется программа математического моделирования Computational fluid dynamics. Исследования позволяют учесть все факторы, влияющие на изменение гидростатического давления, изучить процесс взаимодействия циркуляционного насоса, подпиточного узла и работы турбины на потребителе.
APA, Harvard, Vancouver, ISO, and other styles
23

Дем'яненко, Ю. І., and Т. В. Дуднік. "Сезонні акумулятори тепла в схемах теплопостачання приватних житлових будинків." Refrigeration Engineering and Technology 57, no. 2 (June 30, 2021): 81–88. http://dx.doi.org/10.15673/ret.v57i2.2026.

Full text
Abstract:
Стаття присвячена вибору сезонного акумулятора тепла (САТ) для первинного контуру теплового насосу в системі опалення та гарячого водопостачання приватного житлового будинку. В Україні в індивідуальному житловому будівництві впровадження найсучасніших ефективних систем акумуляції енергії стримується значною вартістю обладнання та відсутністю державної підтримки. Проте неухильне зростання тарифів на енергоносії спонукає домогосподарів до пошуку прийнятних варіантів САТ серед того, що пропонується споживачеві на вітчизняному ринку технологій та обладнання відновлюваної енергетики. Перехід на відновлювані джерела енергії (ВДЕ) супроводжує додаткове енергетичне завдання – узгодження нестабільних ВДЕ з навантаженням, яке також змінюється і впродовж доби, і впродовж року. Це особливо притаманне краї­нам, що потребують опалення в холодну пору року. Потужність, що генерується більшістю ВДЕ, істотно залежить від мінливих природних явищ. В статті запропонована німецька технологія крижаного теплоакумулятора – Wärmepumpe Eisspeicher-System. Вона розроблена спеціалістами фірми Viessmann як реакція на заборону німецьким природоохоронним відомством ґрунтових теплових насосів – як колекторних, так і з ґрунтовими зондами. В умовах густонаселеної Німеччини і високої вартості землі, відчуження значних її площ для улаштування первинних контурів ТН є неприйнятним – земля виводиться з сільськогосподарського обігу – і суперечить державним інтересам. Тому використання крижаних акумуляторів як первинних контурів ТН знімає проблему як прямої, так і опосередкованої екологічної шкоди. Наведені в статті розрахунки теплового балансу первинного контуру теплового насосу Eisspeicher-System для найхолоднішого місяця опалювального періоду підтверджують можливість функціонування системи опалення та ГВП у моновалентному режимі
APA, Harvard, Vancouver, ISO, and other styles
24

Вахитова, Роза Ильгизовна, Камил Рахматуллович Уразаков, and Елена Борисовна Думлер. "ТЕПЛООБМЕННОЕ УСТРОЙСТВО ДЛЯ ПОГРУЖНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ УСТАНОВОК ЭЛЕКТРОЦЕНТРОБЕЖНЫХ НАСОСОВ." Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 332, no. 4 (April 20, 2021): 17–23. http://dx.doi.org/10.18799/24131830/2021/4/3144.

Full text
Abstract:
Актуальность разработки технического устройства обусловлена необходимостью решения задач, связанных с охлаждением высокооборотных вентильных и асинхронных погружных двигателей, в том числе при выводе добывающих скважин на рабочий режим. Особенно актуальна разработка эффективных систем охлаждения таких двигателей при использовании высокооборотных двигателей в малодебитных скважинах, поскольку мощность источников теплоты резко увеличивается по квадратичному закону в зависимости от числа оборотов. Основная цель: разработать конструкцию теплообменного устройства, позволяющего интенсифицировать теплообменные процессы в погружном электродвигателе для увеличения его межремонтного периода работы. Объектом исследования является модуль-теплообменник, применяемый в серийно выпускаемых электропогружных центробежных насосных установках с асинхронными погружными маслозаполненными двигателями и в высокоборотных погружных установках с вентильными электродвигателями. Модуль-теплообменник предназначен для снижения тепловой напряженности, повышения его эффективности при работе в условиях воздействия высоких температур. Методы. Для решения поставленной задачи был использован метод проектных исследований путем модернизации существующей конструкции модуля-теплообменника с низкой эффективностью теплообмена между пластовой жидкостью и нагретым маслом в электродвигателе с небольшими перепадами температур между ними. Результаты. Предложена усовершенствованная конструкция модуля-теплообменника, которая в условиях малых внутренних габаритов скважины и относительно невысоких температурных градиентов между нагретым маслом погружного электродвигателя и омывающей его пластовой жидкостью позволяет обеспечить максимальную степень интенсификации теплообменных процессов. Для эффективного охлаждения маслосистемы электродвигателя предложено использовать двухконтурную систему охлаждения. Для увеличения общей площади поверхности активного теплообмена выполнено оребрение внутреннего канала сквозного протока пластовой жидкости. Для обеспечения активной циркуляции нагретого масла предложено на поверхности внутренних стенок маслоканалов установить элементы закрутки потока, позволяющие выровнять температурные показатели пластовой жидкости и масла.
APA, Harvard, Vancouver, ISO, and other styles
25

Локтев, Александр Васильеви, and Дмитрий Николаевич Варсеев. "ПРИМЕНЕНИЕ ТЕПЛОВЫХ НАСОСОВ В СУДОВЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВКАХ." Транспортные системы, no. 2 (2018): 63–67. http://dx.doi.org/10.46960/62045_2018_2_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Basok, B., T. Belyaeva, I. Bozhko, A. Lunina, and M. Khybyna. "ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА ГРУНТОВОГО МАССИВА ПРИ ИЗВЛЕЧЕНИИ ТЕПЛОТЫ ГРУНТА ГОРИЗОНТАЛЬНЫМ ТЕПЛООБМЕННИКОМ." Industrial Heat Engineering 37, no. 4 (November 16, 2017): 61–70. http://dx.doi.org/10.31472/ihe.4.2015.07.

Full text
Abstract:
Представлены экспериментальные данные по температурному режиму грунтового массива в период извлечения естественной теплоты грунта (отопительный сезон) горизонтальным теплообменником для теплового насоса и в период его природного восстановления (летний период) в зависимости от суточных и сезонных колебаний температуры воздуха за период 5 лет.
APA, Harvard, Vancouver, ISO, and other styles
27

Лю, Ян, Сергій В. Сабадаш, and Женхуа Дуан. "ВПЛИВ ТЕМПЕРАТУРИ ТЕПЛОВОГО НАСОСУ НА ФІЗИЧНІ ВЛАСТИВОСТІ, БІОАКТИВНІ СПОЛУКИ І АНТИОКСИДАНТНУ ЗДАТНІСТЬ БУРЯКІВ." Journal of Chemistry and Technologies 29, no. 4 (January 21, 2022): 589–98. http://dx.doi.org/10.15421/jchemtech.v29i4.240470.

Full text
Abstract:
Буряк – широко споживаний овоч у світі. Однак він легко зневоднюється і швидко псується, що призводить до великих втрат та фінансових витрат. Сушіння тепловим насосом є ефективним і недорогим методом, що широко використовується при переробці чутливих до температури овочів та фруктів для виробництва нових продуктів та продовження терміну придатності продуктів харчування. Метою даного дослідження було вивчення впливу температури сушіння тепловим насосом у діапазоні від 45 до 65°C на фізичні властивості, біологічно активні сполуки та антиоксидантну здатність сушених буряків. Результати показали, що підвищення температури сушіння тепловим насосом з 45 до 65°C може значно скоротити час сушіння та коефіцієнт регідратації висушеного буряка (p < 0,05). Буряк, висушений при 50°C, показав найменшу загальну різницю в кольорі (∆E) порівняно з ліофілізованим буряком, і не було значного впливу на ∆E буряків, висушених при різних температурах сушіння (p > 0,05). Вміст біоактивних сполук у висушеному буряку, у тому числі бетаціаніну, бетаксантину, аскорбінової кислоти, суми фенолів та суми флавоноїдів, збільшувалося з підвищенням температури сушіння від 45 до 65°С і досягало найбільших значень при 65°С. Крім того, здатність висушеного буряка поглинати радикали 2,2'-азино-біс-(3-етилбензтіазолін-6-сульфонової кислоти) (ABTS) та антиоксидантна здатність відновлення заліза (FRAP) мали ті ж тенденції залежно від температури сушіння, що значно збільшується з температурою сушіння і обидва досягають максимальних значень при 65°С. Однак здатність 2,2-дифеніл-1-пікрилгідразил (DPPH) поглинати радикали значно знижувалася з підвищенням температури сушіння (p < 0,05). Що стосується біологічно активних сполук та антиоксидантної здатності сушених буряків, то вважається, що 65°С є оптимальною температурою для сушіння буряків тепловим насосом.
APA, Harvard, Vancouver, ISO, and other styles
28

Goshovskyi, S., and O. Zurian. "ОДНОКОНТУРНЫЕ И ДВУХКОНТУРНЫЕ ТЕПЛОНАСОСНЫЕ СИСТЕМЫ. ВЗАИМОСВЯЗЬ ФИЗИЧЕСКИХ ПРОЦЕССОВ И ЭФФЕКТИВНОСТИ." Vidnovluvana energetika, no. 1(56) (August 9, 2019): 83–95. http://dx.doi.org/10.36296/1819-8058.2019.1(56).83-95.

Full text
Abstract:
Приведен теоретический анализ особенностей использования и технологий построения теплонасосных систем в одно-контурном и двухконтурном исполнении. Выполнен анализ основных недостатков одноконтурных теплонасосных систем. Аналитически обосновано, что процесс теплообмена происходит при переменных температурах со стороны источника и приемника теплоты, что ведет к дополнительным потерям в испарителе и конденсаторе и, соответственно, к снижению коэффициента трансформации теплонасосной системы. Экспериментально установлено, что уменьшение коэффициента трансформации происходит не прямо пропорционально увеличению температуры подающего теплоносителя, а имеет некоторое ускорение, обусловленное повышением тепловых потерь в системе, связанных с увеличением давления и температуры. Представлен действующий макет разработанной и сконструированной в УкрГГРИ двухконтурной экспериментальной теплонасосной установки. Описана методика проведения исследований. Приведены характеристики измерительного оборудования, установленного на макете экспериментальной установки и программного обеспечения, которое использовалось для архивирования и визуализации данных, полученных в процессе проведения исследований. Изложены результаты научной работы, полученные в ходе теоретических расчетов и экспериментальных исследований эффективности теплонасосных систем, в зависимости от одноконтурного или двухконтурного исполнения. Даются зависимости коэффициента трансформации теплового насоса от количества контуров. Обоснованы зависимости эффективности теплонасосной системы от параметров первичного источника низкопотенциального тепла и конструктивных особенностей системы теплоснабжения. Сделан вывод, что двухконтурная система с последовательно соединенными контурами работает эффективнее, чем одноконтурная. Библ. 38, табл.1, рис. 6.
APA, Harvard, Vancouver, ISO, and other styles
29

Горін, В. В., В. В. Середа, and П. О. Барабаш. "Метод розрахунку теплообміну під час конденсації холодоагентів у середині горизонтальних труб у разі стратифікованого режиму течії фаз." Refrigeration Engineering and Technology 55, no. 1 (February 10, 2019): 47–53. http://dx.doi.org/10.15673/ret.v55i1.1353.

Full text
Abstract:
У сучасних конденсаторах систем кондиціонування повітря, теплових насосів, випарниках систем опріснювання морської води і нагрівачах електростанцій процес конденсації пари здійснюється переважно у середині горизонтальних труб і каналів. Процеси теплообміну, що відбуваються у теплообмінниках цього типу, мають суттєвий вплив на загальну енергоефективність таких систем. У даній роботі представлено експериментальні дослідження теплообміну у разі конденсації холодоагентів R22, R406A, R407C у гладкій горизонтальній трубі з внутрішнім діаметром d = 17 мм за наступними режимними параметрами:температура насичення 35 - 40ºC, масова швидкість 10 - 100 кг/кв.м/c, масовий паровміст 0,1 - 0,8, питомий тепловий потік 5 ‑ 50 кВт/кв.м, різниця між температурою конденсації та температурою стінки труби 4 - 14 К. Вимірювання локальних за перерізом труби теплових потоків і коефіцієнтів тепловіддачі проводились за методом «товстої стінки» під час різних режимів конденсації. За результатами досліджень установлено, що у верхній частині труби з підвищенням теплового потоку зростає товщина плівки конденсату, що призводить до зменшення тепловіддачі. У нижній частині труби збільшення теплового потоку підвищує тепловіддачу, що характерно для турбулентної течії рідини в трубі. Отримані результати роботи дозволили покращити метод розрахунку теплообміну у разі конденсації пари, яка ураховує вплив течії конденсату у нижній частині труби на теплообмін. Цей метод із достатньою точністю (похибка ±30%) узагальнює експериментальні дані під час конденсації пари холодоагентів R22, R134a, R123, R125, R32, R410a за умови стратифікованого потоку. Використання цього методу у разі проектування теплообмінних апаратів, які використовують такі типи речовин, підвищить ефективність енергетичних систем.
APA, Harvard, Vancouver, ISO, and other styles
30

Дорошенко, О. В., В. Ф. Халак, and Ю. І. Дем'яненко. "Оптимізація й прогнозування ефективності рідинних сонячних колекторів у складі систем гарячого водопостачання." Refrigeration Engineering and Technology 56, no. 1-2 (July 4, 2020): 37–43. http://dx.doi.org/10.15673/ret.v56i1-2.1827.

Full text
Abstract:
В останні роки сонячні системи гарячого водопостачання викликають усе більший практичний інтерес. Їхнє використання дозволяє знизити пікові навантаження в традиційних системах гарячого водопостачання, альтернативно – замінити останні, забезпечуючи зниження шкідливих викидів у навколишнє середовище. Основним елементом такої системи є рідинний сонячний колектор. На ринку представлений великий вибір сонячних колекторів, проте висока вартість таких систем є одним із факторів, що стримує їх повсякденне використання. Використання полімерних матеріалів у конструкції сонячних колекторів (абсорбера й прозорого покриття) дозволяє суттєво знизити їхню вартість і вагу. Розрахункову ефективність сонячних колекторів досліджують при сонячному випромінюванні вище 800 Вт/м2, але реальні умови його експлуатації скоріш за все будуть нижче номінальних. Для кращого розуміння поведінки плоского полімерного сонячного колектору в реальному середовищі, та виборі його оптимальних геометричних і режимних параметрів, авторами було проведено порівняльне експериментальне дослідження двох таких колекторів, проте з різною величиною повітряного зазору (10 і 25 мм) між теплоприймачем і прозорим покриттям. Як результат, було визначено: коефіцієнт корисної дії, оптичну ефективність, та сумарний коефіцієнт теплових втрат. Був виконаний також аналіз розподілу температур у баку-теплоакумуляторі у верхній і нижній його частинах. За результатами експерименту було відзначено відсутність суттєвої різниці в ефективності сонячних колекторів при зменшенні повітряного зазору з 25 мм до 10 мм в однакових польових умовах. Розрахунок ефективності сонячної системи гарячого водопостачання проводився з урахуванням витраченої енергії на роботу насоса. На основі даних по будівельній кліматології для м. Одеса щодо величини сонячної радіації, авторами була визначена денна та річна теплова потужність сонячної системи гарячого водопостачання
APA, Harvard, Vancouver, ISO, and other styles
31

Амадзиева, Наида Абдуллаевна. "ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ИСПОЛЬЗОВАНИЯ СИСТЕМ ЭНЕРГОСНАБЖЕНИЯ НА БАЗЕ ВИЭ." Региональные проблемы преобразования экономики, no. 9 (December 30, 2020): 7. http://dx.doi.org/10.26726/1812-7096-2020-9-7-13.

Full text
Abstract:
Цель работы. В статье предложен методологический подход при выполнении оценки технико-экономической эффективности использования систем энергоснабжения на базе ВИЭ. Приведены результаты численных исследований целесообразности одного из видов альтернативного энергоснабжения потребителя на территории Республики Дагестан. Метод или методология проведения работы. Аналитический способ исследования и расчетно-теоретический метод. Результаты. Выявлены основные преимущества использования солнечной инсоляции в Республике Дагестан, а также недостатки. Как известно, использование солнечной энергии является экологичным, простым в использовании, экономически выгодным и незаменимым для обеспечения электроэнергетикой труднодоступных участков в горной местности. Получены результаты анализа климатических (радиационных и температурных) условий районов Дагестана с точки зрения экономической целесообразности применения солнечных тепловых установок. Область применения результатов. Результаты проведенного исследования могут быть использованы при дальнейших разработках солнечных установок с тепловыми насосами, которые позволят решить социально-экономические, энергетические и экологические проблемы сельских районов Республики Дагестан. Выводы. Технико-экономические расчеты показывают, что энергетическая и экономическая эффективность солнечных установок, используемых для отопления домов, значительно выше в горных районах Дагестана, чем в низменности. Солнечные тепловые установки, используемые в целях теплоснабжения жилых домов в Дагестане, имеют сроки окупаемости от 3,5–4,5 года в зависимости от стоимости традиционного топлива и климатической зоны.
APA, Harvard, Vancouver, ISO, and other styles
32

Sokol, G., L. Nakashidze, and S. Kirichenko. "СИСТЕМЫ ЭНЕРГООБЕСПЕЧЕНИЯ С АЛЬТЕРНАТИВНЫМИ ИСТОЧНИКАМИ ЭНЕРГИИ: БЕЗОПАСНОСТЬ ФУНКЦИОНИРОВАНИЯ АКУСТИЧЕСКИХ ИСТОЧНИКОВ." Vidnovluvana energetika, no. 3(58) (September 25, 2019): 14–20. http://dx.doi.org/10.36296/1819-8058.2019.3(58).14-20.

Full text
Abstract:
Одним из последствий позитивного процесса науки и техники являются сопутствующие явления, в том числе и негативные. При разработке установок, преобразующих энергию альтернативных источников, еще на этапе проектирования необходимо предусматривать снижение уровней интенсивности шумов. Эти мероприятия необходимы для обеспечения защиты окружающей среды от шумового загрязнения. Для разработки мероприятий, направленных на снижение звукового давления (УЗД) в шумах до уровня, предусмотренного нормативными документами [1], необходимо провести анализ шумов от оборудования, которое обеспечивает преобразование энергии альтернативных источников. Для безопасного функционирования таких установок необходимо: – определиться с источниками акустического излучения; – разработать теоретические основы процесса генерирования шума; – осуществить разработку расчетных моделей характеристик акустических полей. В таком ракурсе, не вызывает сомнений актуальность проблемы снижения шумов от конструктивных элементов систем энергообеспечения, в которых преобразуется энергия солнечного излучения, энергия ветрового потенциала, тепло окружающей среды и т.п. При этом необходимо исключить вредное влияние шумов на людей на прилегающих территориях и в жилых постройках, а также живых обитателей природы. Результатом проведенных исследований является формирование мероприятий по снижению уровня шумов инфразвукового диапазона. При проектировании инновационных систем энергообеспечения необходимо использовать компоненты, определяющие не только уровень шума, но и КПД используемых агрегатов. Так, например, для тепловых насосов выгодно использовать малошумные элементы, размещать компрессор снаружи здания или размещать его в звуконепроницаемую камеру. Размещение ВЭУ на удаленном расстоянии от жилой застройки. Непрерывный шум тепловых насосов можно снижать применением ротационного компрессора вместо поршневого, отказом от применения клапанов, как в некоторых ротационных компрессорах. Поршневые компрессоры следует хорошо балансировать для снижения вибраций и монтировать на виброгасящем основании. Выбор хладагента может влиять на уровень шума - предпочтителен более плотный пар, но если с ним связано повышение давления, то может быть и обратный эффект. В ветроагрегатах предлагается снижение скорости ротора в ночное время. Предложена методика, которая позволяет эффективно провести расчет УЗД первых инфразвуковых гармоник (2,4 Гц; 4,8 Гц; 9,16 Гц; 18, 32 Гц) и определить их характеристики направленности. Библ. 13, рис. 1.
APA, Harvard, Vancouver, ISO, and other styles
33

Чалаев, Джамалутдин, Наталья Дабижа, and Наталья Малащук. "ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ТЕПЛОПЕРЕДАЧИ В РЕКУПЕРАТОРЕ КОНВЕКТИВНОЙ СУШИЛКИ." SWorldJournal, no. 08-01 (May 31, 2018): 42–49. http://dx.doi.org/10.30888/2663-5712.2021-08-01-058.

Full text
Abstract:
Розглядається питання підвищення енергетичної ефективності конденсаційних теплових насосів, які використовуються в конвективних сушильних установках із замкнутою циркуляцією сушильного агента. У цих установках волога з обсягу сушильної камери виводиться в
APA, Harvard, Vancouver, ISO, and other styles
34

Чалаев, Джамалутдин, Наталья Дабижа, and Наталья Малащук. "ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ТЕПЛОПЕРЕДАЧИ В РЕКУПЕРАТОРЕ КОНВЕКТИВНОЙ СУШИЛКИ." SWorldJournal, no. 08-01 (May 31, 2018): 42–49. http://dx.doi.org/10.30888/2410-6615.2020-08-01-058.

Full text
Abstract:
Розглядається питання підвищення енергетичної ефективності конденсаційних теплових насосів, які використовуються в конвективних сушильних установках із замкнутою циркуляцією сушильного агента. У цих установках волога з обсягу сушильної камери виводиться в
APA, Harvard, Vancouver, ISO, and other styles
35

Cуджювене, Раймондa, Дaлиa Паришаускене, and Индре Суджюте. "СРАВНЕНИЕ НИЗКОПОДВИЖНЫХ ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ И ДИФФУЗОРОВ ДЛЯ ОБЕСПЕЧЕНИЯ ПОДХОДЯЩИХ МИКРОКЛИМАТИЧЕСКИХ УСЛОВИЙ В ОФИСНЫХ ПОМЕЩЕНИЯХ: ФИЗИЧЕСКИЕ РАСЧЕТЫ." SWorldJournal, no. 08-02 (May 31, 2018): 16–26. http://dx.doi.org/10.30888/2663-5712.2021-08-02-006.

Full text
Abstract:
В этом веке все технологии стремительно развиваются. В настоящее время здания отапливаются с помощью систем централизованного теплоснабжения, электрических или тепловых насосов. Вместо систем естественной вентиляции здания обычно оборудуют системами механ
APA, Harvard, Vancouver, ISO, and other styles
36

Cуджювене, Раймондa, Дaлиa Паришаускене, and Индре Суджюте. "СРАВНЕНИЕ НИЗКОПОДВИЖНЫХ ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ И ДИФФУЗОРОВ ДЛЯ ОБЕСПЕЧЕНИЯ ПОДХОДЯЩИХ МИКРОКЛИМАТИЧЕСКИХ УСЛОВИЙ В ОФИСНЫХ ПОМЕЩЕНИЯХ: ФИЗИЧЕСКИЕ РАСЧЕТЫ." SWorldJournal, no. 08-02 (May 31, 2018): 16–26. http://dx.doi.org/10.30888/2410-6615.2020-08-02-006.

Full text
Abstract:
В этом веке все технологии стремительно развиваются. В настоящее время здания отапливаются с помощью систем централизованного теплоснабжения, электрических или тепловых насосов. Вместо систем естественной вентиляции здания обычно оборудуют системами механ
APA, Harvard, Vancouver, ISO, and other styles
37

Morozov, Yu, D. Chalaev, V. Olijnichenko, and V. Velychko. "ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ДОБОВОГО АКУМУЛЮВАННЯ ХОЛОДУ ШЛЯХОМ ВИКОРИСТАННЯ ВОДИ ПІДЗЕМНИХ ГОРИЗОНТІВ М. КИЄВА." Vidnovluvana energetika, no. 3(58) (September 25, 2019): 67–77. http://dx.doi.org/10.36296/1819-8058.2019.3(58).67-77.

Full text
Abstract:
Викладено результати експериментального дослідження ефективності використання добового акумулятора холодної води для забезпечення роботи серійного фанкойлу з метою забезпечення кондиціювання повітря в окремому приміщенні. Натурна експериментальна установка містить видобувну свердловину, поглинальну свердловину, баки-акумулятори, витратомір, термометр холодної води, термометр повітря в приміщенні, мережевий насос, термометр відпрацьованої води, приміщення для охолодження, фанкойл. Вода з температурою 12ºС з видобувної свердловини подається свердловинним насосом в групу накопичувальних баків, які є акумулятором холоду. Після накопичення води в баках вмикається мережевий насос, який подає воду з накопичувальних баків на фанкойли. Вода, яка пройшла через фанкойли та віддала холод в приміщення, надходить до поглинальної свердловини. Метою експерименту є дослідження системи акумулювання холодної води в якості добового акумулювання холоду та її подальшого використання для забезпечення комфортних умов в приміщенні за допомогою серійного фанкойлу. Основні характеристики проведення експерименту: дебіт води на виході з підйомної свердловини становить 0,9 кг/с, дебіт води, яка надходить на фанкойл – 0,1 кг/с, витрата повітря через фанкойл – 340 м3/год, температура води, яка надходить до баку-акумулятору – 12ºС, температура води, що надходить до фанкойлу – 12,5ºС, площа охолодження приміщення – 20 м2, початкова температура в приміщенні – 28ºС, кількість баків-акумуляторів – 7 шт., загальний об’єм баків-акумуляторів – 7 м3. В результаті проведених експериментів досягнуто зниження температури в приміщенні до 23ºС за 3 години роботи фанкойла. Встановлено, в процесі охолодження приміщення холодопродуктивність фанкойла змінювалася від 3640 Вт в початковий період до 1820 Вт - в кінці. Температури холодоносія на виході з фанкойла при цьому становили, відповідно, 21,5ºС і 17,1 ºС. Дослідження показали, що система акумулювання води підземних горизонтів з початковою температурою води 12ºС ефективно працює в режимі охолодження приміщення з застосуванням серійних фанкойлів. Акумулятори теплоти у вигляді баків-акумуляторів ефективно використовуються також в якості буферних ємностей для регулювання подачі води в фанкойли. В баках-акумуляторах при вистойці води більше 2-х діб спостерігається накопичення твердих осадів. Розбіжність розрахункових значень температури з експериментальними значеннями не перевищує 5-7%. Система потребує подальшої модернізації для автоматичного заміру параметрів води і температури та вологості приміщення. Бібл. 13, рис. 7.
APA, Harvard, Vancouver, ISO, and other styles
38

Трещёва, М. А., И. Д. Аникина, and Д. А. Трещёв. "Перспективы снижения объемов водопользования ТЭС России вследствие применения тепловых насосов." Теплоэнергетика, no. 1 (2022): 18–31. http://dx.doi.org/10.1134/s0040363621110060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Решетняк, І. Л., and М. П. Сухий. "ЗАСТОСУВАННЯ МАТЕМАТИЧНОЇ МОДЕЛІ ДЛЯ АНАЛІЗУ ТЕПЛОВОЇ РОБОТИ БЕТОННОГО СОНЯЧНОГО КОЛЕКТОРА." Vidnovluvana energetika, no. 4(63) (December 27, 2020): 42–49. http://dx.doi.org/10.36296/1819-8058.2020.4(63).42-49.

Full text
Abstract:
Бетонні сонячні колектори давно застосовуються в якості низькотемпературних водопідігрівачів, наприклад для підігріву води в басейнах. Їхніми основними перевагами є дешевизна, простота виконання та високі експлуатаційні якості. Одним з сучасних напрямків застосування бетонних сонячних колекторів є їх інтегрування в фасади та дахи будівель та споруд. Їх можна встановлювати на будівлях, що мають історичну цінність, не порушуючи їх зовнішній вигляд. Перевагою таких систем є естетичність та міцність, через те що вони не містять крихкого скляного покриття. В той же час абсорбери без скління, особливо в холодний сезон та нічний час, можуть мати значні втрати тепла за рахунок конвективного теплообміну з навколишнім повітрям, а також через довгохвильове випромінювання в атмосферу. Для аналізу впливу різних факторів на теплову роботу сонячної системи з бетонним колектором використовували математичну модель. Вона розраховує зміни прямого і розсіяного сонячного випромінювання на поверхню колектора протягом дня з урахуванням місця розташування і орієнтації приймаючої поверхні, пори року і доби. В моделі вирішується задача нестаціонарної теплопровідності в бетонній плиті з вбудованою системою труб з циркулюючою рідиною та баком-акумулятором. Режим добового водоспоживання враховується шляхом зміни режиму роботи циркуляційного насоса. Модель застосовувалась для аналізу роботи бетонних колекторів для умов України. Виконані порівняльні розрахунки теплової роботи заскленого та незаскленого бетонного колектора. Показано, що в умовах роботи бетонного колектора із замкнутим контуром на ефективність сонячної системи істотно впливає об’єм теплового бака-акумулятора і режим відбору води, так як після закінчення сонячного дня значна частина тепла, накопиченого бетонним абсорбером, може бути втрачена в навколишнє середовище. Була розглянута можливість покращення корисного використання тепла, що накопичується бетонним абсорбером, після закінчення сонячного дня за рахунок збільшення об’єму бака-акумулятора і різних режимів його розгрузки.
APA, Harvard, Vancouver, ISO, and other styles
40

Асманкіна, А. А., М. Г. Лорія, and О. Б. Целіщев. "Система керування комплексу енергозабезпечення будівлі." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 4(268) (June 10, 2021): 35–39. http://dx.doi.org/10.33216/1998-7927-2021-268-4-35-39.

Full text
Abstract:
Оптимізація використання вичерпних джерел енергії та перехід до відновлювальних набирає обертів в усьому світі. Особливо перспективними наразі стають схеми спільного використання ґрунтових теплових насосів разом із сонячними тепловими панелями (геліоколекторами) та вітрогенераторами. Це дозволяє підвищити частку використання відновлюваної енергії з навколишнього природного середовища в загальному енергоспоживанні.З сучасними досягненнями технологій почала відбуватися відкритість ресурсів, котрі раніше були поза досягненням у використанні будь-ким, крім мілітаризованої сфери. З приходом відкритості існування нових технологій прийшла ера мікромініатюризації та спрощення виробництва елементів, з яких вони побудовані. Для людства постала нова задача – навчитися використовувати відновлювані джерела енергії у повсякденному житті. З’явилась потреба у знаходженні самого підходу використання цих джерел, на ряду з тими, що ми звикли використовувати. В результаті проведеного аналізу була підтверджена доцільність використання як відновлювальних джерел енергії, так і централізованих та не відновлювальних. Але постало нове питання – як забезпечити систему більш доступним обладнанням та уніфікованими деталями. У статті розглянута доцільність створення комплексу енергозабезпечення будівлі, здатного працювати дистанційно і незалежно від прямих енергоресурсів, що призведе до значного підвищення рівня захищеності від нестабільності температурних перепадів і перепадів в електричній мережі. Також метою є оптимізація системи енергозабезпечення будівлі. Були розглянуті методи регресійно-корелляційної побудови математичної моделі за результатом експерименту, досліджені побудовані криві емпіричних та експериментально отриманих показників енергозберігаючою комплексної системи будівлі, приведений тепловий баланс та логічно-структурна схема оптимізації.
APA, Harvard, Vancouver, ISO, and other styles
41

Яковлев, И. В., and А. М. Исхакова. "Эффективность применения тепловых насосов типа “воздух–вода” в климатических условиях России." Теплоэнергетика, no. 10 (2020): 38–47. http://dx.doi.org/10.1134/s0040363620100100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ivshina, Nadezhda, and Sergey Kuz'min. "MODEL OF THE COST OF HEAT PUMPS." Modern Technologies and Scientific and Technological Progress 2020, no. 1 (June 16, 2020): 159–61. http://dx.doi.org/10.36629/2686-9896-2020-1-159-161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vorobyov, Yu, O. Zhabin, and I. Tereshchenko. "Особливості моделювання заклинювання головного циркуляційного насоса та врахування закризового теплообміну при аналізі проектних аварій для реакторів типу ВВЕР-1000." Nuclear and Radiation Safety, no. 4(64) (December 16, 2014): 17–21. http://dx.doi.org/10.32918/nrs.2014.4(64).03.

Full text
Abstract:
Проведено аналіз можливості моделювання закризового теплообміну для тепловидільної збірки реакторів типу ВВЕР-1000 за допомогою комп’ютерного коду RELAP5/MOD3.2 шляхом внесенням коригувань в опції моделювання теплових структур. Запропоновані коригування дають змогу привести значення критичного теплового потоку, які отримано розрахунком з використанням комп’ютерного коду RELAP5/MOD3.2, у відповідність до експериментально встановленої залежності. Розрахунковий аналіз вихідної події з миттєвим заклинюванням ГЦН показав адекватність даного підходу та його консервативність, що є необхідним для аналізу проектних аварій. Наведено рекомендації з гідравлічного та теплового моделювання гарячого каналу активної зони з метою коректного визначення закризового теплообміну.
APA, Harvard, Vancouver, ISO, and other styles
44

(Vyacheslav I. Maksimov), Максимов Вячеслав Иванович, and Салум Амер (Amer Saloum). "ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ ГЕОТЕРМАЛЬНОЙ ЭНЕРГИИ С ПРИМЕНЕНИЕМ ТЕПЛОНАСОСНЫХ УСТАНОВОК В УСЛОВИЯХ НИЗКИХ ТЕМПЕРАТУР ВОЗДУХА." Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 330, no. 2 (February 25, 2019): 115–23. http://dx.doi.org/10.18799/24131830/2019/2/113.

Full text
Abstract:
Актуальность. Использование низкопотенциальной энергии водоемов с помощью теплонасосных установок в условиях низких температур окружающей среды – воздуха (период времени «осень–зима–весна»), характерных для большей части территории России, связано с возможным обмерзанием трубок испарителя теплонасосных установок, что приводит к изменению режима его работы. Анализ основных закономерностей процессов работы теплообменного оборудования, а также оценка энергоэффективности теплонасосных установок в условиях образования слоя льда на рабочих поверхностях испарителя до настоящего времени не проводились. Цель: экспериментальное изучение основных закономерностей процессов образования льда на рабочих поверхностях трубок испарителя теплонасосных установок, погруженных в воду с температурой, соответствующей условиям осеннего, зимнего и весеннего периодов года для большинства природных водоемов, расположенных в РФ, а также анализ основных характеристик работы ТНУ в таких условиях. Объект: парокомпрессионный тепловой насос, работающий в условиях образования слоя льда на рабочих поверхностях трубок испарителя, помещённых в резервуар с водой, температура которой ниже 280 К. Методы. Значения температур в характерных точках поверхности трубки теплообменника-испарителя и воды, находящейся в этой области, измерялись 15 хромель-алюмелевыми термопреобразователями (ХА термопары), подключенными через АЦП к компьютеру, и регистрировались в реальном времени. На основании полученных данных проводился расчет коэффициента преобразования теплонасосной установки по известной методике. Результаты. Выделен эффект образования льда, толщиной до 10 мм, на поверхности трубок испарителя при температурах воды ниже 280 К и времени работы установки до 8000 сек. Установлено, что этот слой существенно снижает интенсивность передачи теплоты в зону испарения хладагента. Эффективность работы теплонасосной установки при этом снижается до минимума. По результатам выполненных экспериментов сделан вывод о возможности работы теплонасосных установок при частичном покрытии трубки испарителя льдом. Сформулирована гипотеза о механизме процессов теплопереноса и фазовых превращений, протекающих вблизи трубок теплоносителя теплонасосной установки, при температурах воды менее 286 К. Результаты выполненных исследований являются базой для обоснования условий эффективного применения теплонасосных установок в регионах с низкими температурами воздуха в период осени, зимы и весны.
APA, Harvard, Vancouver, ISO, and other styles
45

Skubienko, Sergei. "Investigation of the thermal efficiency of thermal power plant with the K-300-240." University News. North-Caucasian Region. Technical Sciences Series, no. 2 (June 2015): 30–35. http://dx.doi.org/10.17213/0321-2653-2015-2-30-35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Рулев, А. В., and Е. Ю. Усачева. "DEVELOPMENT OF A METHOD FOR DETERMINING THE LENGTH TUBE EVAPORATORS AND HEAT PUMP CONDENSERS USING ZEOTROPIC MIXTURES OF WORKING AGENTS." НАУЧНЫЙ ЖУРНАЛ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ, no. 4(60) (December 29, 2020): 66–77. http://dx.doi.org/10.36622/vstu.2020.60.4.007.

Full text
Abstract:
Постановка задачи. Необходимо разработать методику определения длины трубных испарителей и конденсаторов тепловых насосов, использующих зеотропные смеси рабочих агентов. Результаты. Приводится описание процессов теплообмена в трубных испарителях и конденсаторах тепловых насосов, использующих в качестве рабочих агентов зеотропные смеси предельных углеводородов, таких как пропан и н-бутан. Указанные смеси полностью озоно-экологически безопасны и наиболее экономичны при подогреве приточного воздуха в системах вентиляции и кондиционирования. Выводы. Разработанная методика позволяет учитывать изменение интенсивности теплообмена и температурных условий в зависимости от непрерывно изменяющихся состава и режимов течения парожидкостной смеси, протекающих в следующей последовательности: расслоенно-пробковый, кольце-волновой и дисперсный. Statement of the problem. It is essential to develop a method for determining the length of tube evaporators and heat pump condensers using zeotropic mixtures working agents. Results. The paper describes heat transfer processes in tube evaporators and heat pump condensers that use zeotropic mixtures of limiting hydrocarbons, such as propane and n-butane, as working agents. These mixtures are completely ozone-friendly and most cost-efficient when heating the supply air in ventilation and air conditioning systems. Conclusions. The developed method allows us to account for changes in the intensity of heat exchange and temperature conditions depending on the continuously changing composition and flow modes of the vapor and liquid mixture, which occur in the following sequence: stratified - cork, ring - wave and dispersed.
APA, Harvard, Vancouver, ISO, and other styles
47

Воскресенский, Н. М., Б. Н. Окунев, and Л. Г. Гордеева. "Термодинамический анализ нового цикла адсорбционного теплового насоса “Тепло из Холода”: влияние рабочей пары на эффективность цикла." Теплоэнергетика 7, no. 8 (2018): 39–46. http://dx.doi.org/10.1134/s004036361808009x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tarasova, V. "Computational and experimental study of the thermodynamic efficiency of heat pumps." Journal of Mechanical Engineering 19, no. 1 (March 31, 2016): 13–20. http://dx.doi.org/10.15407/pmach2016.01.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kuz'min, Sergey, and Pavel Krapchetov. "MODEL OF THE COST OF HEAT PUMPS TYPE «WATER-TO-WATER»." Modern Technologies and Scientific and Technological Progress 1, no. 1 (May 17, 2021): 171–72. http://dx.doi.org/10.36629/2686-9896-2021-1-1-171-172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kurnakova, Natalia Yu, Andrei V. Nuzhdin, and Alexander A. Volkhonsky. "ON THE POSSIBILITY TO IMPROVE THE ENERGY EFFICIENCY OF THE CHP HEAT BALANCE DIAGRAM USING A HEAT PUMP." Proceedings of Irkutsk State Technical University 22, no. 7 (July 2018): 114–22. http://dx.doi.org/10.21285/1814-3520-2018-7-114-122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography