Journal articles on the topic 'Навчальні лабораторії'

To see the other types of publications on this topic, follow the link: Навчальні лабораторії.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Навчальні лабораторії.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Друшляк, Марина. "ЗАСОБИ ФОРМУВАННЯ ВІЗУАЛЬНО-ІНФОРМАЦІЙНОЇ КУЛЬТУРИ МАЙБУТНІХ УЧИТЕЛІВ МАТЕМАТИКИ ТА ІНФОРМАТИКИ (ПРОДОВЖЕННЯ)." Physical and Mathematical Education 32, no. 6 (January 27, 2022): 23–28. http://dx.doi.org/10.31110/2413-1571-2021-032-6-004.

Full text
Abstract:
Формулювання проблеми. Сучасний вчитель математики та інформатики повинен мати високий рівень сформованості візуально-інформаційної культури, тобто повинен мати ціннісні установки, прагнення до розвитку в галузі візуалізації та інформатизації освіти; володіти інформатико-математичні, психолого-педагогічні та технологічні знаннями; уміннями сприймати, аналізувати, порівнювати, зіставляти, інтерпретувати, продукувати з використанням інформаційних технологій, структурувати, інтегрувати, оцінювати поданий наочно навчальний матеріал. Це залежить, серед іншого, від методу пізнавальної теоретичної та практичної діяльності викладачів і студентів, який передбачає постановку мети, необхідну систему дій, відповідні засоби й одержаний результат – високий рівень сформованості візуально-інформаційної культури майбутніх учителів математики та інформатики. Матеріали і методи. Основою дослідження стали наукові розвідки вітчизняних і закордонних учених, які займаються вивченням питань підготовки майбутніх вчителів математики та інформатики. Для досягнення мети були використані методи теоретичного рівня наукового пізнання: аналіз наукової літератури, синтез, формалізація наукових джерел, опис, зіставлення, узагальнення власного досвіду. Результати. З метою формування візуально-інформаційної культури майбутніх учителів математики та інформатики використані нами засоби навчання можна умовно поділити на групи: друковані засоби (навчально-методична література, навчальні посібники, навчальні програми, системи задач для лабораторних робіт), комп’ютерні засоби (програмне забезпечення предметного спрямування, програми динамічної математики, хмаро орієнтовані сервіси, віртуальні лабораторії), інтерактивні засоби (візуалізовані завдання, інтерактивні аплети, когнітивно-візуальні моделі). У даній статті обґрунтовано доцільність використання таких засобів навчання як скрайбінг, інфографіка та віртуальні фізичні лабораторії. Висновки. За результатами впровадження розглядуваних засобів у професійну підготовку у майбутніх учителів математики та інформатики спостерігалося підвищення рівнів сформованості візуально-інформаційної культури за всіма компонентами: професійно-мотиваційним, когнітивним, операційно-діяльнісним та рефлексивним.
APA, Harvard, Vancouver, ISO, and other styles
2

Друшляк, Марина, and Володимир Шамоня. "ЗАСОБИ ФОРМУВАННЯ ВІЗУАЛЬНО-ІНФОРМАЦІЙНОЇ КУЛЬТУРИ МАЙБУТНІХ УЧИТЕЛІВ МАТЕМАТИКИ ТА ІНФОРМАТИКИ." Physical and Mathematical Education 31, no. 5 (November 18, 2021): 28–35. http://dx.doi.org/10.31110/2413-1571-2021-031-5-005.

Full text
Abstract:
Формулювання проблеми. Сучасний вчитель математики та інформатики повинен мати високий рівень сформованості візуально-інформаційної культури, тобто повинен мати ціннісні установки, прагнення до розвитку в галузі візуалізації та інформатизації освіти; володіти інформатико-математичні, психолого-педагогічні та технологічні знаннями; уміннями сприймати, аналізувати, порівнювати, зіставляти, інтерпретувати, продукувати з використанням інформаційних технологій, структурувати, інтегрувати, оцінювати поданий наочно навчальний матеріал. Це залежить, серед іншого, від методу пізнавальної теоретичної та практичної діяльності викладачів і студентів, який передбачає постановку мети, необхідну систему дій, відповідні засоби й одержаний результат – високий рівень сформованості візуально-інформаційної культури майбутніх учителів математики та інформатики. Матеріали і методи. Основою дослідження стали наукові розвідки вітчизняних і закордонних учених, які займаються вивченням питань підготовки майбутніх вчителів математики та інформатики. Для досягнення мети були використані методи теоретичного рівня наукового пізнання: аналіз наукової літератури, синтез, формалізація наукових джерел, опис, зіставлення, узагальнення власного досвіду. Результати. З метою формування візуально-інформаційної культури майбутніх учителів математики та інформатики використані нами засоби навчання можна умовно поділити на групи: друковані засоби (навчально-методична література, навчальні посібники, навчальні програми, системи задач для лабораторних робіт), комп’ютерні засоби (програмне забезпечення предметного спрямування, програми динамічної математики, хмаро орієнтовані сервіси, віртуальні лабораторії), інтерактивні засоби (візуалізовані завдання, інтерактивні аплети, когнітивно-візуальні моделі). Висновки. За результатами впровадження розглядуваних засобів у професійну підготовку у майбутніх учителів математики та інформатики спостерігалося підвищення рівнів сформованості візуально-інформаційної культури за всіма компонентами: професійно-мотиваційним, когнітивним, операційно-діяльнісним та рефлексивним.
APA, Harvard, Vancouver, ISO, and other styles
3

Карпова, Л. Г. "ІНФОРМАЦІЙНО-ОСВІТНЄ СЕРЕДОВИЩЕ ЯК ЗАСІБ РОЗВИТКУ ОБДАРОВАНОЇ ДИТИНИ." Засоби навчальної та науково-дослідної роботи, no. 51 (2018): 88–102. http://dx.doi.org/10.34142/2312-1548.2018.51.07.

Full text
Abstract:
У роботі розкрито вплив інформаційно-освітнього середовища на розвиток обдарованої дитини (дослідження проведено на базі Лабораторії інформаційних технологій навчання). Інформаційно-освітнє середовище є важливим засобом розвитку обдарованих дітей, оскільки воно виступає основою діяльності закладу освіти, розширює його навчальні можливості і відповідає тенденціям розвитку сучасного суспільства (інформатизація, технізація тощо). Розкрито напрями діяльності Лабораторії інформаційних технологій навчання, спрямовані на розвиток обдарованих дітей (упровадження та інтеграція дистанційного навчання у навчально-виховний процес як невід’ємної складової сучасної освіти, організація дистанційного навчання, у тому числі в рамках взаємодії із закладами вищої освіти – дуальне навчання; створення та поповнення методично-інформаційних ресурсів школи-інтернату, їх технічна підтримка; забезпечення стійкого функціонування та розвитку комп’ютерної мережі у школі, використання нових засобів інформаційних технологій; програмно-технічний, методичний та організаційний супровід навчальних комп’ютерних класів та комп’ютерного обладнання предметних кабінетів; забезпечення представництва школи у світовому інформаційному просторі (сайт школи, учительські блоги); підтримка проектів, які передбачають використання нових інформаційних технологій та мережі Інтернет; фінансування програмних засобів навчального призначення; дослідження ефективності використання програмних засобів тощо). Визначено вимоги до інформаційно-освітнього середовища та організації роботи обдарованих учнів, а саме: сформованість інформаційної культури і компетентність суб’єктів середовища, його орієнтація на моніторинг розвитку обдарованості дитини, гармонізація зв’язків між суб’єктами освітнього процесу (батьками, учителями, учнями), посилення зв’язків школи із зовнішнім середовищем (насамперед, із закладами вищої освіти). Отже, інформаційно-освітнє середовище охоплює інформаційний та освітньо-розвивальний простір, інтегрує інформацію, отриману з різних джерел, сприяє розвитку творчості, самостійності й активності обдарованих учнів, їхніх пізнавальних процесів, формуванню мотивації до саморозвитку, умінь спілкуватися і взаємодіяти з людьми та вдумливо працювати з новітніми технічними пристроями.
APA, Harvard, Vancouver, ISO, and other styles
4

Олійник, Віктор Васильович, Олександр Миколайович Самойленко, Ілона Вікторівна Бацуровська, and Наталія Андріївна Доценко. "ІНФОРМАЦІЙНО-ОСВІТНЄ СЕРЕДОВИЩЕ НАВЧАННЯ ЗАГАЛЬНОТЕХНІЧНИХ ДИСЦИПЛІН БАКАЛАВРІВ ЕЛЕКТРИЧНОЇ ІНЖЕНЕРІЇ." Information Technologies and Learning Tools 83, no. 3 (June 25, 2021): 259–73. http://dx.doi.org/10.33407/itlt.v83i3.4373.

Full text
Abstract:
У статті представлена технологія вивчення загальнотехнічних дисциплін бакалаврами в галузі електричної інженерії в умовах інформаційно-освітнього середовища. Розглянуті поняття педагогічної технології та інформаційно-освітнього середовища, визначено, які дисципліни належать до загальнотехнічних та набуття яких компетенцій забезпечується при вивченні розглянутих дисциплін. Описано етапи реалізації технології вивчення загальнотехнічних дисциплін бакалаврами в галузі знань «Електрична інженерія» в умовах інформаційно-освітнього середовища, до них належать: розробка освітніх програм, упровадження інформаційно-освітнього середовища, проходження здобувачами вищої освіти програми підготовки та проведення контролюючих засобів. Представлено засоби, методи і форми, які використані в ході вивчення фахівцями в галузі електричної інженерії загальнотехнічних дисциплін, а саме: лекції з інтерактивним супроводом, онлайн мануали та тьюторіали, віртуальні лабораторні роботи, презентації до занять із загальнотехнічних дисциплін, відеолекції, онлайн конференції, цифрові онлайн калькулятори, навчальні комп’ютерні інтерактивні тренажери, колаборативне навчання загальнотехнічним дисциплінам у мобільних додатках, віртуальні моделі і онлайн лабораторії, дво- та тривимірна графіка та моделювання, форуми та вебінари, онлайн практичні роботи, навчальні практики та інженерні курсові проєкти в умовах інформаційно-освітнього середовища. Результатом реалізації запропонованої технології є опанування загальнотехнічних дисциплін в умовах інормаційно-освітнього середовища бакалаврами в галузі електричної інженерії. Результати дослідження показали, що технологія вивчення загальнотехнічних дисциплін бакалаврами в галузі знань «Електрична інженерія» в умовах інформаційно-освітнього середовища є ефективною і здатна підвищити рівень якості знань з окреслених дисциплін, надає можливість поєднати аудиторну та дистанційну роботу, удосконалює навички роботи в сучасних інформаційних середовищах.
APA, Harvard, Vancouver, ISO, and other styles
5

ЯКОВЛЄВА, Вікторія, Іван АНТОНЕНКО, and Олег ЦИСЬ. "НАУКОВО-ТЕХНІЧНА ДІЯЛЬНІСТЬ СТУДЕНТІВ ПЕДАГОГІЧНОГО ЗАКЛАДУ ВИЩОЇ ОСВІТИ: СУЧАСНИЙ АСПЕКТ." Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 1 (April 29, 2021): 385–91. http://dx.doi.org/10.31494/2412-9208-2021-1-1-385-391.

Full text
Abstract:
У статті розкрито специфіку організації науково-технічної діяльності студентів спеціальності «Технологічна освіта». Розглянуто чинники покращення якості знань майбутніх фахівців у процесі роботи наукових гуртків, проблеми впровадження і використання навчально-контрольних комп’ютерних програм у процесі організаціїї науково-технічної діяльності студентів. Здійснено аналіз існуючих контрольних тестових програм з метою вибору такої, яка б при мінімальній вартості й розмірі дискового простору в постійній пам'яті комп'ютера забезпечувала б максимальну функціональність, широту налаштувань режимів роботи, простоту користування і створення тестів. Обґрунтовано зміст науково-технічної роботи студентів спеціальності «Технологічна освіта», а саме: розробка комп’ютерних навчально-контрольних програм, електронних навчальних посібників, лабораторного обладнання. Наведені результати науково-технічної діяльності студентів у наукових гуртках: успішно розроблені електронні навчальні посібники з курсів «Деталі машин», «Основи взаємозамінності і стандартизації», «Технічна механіка», велика кількість лабораторного обладнання: установка для тестування термопар, прилад демонстрації гідростатичного парадоксу, зарядний пристрій акумулятора автомобіля, установка для визначення руху і в'язкості рідини, стенди приладів вимірювання витрат рідини і газів, тельферний установки, черв’ячного редуктора, гідравлічного домкрата, підшипників кочення, пристрій для миття шкільної дошки. Ключові слова: науково-технічна діяльність, науковий гурток, комп’ютерні навчальні посібники, комп’ютерне тестування, лабораторне обладнання, навчально контролюючі програми, організація навчальної діяльності.
APA, Harvard, Vancouver, ISO, and other styles
6

Філіпчук, Георгій Георгійович, Мирослава Петрівна Вовк, Кирил Васильович Котун, and Ольга Миколаївна Ходацька. "ПОТЕНЦІАЛ УКРАЇНОЗНАВЧИХ ЕЛЕКТРОННИХ РЕСУРСІВ У ПЕДАГОГІЧНІЙ ОСВІТІ: ДОСВІД УКРАЇНИ І КАНАДИ." Information Technologies and Learning Tools 78, no. 4 (September 11, 2020): 14–31. http://dx.doi.org/10.33407/itlt.v78i4.3612.

Full text
Abstract:
У статті схарактеризовано потенціал електронних українознавчих ресурсів у контексті модернізаційних змін у сфері педагогічної освіти. Уточнено сутність поняття «українознавчі ресурси» як сукупності джерелознавчих праць, наукових розвідок, збірників та ін., що представлено у вимірах суміжних наук (етнопедагогіки, етнології, культурології, лінгвістики, фольклористики, краєзнавства, народознавства, етнографії, історії, джерелознавства тощо) та власне українознавчих дисциплін (українська мова, українська література, українська культура, історія України тощо) у реальному (бібліографічному, архівному) та віртуальному контекстах. Схарактеризовано досвід систематизації українознавчих електронних ресурсів в Канаді, що уможливило виокремлення таких прогресивних досягнень: створення загальнодержавного інтернет-порталу українознавства, заснування віртуальних бібліотек, центрів і лабораторій при університетах тощо. Студіювання сучасних електронних українознавчих ресурсів в українському і канадському віртуальному просторі уможливило виокремлення таких їх категорій: електронні навчальні бібліотеки й архіви, віртуальні лабораторії при університетах, українознавча періодика з їх представленням на вебсторінках чи сайтах університетських і академічних осередків, реферативні бази. Спроєктовано можливості використання електронних українознавчих ресурсів з урахуванням сучасних модернізаційних змін у педагогічній освіті на двох рівнях – на університетському (створення і розвиток ресурсних центрів, вебсайтів, порталів, електронних бібліотек; упровадження тематичних модулів, які розкривають віртуальний простір теорії і практики українознавчих студій; розміщення в електронних архівах матеріалів за результатами фольклористичної практики) і на шкільному (створення ресурсних баз на основі наявних українських і канадських українознавчих електронних джерел; активізація дослідницької роботи учнів – членів Малої академії наук України, заснування під егідою Міністерства освіти і науки України інтернет-порталу українознавства з урахуванням потреб сучасного вчителя і учня).
APA, Harvard, Vancouver, ISO, and other styles
7

Нечипуренко, Павло Павлович. "Деякі аспекти імітації реальних хімічних процесів та систем у віртуальних хімічних лабораторіях." Theory and methods of e-learning 3 (February 11, 2014): 238–44. http://dx.doi.org/10.55056/e-learn.v3i1.344.

Full text
Abstract:
Перехід сучасного суспільства до інформаційної епохи свого розвитку висуває як одне з основних завдань, що стоять перед системою освіти, завдання формування основ інформаційної культури майбутнього фахівця. Процеси модернізації та профілізації вітчизняної шкільної освіти так само, як і модернізації вищої освіти (участь у створенні єдиного європейського простору, впровадження дистанційної освіти тощо) ведуться на базі інформаційно-комунікаційних технологій навчання. Метою даної статті є обговорення ролі сучасних комп’ютерних моделей у навчанні хімії, та проблеми якості відображення реальних хімічних процесів у комп’ютерних моделях, якими є віртуальні хімічні лабораторії.Дидактична роль нових інформаційних технологій полягає, перш за все, в активізації пізнавальної діяльності і творчого потенціалу учнів [5]. Необхідно створювати умови, аби учень став активним учасником навчального процесу, а вчитель був організатором пізнавальної діяльності учня. Адже вивчення будь-якої навчальної дисципліни – не мета, а засіб розвитку особистості. Ефективність застосування комп’ютерів у навчальному процесі залежить від багатьох чинників, у тому числі й від рівня самої техніки, від якості навчальних програм і від методики навчання, що застосовується вчителем. Більшість педагогів переконані в тому, що комп’ютер є потужним засобом для творчого розвитку дітей, дозволяє звільнитися від багатьох рутинних видів роботи і розробити нові ідеї в методиці навчання, дає можливість вирішувати більш цікаві і складні проблеми [5].Будь-який ілюстративний матеріал (мультимедійні й інтерактивні моделі в тому числі) значно розширюють можливості навчання, роблять зміст навчального матеріалу більш наочним, зрозумілим, цікавим. Не можна скидати з рахунків і психологічний чинник: сучасному учневі чи студенту набагато цікавіше сприймати інформацію саме в інтерактивній формі, ніж за допомогою застарілих схем і таблиць. Використання комп’ютерних моделей, комп’ютерних засобів візуалізації значно підвищує ефективність засвоєння матеріалу[5].Сучасні школярі, які здебільшого є представниками «покоління відеоігор», орієнтовані на сприйняття високоінтерактивного, мультимедіа насиченого навчального середовища. Згаданим вище вимогам якнайкраще відповідають освітні програми, що моделюють об’єкти і процеси реального світу і системи віртуальної реальності. Прикладом таких навчальних систем є віртуальні лабораторії, які можуть моделювати поведінку об’єктів реального світу в комп’ютерному освітньому середовищі і допомагають учням опановувати нові знання й уміння в науково-природничих дисциплінах, таких як хімія, фізика і біологія [3].Хімія – наука експериментальна, її завжди викладають, супроводжуючи демонстраційним експериментом. Ні для кого не є секретом, що матеріальний стан більшості шкіл в Україні є, м’яко кажучи, неідеальним. Дуже часто для демонстрації хімічного досліду не вистачає необхідних реактивів чи обладнання, тому доводиться обходитись теоретичним розглядом лабораторної роботи або проводити один дослід на весь клас. У такому випадку на допомогу вчителеві приходять саме спеціалізовані комп’ютерні програми, на кшталт віртуальних хімічних лабораторій, що дозволяють провести (саме провести, а не спостерігати) дослід у наближених до реальності умовах. Також, наприклад, при вивченні токсичних речовин, зокрема галогенів, віртуальне середовище надає можливість проводити хімічний експеримент без ризику для здоров’я учнів [4].На даний момент розроблена велика кількість навчальних програм для шкільного курсу хімії. Жодна з цих програм не є досконалою, проте сам факт їх створення свідчить про те, що в них існує потреба і вони мають безперечну цінність. Для того, щоб у дитини виник інтерес до співпраці з комп’ютером і в процесі цієї спільної творчості стійка пізнавальна мотивація до вирішення освітніх, дослідницьких завдань, необхідне створення таких умов, при яких учень стає безпосереднім учасником подій, що розвиваються на екрані монітора, тобто умов для повноцінного діяльнісного підходу до навчання.Умова успішного застосування комп’ютерних моделей в освітньому процесі сучасної школи закладена в добре відомих принципах педагогіки співпраці, які можна перефразовувати так: «не до комп’ютера за готовими знаннями, а разом з комп’ютером за новими знаннями» [3].Головна перевага віртуальних хімічних лабораторій полягає в тому, що віртуальні хімічні експерименти безпечні навіть для непідготовлених користувачів. Учні можуть також проводити такі досліди, виконання яких в реальній лабораторії може бути небезпечне або коштує надто дорого. Звичайно, за допомогою віртуальних дослідів не можна опанувати навички реального хімічного експерименту, але віртуальні досліди можуть застосовуватися, наприклад, для ознайомлення учнів з технікою виконання експериментів, хімічним посудом і устаткуванням перед безпосередньою роботою в лабораторії. Це дозволяє учням краще підготуватися до проведення цих або подібних дослідів в реальній хімічній лабораторії. Також проведення віртуальних експериментів допомагає учням та студентам засвоїти навички запису спостережень, складання звітів та інтерпретації даних в лабораторному журналі. Іще слід наголосити на тому, що комп’ютерні моделі хімічної лабораторії за певних умов можуть спонукати учнів експериментувати і отримувати задоволення від власних відкриттів [3].За способом візуалізації розрізняються лабораторії, в яких використовується двовимірна, тривимірна графіка і анімація. Крім того, віртуальні лабораторії можна поділити на дві категорії залежно від способу представлення знань у предметній області. Віртуальні лабораторії, в яких представлення знань у предметній області засновано на окремих фактах, обмежені набором заздалегідь запрограмованих експериментів. Цей підхід використовується при розробці більшості сучасних віртуальних лабораторій. В таких програмах змінити умови проведення експерименту і одержати якісь інші результати неможливо. Інший підхід дозволяє учням проводити будь-які експерименти, не обмежуючись заздалегідь підготовленим набором результатів. Це досягається за допомогою використання математичних моделей, що дозволяють визначити результат будь-якого експерименту і відповідний візуальний супровід. На жаль, подібні моделі поки що можливі тільки для обмеженого набору дослідів [3]. Переваги і недоліки вищезгаданих програмних продуктів достатньо повно були висвітлені Т. М. Деркач, яка, до речі, пропонує використовувати термін «імітаційні хімічні лабораторії» [1; 2].Суттєвою перевагою таких віртуальних лабораторій як ChemLab (виробник: Model Science Software), Croсоdile Chemistry (Crocodile Clips Ltd), Virtual Lab (The ChemCollective) є можливість активного втручання учня у хід роботи, а не пасивне спостерігання за відеофрагментом чи анімацією, що запрограмовані заздалегідь. При виконанні лабораторної роботи за допомогою вищезгаданих програм учень може повторити її безліч разів, при цьому щоразу змінюючи один чи декілька параметрів на власний вибір. В більшості випадків (якщо дії учня не суперечать логіці і можливі для виконання і у реальній лабораторії) учень отримає правильні результати, що лише підкреслить ті закономірності, виявлення яких і було метою роботи. Скажімо у лабораторній роботі «Гравіметричне визначення хлорид-йонів» («Gravimetric Analysis of Chloride») у віртуальній лабораторії ChemLab учень чи студент може замість запропонованих в інструкції 5 г речовини, що містить хлорид-йони, взяти 3, чи 6, чи 10 г її. Але в кожному випадку він отримає і відповідну масу осаду арґентум хлориду, за якою, при виконанні обчислень, прийде до одних і тих самих результатів і висновків.Подібний підхід, коли учень може проявити власну ініціативу при виконанні роботи, дуже позитивно відбивається і на навчальних досягненнях і на зацікавленості учнів. Але разом з ініціативою учні можуть також підключити і власну фантазію – спробувати виконати такі дії, які не були передбачені сценарієм проведення даної роботи (наприклад, нагріти розчин до кипіння, або навпаки охолодити його до температури замерзання) просто із цікавості, тим більше, що у ChemLab можна використовувати обладнання, застосування якого не передбачалось сценарієм виконання роботи. Результати таких незапланованих дій можуть переноситись учнями і на відповідні об’єкти та процеси реального світу, а тому до віртуальних лабораторій завжди висувалась жорстка вимога суворої відповідності віртуальних об’єктів та процесів реальним об’єктам і процесам.Тут доводиться констатувати протиріччя, яке існує в середовищі користувачів віртуальних хімічних лабораторій: методистів, розробників, вчителів, учнів тощо. Справа в тому, що немає і, мабуть, не може бути єдиної думки з приводу того, наскільки повно віртуальні процеси повинні відтворювати об’єктивну реальність. З одного боку, чим більше віртуальний світ схожий на реальний, тим нібито краще – в такому випадку навчання хімії за допомогою віртуальних комп’ютерних лабораторій виходить на якісно новий, більш високий рівень, з’являється набагато більше можливостей і форм застосування навчальних лабораторій у навчанні хімії, зникають передумови для одержання хибних висновків при їх використанні. Але, з іншого боку, врахування найменших дрібниць і максимальної кількості можливих варіантів розвитку подій неминуче призведе до значного ускладнення комп’ютерних програм, суттєвого збільшення баз даних і, як наслідок, подорожчання та подовження часу на розробку відповідних програмних продуктів, та, скоріш за все, суттєво ускладнить використання таких програм людьми без спеціальної підготовки. Не кажучи вже про те, що передбачити всі можливі варіанти дій користувача у віртуальній лабораторії просто неможливо.Інша точка зору полягає в тому, що віртуальні хімічні лабораторії в першу чергу є моделями, тобто системами, що відтворюють, імітують, відображають принципи внутрішньої організації або функціонування, певні властивості, ознаки чи характеристики об’єкта дослідження (оригіналу). Модель завжди є спрощеною версією модельованого об’єкта або явища (прототипу), що в достатній мірі повторює властивості, суттєві для цілей конкретного моделювання (опускаючи несуттєві властивості, в яких вона може відрізнятися від прототипу).Подібне визначення поняття «модель» фактично означає, що такі програми як віртуальні хімічні лабораторії, не повинні перевантажуватись «зайвими дрібницями» – несуттєвими для виконання певної роботи чи досліду зовнішніми ознаками, фактами і процесами. Окрім того, так само як викладач не залишить без догляду учнів у реальній лабораторії, так і викладач, що застосовує віртуальну лабораторію на занятті, повинен бути постійно поруч з учнями, надаючи їм відповідних порад або роз’яснюючи результати спостережень, що викликали питання або сумніви. Таким чином, можна попередити формування в учнів хибних уявлень, неправильних висновків тощо.У представників обох точок зору є свої аргументи. Наприклад, при виконанні стандартної лабораторної роботи в середовищі програми ChemLab «Фракційне розділення солей» («Fractional Crystallization»), сутність якої полягає в тому, що учневі пропонується розділити суміш солей (натрій хлориду та калій дихромату), використовуючи їх різну розчинність у воді за різних температур. Подібні процеси досить поширені як в промисловості (виробництво калійних добрив), так і в лабораторії (перекристалізація солей з метою їх очищення), хоча і в більш складному вигляді. Хід роботи включає в себе такі стадії: відбір наважок солей певної маси; їх розчинення у воді кімнатної температури; нагрівання розчину до повного розчинення калій дихромату; охолодження розчину до 0оС; відділення осаду калій дихромату; зважування калій дихромату, що випав в осад, та відповідні розрахунки.Якщо прискіпливо проаналізувати дану роботу, в ній можна знайти ряд неточностей або спрощень:1) при розчиненні калій дихромату у воді розчин залишається безбарвним;2) відсутній тепловий ефект при розчиненні обох солей;3) не враховано взаємний вплив солей на їх розчинність;4) розчин солей при охолодженні до температури замерзання не кристалізується;5) температура кипіння розчину солей дорівнює температурі кипіння ізомолярного з ним розчину будь-якого неелектроліту;6) зважування одержаного калій дихромату можна провести з високою точністю без попереднього промивання і висушування;7) відсутність допоміжного лабораторного обладнання (штативів, тримачів, шпателів, вакуум-насосу тощо) та можливість відбору наважок речовин без використання терезів.Подібні неточності можна знайти і у всіх інших лабораторних роботах програми ChemLab, але в більшості випадків ці неточності неочевидні, і, найголовніше, не відбиваються ані на одержанні результатів експерименту, ані на їх інтерпретації.Крім того, застосовуючи інструментарій майстра LabWіzard, що дозволяє користувачу створювати власні лабораторні роботи у ChemLab, певну кількість подібних невідповідностей можна заздалегідь передбачити й усунути у створених власноруч лабораторних проектах.[2; 4]Викладач, що використовує віртуальні хімічні лабораторії, обов’язково повинен наголосити на тому, що у віртуальній хімічній лабораторії присутні певні спрощення та невідповідності з об’єктивною реальністю. У групі учнів, що мають високий рівень знань і хімічного мислення, можна навіть побудувати роботу на тому, щоб знайти і обговорити подібні неточності. Наприклад, в рамках курсу «Комп’ютерне моделювання хімічних процесів», що викладається на ІІІ курсі спеціальності «Хімія» у Криворізькому педагогічному інституті, при розгляді особливостей віртуальної лабораторії ChemLab перед студентами була поставлена задача обґрунтовано довести наближений характер розрахунку температури початку кипіння розчину натрій хлориду у даній програмі (в межах лабораторної роботи «Fractional Crystallization»). Студенти на основі другого закону РауляΔtкип=kеб*b – для розчинів речовин-неелектролітів (1)Δtкип=i*kеб*b – для розчинів речовин-електролітів; (2)де kеб – ебуліоскопічна константа розчинника, b – моляльна концентрація розчиненої речовини (моль/кг), і – ізотонічний коефіцієнт, обчислювали температуру початку кипіння для розчину натрій хлориду тієї концентрації, яку вони самі створили у віртуальній хімічній лабораторії. Далі утворений віртуальний розчин нагрівали до кипіння і зазначали температуру початку кипіння. Вона збігалась із розрахованою за формулою (1), тобто без урахування ізотонічного коефіцієнту, який для розчину натрій хлориду повинен наближатись до 2. Значить реальна Δtкип розчину майже вдвічі повинна була б перевищувати Δtкип розчину у віртуальній лабораторії. Висновок зроблений студентами: в даній лабораторній роботі з метою спрощення не враховувався процес іонізації солі, оскільки для моделювання процесів розчинення солей за різних температур він особливого значення не має.Подібний недолік комп’ютерної програми може створити незручності з одного боку, але може бути перевагою з іншого: на основі розгляду подібних фактів можна в цікавій і нестандартній формі залучити групу студентів до повторення навчального матеріалу з різних розділів хімії та розв’язку розрахункових задач.Таким чином, можна зробити висновок про те, що віртуальні хімічні лабораторії є безумовно ефективним інструментом в руках вчителя або викладача хімії. Кожна з віртуальних хімічних лабораторій є моделлю, що описує реальні явища і процеси, а тому неминуче містить ряд спрощень і неточностей, як в плані графічного відображення об’єктів, так і в плані причинно-наслідкових зв’язків між діями користувача та їх результатами у віртуальному середовищі. Головною метою проведення дослідів у віртуальних комп’ютерних лабораторіях є усвідомлення самої сутності явища, що вивчається, його головних закономірностей, а недосконалість візуальних чи інших ефектів має другорядне значення. Подальший розвиток і вдосконалення віртуальних хімічних лабораторій, скоріш за все, буде відбуватись у напрямку збалансування простоти представлення моделі та максимальної її реалістичності.Враховуючи все, сказане вище, можна з упевненістю сказати, що розробка і впровадження віртуальних хімічних лабораторій залишається одним з пріоритетних напрямків у процесі вдосконалення навчання хімії у середній та вищій школі.
APA, Harvard, Vancouver, ISO, and other styles
8

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко, et al. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ." Theory and methods of e-learning 4 (February 17, 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Full text
Abstract:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
APA, Harvard, Vancouver, ISO, and other styles
9

Ків, Арнольд, Олександр Мерзликін, Євгеній Модло, Павло Нечипуренко, and Ірина Тополова. "Огляд програмного забезпечення для комп'ютерного моделювання у профільному навчанні фізики." Педагогіка вищої та середньої школи 52 (December 19, 2019): 153–65. http://dx.doi.org/10.31812/pedag.v52i0.3782.

Full text
Abstract:
У статті розглядається можливості використання спеціалізованих програм (віртуальні лабораторії та тренажери, програмне забезпечення для моделювання природних процесів) та загального (мови програмування та бібліотеки, таблиці, CAS) у шкільних дослідженнях. Таке програмне забезпечення, як віртуальні лабораторії, програмне забезпечення для моделювання природних процесів, мови програмування й бібліотеки в шкільних дослідженнях, можна використовувати для моделювання явищ, яких неможливо вивчити в шкільній лабораторії (наприклад, для моделювання радіоактивного розпаду або для демонстрації станів релятивістської механіки). Також віртуальні лабораторії в шкільній практиці зазвичай використовуються в тих випадках, коли учні не можуть виконати експеримент у реальних лабораторіях. Наприклад, це зручно для дистанційного навчання. Використання мов програмування та бібліотек у навчальних фізичних дослідженнях вимагає як дослідницьких компетенцій студентів, так і компетенцій програмування. Ось чому використання цього програмного забезпечення на уроках фізики навряд чи можна рекомендувати. Однак мови програмування та бібліотеки можуть стати потужним інструментом формування й розвитку дослідницьких компетентностей студентів з фізики у позакласній навчальній діяльності. Впровадження електронної таблиці та CAS у шкільних фізичних дослідженнях є найпростішим і має свої переваги.
APA, Harvard, Vancouver, ISO, and other styles
10

БІЛЕЦЬКА, Галина, Ольга ЄФРЕМОВА, and Олеся МАТЕЮК. "ВИКОРИСТАННЯ ЦИФРОВИХ ТЕХНОЛОГІЙ НА УРОКАХ БІОЛОГІЇ ТА ОСНОВ ЗДОРОВ’Я У ЗАКЛАДАХ ЗАГАЛЬНОЇ СЕРЕДНЬОЇ ОСВІТИ." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: педагогічні науки 27, no. 4 (January 1, 2022): 15–35. http://dx.doi.org/10.32453/pedzbirnyk.v27i4.907.

Full text
Abstract:
У статті обґрунтовано дидактичні можливості цифрових технологій і висвітлено досвід їх використання на уроках біології та основ здоров’я у закладах загальної середньої освіти. Аргументовано, що необхідність використання цифрових технологій навчання під час вивчення біології та основ здоров’я зумовлена особливостями цих навчальних предметів (необхідність проведення спостережень та експериментів, демонстрування природних об’єктів і наочних посібників, моделювання поведінки людини у різних ситуаціях, відпрацювання навичок безпечної для здоров’я поведінки), а також особливостями і потребами сучасних учнів. З’ясовано, що особливістю цифрових технологій навчання є електронні транзакції, що передбачають використання Інтернету. Обґрунтовано, що використання цифрових технологій у процесі вивчення біології та основ здоров’я надає можливості знайомити учнів із процесами, які в реальних умовах проходять упродовж місяців, років і століть; демонструвати особливості будови об’єктів живої природи, їх процесів життєдіяльності та механізми біологічних процесів у динаміці; проводити експерименти з моделями біологічних систем та явищ; демонструвати явища, що мають звукове відображення; проводити лабораторні і практичні роботи у віртуальних лабораторіях; здійснювати поточний і тематичний контроль знань учнів; забезпечити зручний перегляд, швидке отримання та доцільне використання навчальних матеріал та ін. Для інформаційної підтримки уроків біології та основ здоров’я розроблено навчальні ресурси за допомогою онлайн-сервісів Genially, Learning-Apps і Kahoot! Розроблені ресурси (інтерактивні презентації, плакати, тести, навчальні фільми, анімації, картки, схеми, модулі) дадуть викладачам змогу здійснювати перевірку знань учнів, а учням – закріплювати знання в ігровій формі, покращити сприймання навчального матеріалу, ефективно поєднувати новий навчальний матеріал із уже засвоєним.
APA, Harvard, Vancouver, ISO, and other styles
11

Сорокопуд, Марія Андріївна. "Хмарні засоби навчання фізики." New computer technology 12 (December 25, 2014): 317–21. http://dx.doi.org/10.55056/nocote.v12i0.727.

Full text
Abstract:
Метою дослідження є огляд хмарних засобів, які можуть бути використані в процесі навчання фізики у вищій школі. Задачами дослідження є аналіз основних варіантів використання хмарних технологій у навчальному процесі, класифікація хмарних засобів навчання фізики, вибір віртуальних фізичних лабораторій та моделюючих програмних засобів. Об’єктом дослідження є процес навчання фізики у вищих навчальних закладах. Предметом дослідження є використання хмарних засобів в процесі навчання фізики у вищій школі. Використані методи дослідження: аналіз наукових публікацій. Результати дослідження. В роботі виділено та розглянуто віртуальні фізичні лабораторії та моделюючі програмні засоби, за допомогою яких стає можливою візуалізація фізичних процесів та активізація навчальної діяльності студентів з фізики. Основні висновки і рекомендації. Дослідження та впровадження в практику діяльності вищих навчальних закладів хмарних технологій надасть можливість створити освітнє середовище для студентів і викладачів.
APA, Harvard, Vancouver, ISO, and other styles
12

Лукашенко, Тетяна Федорівна, Ніна Федорівна Кущевська, and Віктор Володимирович Малишев. "Створення науково-освітньої лабораторії з нанотехнологій – необхідний крок освітньої діяльності в цій галузі." Освітній вимір 48 (May 11, 2016): 67–72. http://dx.doi.org/10.31812/educdim.v48i0.2392.

Full text
Abstract:
Лукашенко Т. Ф., Кущевська Н.Ф., Малишев В. В. Створення науково-освітньої лабораторії з нанотехнологій – необхідний крок освітньої діяльності в цій галузі. У статті висвітлено питання створення науково-освітніх лабораторій з нанотехнологій у вищих навчальних закладах, визначення цілей та завдання їх діяльності. Методологіядослідження становила аналіз останніх документів і публікацій та результати власної діяльності в цій галузі. Показано, що створення науково-освітньої лабораторії знанотехнологій – необхідний крок освітньої діяльності. Практичне занчення роботи полягає в систематизації досвіду створення науково-освітньої лабораторії з нанотехнологій. Подальші наукові розвідки полягатимуть у подальшій практиці створення науково-освітньої лабораторії.
APA, Harvard, Vancouver, ISO, and other styles
13

Ванькевич, Дмитро Євгенійович. "Навчальний полігон на базі дистрибутиву Proxmox VE для проведення лабораторних робіт з курсу «Системне адміністрування ОС Linux»." Theory and methods of e-learning 4 (February 13, 2014): 25–29. http://dx.doi.org/10.55056/e-learn.v4i1.365.

Full text
Abstract:
Виконання лабораторних робіт в рамках курсу «Системне адміністрування ОС Linux» вимагає наявності більше ніж одного комп’ютера на одного студента. Наприклад, проведення лабораторних робіт із встановлення та налагодження маршрутизатора передбачає, як мінімум, наявності двох комп’ютерів: маршрутизатора і робочої станції.Одним з варіантів є використання у якості маршрутизаторів старих комп’ютерів, звісно, за їх наявності. Але такі комп’ютери мають вже відпрацьований ресурс і, як наслідок, невелику надійність. Тому в ході виконання лабораторної роботи важко визначити причину, через яку виникла помилка – внаслідок неправильного конфігурування програмного забезпечення чи через апаратну несправність. До того ж апаратне забезпечення застарілої ПЕОМ може не відповідати вимогам сучасного програмного забезпечення.Також можливий варіант, коли студенти об’єднуються у групи для вивільнення необхідної кількості комп’ютерів. Лабораторні роботи з встановлення маршрутизатора передбачають наявність в ПЕОМ двох мережевих контролерів, для чого потрібно встановити в системному блоці ще один мережевий контролер, а також замінити жорсткий диск з робочою операційною системою на інший. На жаль, така можливість є не завжди через відсутність додаткових жорстких дисків та мережевих контролерів або через умови гарантійного обслуговування комп’ютерної техніки, які не дозволяють відкривати опломбовані системні блоки.Оптимальним варіантом, на думку автора, є використання технологій віртуалізації [1; 2]. В якості системи віртуалізації було використано дистрибутив з вільним вихідним кодом Proxmox Virtual Environment (Proxmox VE), який дозволяє використовувати у якості гіпервізорів KVM (Kernel-based Virtual Machine) та OpenVZ [3].Для виконання лабораторних робіт був створений полігон, схема якого зображена на рис. 1.Для кожної групи студентів були створені користувачі в системі Proxmox VE (grp00..grp5). Кожному з користувачів було надано доступ до двох віртуальних машин і до сховища, де зберігаються ISO-образи з операційними системами. Причому, з міркувань безпеки, доступ до параметрів конфігурації віртуальних машин був примусово обмежений. Користувач мав право змінювати тільки один параметр – назву файла з образом операційної системи. На рис. 2 зображено інтерфейс керування віртуальними машинами, які доступні користувачу grp00. Комп’ютерна лабораторія під’єднана до загальноуніверситетської мережі через маршрутизатор комп’ютерної лабораторії. Це дає змогу уникнути небажаних наслідків у разі неправильного конфігурування ПЕОМ в лабораторії. Мережа лабораторії розділена на підмережі (рис. 1). У підмережу 192.168.30.X увімкнені фізичні ПЕОМ, маршрутизатор та фізичний комутатор а також сервер віртуальних машин з системою віртуалізації Proxmox VE. На сервері віртуальних машин створено декілька віртуальних підмереж з віртуальними маршрутизаторами та комутаторами. Підмережа 192.168.34.X створена з метою унеможливити втрату непрацездатності комп’ютерної лабораторії через некоректне конфігурування студентами віртуальних маршрутизаторів grp00 – grp05. Підмережі 192.168.1.X – 192.168.6.X створені, відповідно, для користувачів grp00 – grp05. Інтерфейс керування для створення віртуальних комутаторів зображено на рис. 3, де vmbr0 – віртуальний комутатор підмережі 192.168.30.X, за допомогою якого здійснюється під’єднання до ПЕОМ та маршрутизатора і комутатора навчальної лабораторії, vmbr34 – віртуальний комутатор підмережі 192.168.34.X, vmbr9000 – vmbr9005 – віртуальні комутатори підмереж 192.168.1.X – 192.168.6.X.Студенти з ПЕОМ навчальної лабораторії за допомогою Інтернет-переглядача мають доступ до екранів своїх віртуальних машин (рис. 4). У разі втрати працездатності підмереж 192.168.30.X та 192.168.1.X – 192.168.6.X доступ до екранів віртуальних машин збережеться завдяки тому, що ПЕОМ навчальної лабораторії та сервер віртуальних машин знаходяться в підмережі 192.168.30.X, доступ до якої студентам заборонено. Наведену схему навчального полігону можна використовувати у комп’ютерних класах загального використання, тому що вона не потребує зміни критичних параметрів операційної системи на ПЕОМ класу і зводить ризик втрати працездатності комп’ютерного класу до мінімуму.У разі виникнення потреби збільшення обчислювальної потужності можна використати декілька серверів віртуальних машин, об’єднавши їх у кластер [4].
APA, Harvard, Vancouver, ISO, and other styles
14

ЄСІКОВА, Ірина. "ТЕНДЕНЦІЇ РОЗВИТКУ ІНКЛЮЗИВНОЇ ОСВІТИ ПІД ЧАС ВИВЧЕННЯ ХІМІЇ В УМОВАХ ДИСТАНЦІЙНОГО НАВЧАННЯ В ЗАКЛАДАХ ЗАГАЛЬНОЇ СЕРЕДНЬОЇ ОСВІТИ." Acta Paedagogica Volynienses, no. 3 (October 27, 2021): 219–24. http://dx.doi.org/10.32782/apv/2021.3.32.

Full text
Abstract:
У статті висвітлено тенденції розвитку інклюзивної освіти під час вивчення хімії в умовах дистанційно- го навчання. Розглянуто поняття «віртуальна лабораторія», охарактеризовано види віртуальних засобів, що надають можливість всім учасникам навчального процесу, незалежно від фізичних можливостей робити хімічні експерименти та актуальність їх застосування в інклюзивному середовищі закладів загальної середньої освіти. Мета статті полягає в аналізі віртуальних хімічних лабораторій та їх можливостей, перевірці їх ефектив- ності під час навчання дітей з особливими освітніми потребами. Проаналізовано літературні джерела із вико- ристання віртуального хімічного експерименту на уроках хімії під час навчання дітей з особливими потребами. На основі досліджень визначено переваги та недоліки використання віртуальних лабораторій, їх позитивний вплив на процес навчання дітей з особливими потребами. Здійснено огляд сучасних віртуальних хімічних засобів навчання котрі доцільно використовувати в інклю- зивному середовищі під час вивчення хімії. Наведено приклади віртуальних хімічних лабораторій, котрі визнані в Україні та за її межами, а саме: ChemCollective, phet.colorado.edu, Chemist Free- Virtual Chem Lab, VirtuLab. Описано їх функціональні можливості та методику застосування як спеціально розроблених програмних засобів, для застосування в освітніх цілях в інклюзивному середовищі закладів загальної середньої освіти. Встановлено, що віртуальні хімічні лабораторії дають змогу виконувати хімічний експеримент всім, неза- лежно від фізичних особливостей учнів. Надають можливість учням котрі були відсутні на занятті виконувати досліди, забезпечують індивідуальний темп виконання досліду та мотивують до засвоєння нового матеріалу шляхом роботи в віртуальному середовищі. Отже, проведення хімічних експериментів за допомогою віртуальних лабораторій дозволяє ефективно вирі- шити низку навчальних задач таких як безпечність для здоров’я учнів, фінансова недоступність та можливість навчатися та виконувати досліди в період пандемії та дистанційного навчання. Вказано перспективні напрями продовження дослідження.
APA, Harvard, Vancouver, ISO, and other styles
15

Кононец, Н. В. "РОЛЬ ІНФОРМАЦІЙНО-ОСВІТНЬОГО СЕРЕДОВИЩА ЗАКЛАДУ ВИЩОЇ ОСВІТИ ПРИ РЕСУРСНО-ОРІЄНТОВАНОМУ НАВЧАННІ СТУДЕНТІВ У ВИЩІЙ ШКОЛІ." Засоби навчальної та науково-дослідної роботи, no. 51 (2018): 31–45. http://dx.doi.org/10.34142/2312-1548.2018.51.03.

Full text
Abstract:
У статті автор розкриває роль інформаційно-освітнього середовища закладу вищої освіти при ресурсно-орієнтованому навчанні студентів у вищій школі. Інформаційно-освітнє середовище закладу вищої освіти як дидактична основа ресурсно-орієнтованого навчання студентів у вищій школі представлене як педагогічна система, що об’єднує в собі інформаційні освітні ресурси, комп’ютерні засоби навчання, засоби управління навчальним процесом, педагогічні прийоми, методи і технології, направлені на формування інтелектуально-розвиненої соціально-значущої творчої особистості, що володіє необхідним рівнем професійних знань, умінь і навичок для ефективного функціонування в інформаційному суспільстві. Компонентами інформаційно-освітнього середовища закладу вищої освіти є суб’єктно-ресурсний, матеріально-технічний, дидактичний, технологічний компоненти та веб-система закладу вищої освіти. Суб’єктно-ресурсний компонент визначає користувачів, розробників та учасників середовища, консолідує ресурси закладу вищої освіти для створення та розвитку середовища: кадрові, матеріально-технічні, навчально-методичні, фінансові та інформаційні ресурси. Матеріально-технічний компонент містить аудиторії, лабораторії, спеціальні кабінети, бібліотека закладу вищої освіти як комплексний медіацентр, що забезпечує доступ до інформації, комп’ютерна техніка, мультимедійні пристрої, комп’ютерні мережі тощо. Дидактичний компонент містить форми, методи та засоби навчання студентів, які, разом з традиційними, реалізуються за допомогою програмно-технічних і телекомунікаційних засобів (дистанційне, змішане, мобільне навчання). Технологічний компонент забезпечує доступ до навчальної інформації завдяки сучасним інтернет-технологіям, можливості розробки електронних освітніх ресурсів, організацію технологій взаємодії (інтерактивної, мобільної, візуальної). Веб-система закладу вищої освіти як компонент його інформаційно-освітнього середовища є об’єднуючим для усіх чотирьох компонентів – сукупність веб-сайтів, об’єднаних офіційним веб-сайтом. Розглянуто важливі складові інформаційно-освітнього середовища ВНЗ Укоопспілки «Полтавський університет економіки і торгівлі»: Головний центр дистанційного навчання, віртуальне навчальне середовище Інституту економіки, управління та інформаційних технологій, електронні навчально-методичні комплекси дисциплін, створені у вигляді дистанційних курсів за допомогою сервісу https://sites.google.com/.
APA, Harvard, Vancouver, ISO, and other styles
16

Олексюк, Наталя Василівна. "Про можливості використання хмарних технологій у роботі вчителів початкових класів." New computer technology 13 (December 25, 2015): 41–45. http://dx.doi.org/10.55056/nocote.v13i0.881.

Full text
Abstract:
Мета дослідження полягає у визначенні актуальності використання хмарних технологій для роботи з молодшими школярами. Завдання дослідження: розглянути хмарні сервіси та окреслити перспективи використання хмарних технологій у навчально-виховному процесі. Об’єкт дослідження: використання хмарних технологій у професійній діяльності вчителів початкових класів. Предмет дослідження: можливості використання хмарних технологій у роботі вчителів початкових класів. Методи дослідження: описовий (аналіз джерельної бази, вивчення урядових документів). Основні висновки і рекомендації: на сьогоднішній день, використання хмарних технологій в сфері освіти сприяє вдосконаленню процесу підготовки учнів. Наявність електронних посібників та інших навчальних матеріалів у поєднанні з хмарними технологіями дає можливість школярам поповнювати знання в будь-який час, маючи доступ до віддалених освітніх ресурсів. Зокрема, відкриваються додаткові можливості одержання освіти дітям з особливими потребами. Використання хмарних технологій надає можливість створювати віртуальні навчальні класи та проводити online заходи: позакласні уроки, лабораторні роботи, тематичні вечори, виховні заходи тощо.
APA, Harvard, Vancouver, ISO, and other styles
17

Samoilenko, Oleksandr M. "СТВОРЕННЯ НОРМАТИВНОЇ БАЗИ НАВЧАЛЬНОГО ПРОЦЕСУ ВНЗ ЯК ЗАСІБ ЗАБЕЗПЕЧЕННЯ ДИСТАНЦІЙНОЇ ФОРМИ НАВЧАННЯ СТУДЕНТІВ." Information Technologies and Learning Tools 35, no. 3 (June 22, 2013): 99–105. http://dx.doi.org/10.33407/itlt.v35i3.829.

Full text
Abstract:
У статті наведено обґрунтування положень, що становлять нормативну базу забезпечення дистанційної форми навчання бакалаврів-учителів математики в університеті; розкрито функції відділу дистанційної освіти, навчально-методичної лабораторії дистанційного навчання й експертної комісії, сутність інформаційних ресурсів і банку веб-ресурсів; охарактеризовано кадрове, навчально-методичне та матеріально-технічне забезпечення дистанційного навчання; наведено посадові інструкції системного адміністратора, методиста відділу дистанційної освіти, техніка відділу дистанційної освіти; описано види занять за дистанційною формою навчання й особливості функціонування персональних навчальних веб-ресурсів викладачів.
APA, Harvard, Vancouver, ISO, and other styles
18

Носиков, Александр Сергеевич, Игорь Николаевич Сидоров, and Анатолий Алексеевич Таран. "Про використання системи дистанційного навчання для викладання курсу фізики в національному аерокосмічному університеті ім. М. Є. Жуковського «ХАІ»." New computer technology 4 (October 31, 2013): 45–46. http://dx.doi.org/10.55056/nocote.v4i1.23.

Full text
Abstract:
Співробітниками кафедри фізики спільно з лабораторією дистанційного навчання ХАІ розроблений підручник за фахом «Фізика».У розробці використовувався комплекс MENTOR.Програмний комплекс MENTOR використовується як інформаційно-програмне середовище дистанційного навчання та призначений для управління навчальним процесом, навчально-методичного забезпечення та контролю знань, а також забезпечення зворотного зв'язку зі студентами заочного факультету, які навчаються на віддалених навчально-консультаційних пунктах університету «ХАІ».
APA, Harvard, Vancouver, ISO, and other styles
19

Pasov, Hennadii, and Volodymyr Venzhega. "АНІМАЦІЙНЕ МОДЕЛЮВАННЯ ГІДРОЦИЛІНДРІВ ТА ПНЕВМОКАМЕР ДЛЯ СТВОРЕННЯ ПРЯМОЛІНІЙНОГО ПОСТУПАЛЬНОГО РУХУ." TECHNICAL SCIENCES AND TECHNOLOG IES, no. 4 (14) (2018): 34–40. http://dx.doi.org/10.25140/2411-5363-2018-4(14)-34-40.

Full text
Abstract:
Актуальність теми дослідження. Сучасна освіта має бути яскравою, чіткою, швидкою й дешевою. Використання анімаційного моделювання і дає змогу досягти цього. Постановка проблеми. Освіта є основою будь-якого суспільства. Нині в процесі вивчення ізноманітних навчальних дисциплін використовується багато джерел різноманітної інформації: підручники, посібники, журнали, нтернет. У сучасних умовах широкі можливості відкриває використання в навчальному процесі персональних комп’ютерів (ПК) і високоінтелектуальних програмних продуктів. Аналіз останніх досліджень і публікацій. Традиційно при засвоєнні будь-якої навчальної дисципліни студент повинен вивчити її на лекціях, лабораторних та практичних заняттях. Але при цьому як методичний наочний матеріал використовуються, здебільшого, ілюстрації зовнішнього вигляду, будови та конструкції різноманітних механізмів у вигляді двовимірних статичних схем елементів. Саме використання ПК та відповідних програмних продуктів і дає змогу вдосконалити навчальний процес (та освіту загалом), надаючи йому інтенсивності та інтерактивного змісту. Виділення недосліджених частин загальної проблеми. Для вдосконалення навчального процесу необхідно запропонувати анімаційні моделі для створення прямолінійного поступального руху за допомогою гідроциліндрів та пневмокамер. Постановка завдання. Метою цієї роботи є демонстрація можливостей анімаційного моделювання прямолінійного поступального руху механізмів за допомогою гідроциліндрів та пневмокамер. Виклад основного матеріалу. У Чернігівському національному технологічному університеті (ЧНТУ) на кафедрі «Автомобільний транспорт та галузеве машинобудування» для вивчення навчальних дисциплін «Підйомно-транспортне обладнання і роботи», «Спеціалізований рухомий склад автотранспортних і вантажно-розвантажувальних машин», «Обладнання та транспорт механоскладальних цехів», «Промислові роботи», «Металообробне обладнання» розроблено навчальні продукти: «Анімація роботи гідроциліндрів для створення прямолінійного поступального руху» та «Анімація роботи пневмокамер для створення прямолінійного поступального руху». Анімація розроблена для лабораторій «Промислові роботи» з реальними роботами: МП-11, М10П, М20П, РМ-01 та «Металообробне обладнання». Висновки відповідно до статті. Запропоновані програмні продукти дозволяють зробити процес навчання більш яскравим, наочним та дешевим. Запропоновані програмні продукти мають деяке обмеження, зокрема відсутня можливість інтерактивного керування цими механізмами. Тому перспективним напрямком подальших досліджень є створення візуалізації впливу конструктивних та експлуатаційних параметрів на роботу механізмів.
APA, Harvard, Vancouver, ISO, and other styles
20

Шпіца, Роксолана, and Вікторія Тітова. "ОСОБЛИВОСТІ ВИКОРИСТАННЯ ІКТ НА УРОКАХ МИСТЕЦТВА." Молодий вчений, no. 11 (99) (November 30, 2021): 201–4. http://dx.doi.org/10.32839/2304-5809/2021-11-99-45.

Full text
Abstract:
У статті розглянуто реалізацію інформаційно-комунікативних технологій на уроках мистецтва. Обгрунтовано важливість застосування сучасних комп’ютерних засобів у навчальній шкільній практиці. Зазначено, що впровадження ІКТ у навчальний процес сучасного школи відкриває перспективи для розвитку творчості здобувачів освіти. Виокремлено та проаналізовано комп’ютерні програми, мобільні додатки та музичні лабораторії, які можна ефективно застосовувати на уроках мистецтва у початковій школі під час оффлайн та онлайн навчання. Окреслено їх варіативність у практичному застосуванні. що сприятиме урізноманітненню сучасних уроків мистецтва.
APA, Harvard, Vancouver, ISO, and other styles
21

Хмель, Оксана Валеріївна, and Юрій Олександрович Дорошенко. "Структурно-функціональна схема організації дистанційного навчання інформатики." Theory and methods of learning fundamental disciplines in high school 1 (April 19, 2014): 244–50. http://dx.doi.org/10.55056/fund.v1i1.442.

Full text
Abstract:
Впродовж XXI століття людство має остаточно сформувати постіндустріальне інформаційне суспільство. Стратегічним завданням та головною метою функціонування такого суспільства є забезпечення соціального добробуту кожної людини шляхом створення, розвитку й застосування високих наукоємних технологій. Зазначене вимагає суттєвих змін у багатьох сферах життєдіяльності людини, зокрема, й у освіті.Дистанційне навчання (ДН) є однією з найбільш перспективних форм сучасної організації навчального процесу. ДН повною мірою відповідає вимогам, що ставляться перед освітою “інформаційним суспільством”, і базується на широкому використанні можливостей і засобів комп’ютерно-інформаційних та телекомунікаційних технологій. ДН є доступним, масовим, гнучким, ресурсоємним, інтерактивним, створює умови щодо практичної реалізації гуманізації, індивідуалізації та диференціації навчання.Використання елементів ДН студентами, які навчаються заочно, за умов належної підготовки навчально-методичного забезпечення та організації його використання може помітно підвищити ефективність навчального процесу та закріпити і розвинути навички та вміння студентів.Виходячи з загальнодидактичних принципів відбору змісту, організації та функціонування дистанційного навчання, розроблено (рис. 1) узагальнену структурно-функціональну схему (архітектоніку) дистанційного навчального курсу (ДНК).За пропонованою схемою курс має інтегрований характер і складається з п’яти функціонально-узгоджених блоків: організаційно-методичного, навчального, комунікативного, ідентифікаційно-контролюючого та інформаційно-довідкового.Наведемо стислу характеристику кожного з блоків відповідно до тематичної спрямованості створюваного курсу ДН “Інформатика. Інформаційні технології” для студентів фізико-математичних факультетів педагогічних вузів. Рис. 1. Ядро навчального блоку становить власне автоматизований навчальний курс (навчально-методичне забезпечення в електронному вигляді). Комунікативний блок призначений для реалізації навчального діалогу студент–викладач, а також спілкування з іншими учасниками навчального процесу з даного навчального закладу. Ідентифікаційно-контролюючий блок складається з завдань та контрольних робіт, призначених для визначення рівня навчальних досягнень студента після вивчення ним певного навчального модуля (теми); змісту індивідуальних творчих завдань і групових проектів. Інформаційно-довідковий блок має надавати необхідну інформацію за відповідним запитом користувача (пояснення, зразки виконання завдань, вказівки тощо); містити довідкові матеріали з предметної області навчального курсу. Організаційно-методичний блок має надавати інформацію щодо цілей, навчальних задач дисципліни, включати стислу характеристику змісту тем навчальної програми, порядок та рекомендації по вивченню дисципліни у режимі ДН.З метою висвітлення специфічних особливостей курсу “Інформатика. Інформаційні технології” розглянемо структуру та зміст кожного з п’яти блоків пропонованого ДНК.Організаційно-методичний блокзабезпечує виконання організаційної та навчальної функцій дистанційного навчання. Цей блок містить:загальну інформацію про курс (що вивчає дана дисципліна, цілі та задачі курсу, актуальність та практична значущість, зв’язок з іншими предметами обраної спеціальності тощо);навчальну програму курсу (перелік тем та їх короткий зміст);рекомендації щодо організації процесу навчання, зокрема:як працювати з інформаційним наповненням курсу;що повинен знати і вміти студент у результаті вивчення курсу;форми та засоби контролю;як готуватись до складання тестів, виконувати проекти;навчальний план та графік вивчення дисципліни:назви тем та рекомендована послідовність їх вивчення;орієнтовна кількість годин на вивчення кожної теми курсу з диференціацією за видами навчальної діяльності;теми дискусій (з переліком основних питань) та час їх проведення;тематика проектів і термін їх виконання.Стратегічною метою вивчення курсу “Інформатика. Інформаційні технології” є формування основ інформаційної культури та комп’ютерно-технологічної компетентності, що передбачає формування в студентів теоретичної бази знань з основ інформатики, практичних умінь і стійких навичок використання сучасних засобів інформаційно-комунікаційних технологій у повсякденній діяльності студентів. Загальна кількість і тематичний розподіл навчальних годин та навчального матеріалу ДНК повинно відповідати цілі навчання.Навчальний блокдисципліни “Інформатика. Інформаційні технології” складається з системного курсу лекцій, вправ, практичних і лабораторних робіт, проектів.Лекції являють собою одну з найважливіших форм навчальних занять та складають основу теоретичної підготовки студентів. Лекції призначені для формування систематизованої основи наукових знань дисципліни, концентрації уваги на вузлових та на найбільш важких для засвоєння питаннях. Лекція являє собою систематичне проблемне викладання учбового матеріалу з деякого питання, теми, розділу, предмета.На відміну від традиційних аудиторних лекцій, дистанційні лекції виключають живе спілкування студента з викладачем. Дистанційні лекції можуть подаватися по-різному: у вигляді запису на аудіо чи відеокасетах, або в електронному варіанті. Електронні лекції (ЕЛ) зазвичай являють собою певний набір навчальних матеріалів у електронному виді. Окрім тексту лекцій, вони включають у себе додаткові матеріали з довідників, інших учбових та методичних посібників, перелік адрес тематичних веб-сайтів тощо. За наявності ЕЛ студент має можливість багаторазово звертатися до незрозумілих моментів, вивчати чи аналізувати навчальний матеріал у зручний для себе час. Крім того, за текстом лекцій легше проглядається загальна структура та змістове наповнення всього курсу.Для перевірки правильності розуміння, осмислення теоретичного матеріалу, закріплення набутих знань та формування певних умінь і навичок передбачається виконання всіма студентами комплексу спеціально підібраних вправ.Практичні роботи передбачають виконання практичних завдань з метою закріплення навчального матеріалу та вироблення стійких умінь і навичок. Практичні роботи вимагають виконання деякого алгоритму, який складається з 5–7 кроків (вправ).Лабораторні роботи мають творчий характер, містять елементи самостійного наукового дослідження та направлені на усвідомлене застосування студентами здобутих під час виконання роботи знань, умінь і навичок для розв’язання поставленого проблемного завдання та вироблення власних висновків.Проекти. На відміну від лекцій та практичних завдань, проекти передбачають як індивідуальне, так групове (у режимі творчого співробітництва) їх виконання. Практично це реалізується завдяки мережі Інтернет, зокрема, чатів та телеконференцій.Самостійна робота. Ця форма навчального процесу є однією з основних у системі дистанційного навчання (СДН). Самостійна робота студентів організаційно може бути індивідуальною, парною та груповою та здійснюватись засобами мережі Інтернет.Комунікативний блокпризначений для реалізації спілкування студента з викладачем та іншими студентами, які вивчають цей курс. Студенти звертаються до викладача за консультаціями та поясненнями, а також спілкуються між собою з питань спільного виконання поставлених завдань. Комунікативна діяльність студентів під час дистанційного навчання триває постійно і здійснюється за допомогою таких можливостей мережі Інтернет: телеконференції, електронна пошта, дискусії, чати.Спілкування може відбуватись як у пасивному, так і активному режимі. Пасивний режим дозволяє працювати асинхронно, тобто в будь-який зручний для студента час у так званому „нереальному” (off-line) часі. До засобів такого спілкування можна віднести електронну пошту, списки розсилок та дискусії. Активний режим дозволяє двом або більше комунікантам працювати синхронно (одночасно) у реальному (on-line) часі. Активний режим спілкування забезпечують електронні конференції, у тому числі чати та телеконференції.Електронна пошта (e-mail) – один із режимів (послуг), який дозволяє викладачу та студентам обмінюватися будь-якими повідомленнями (текстовими, графічними, звуковими) у зручний для себе час. Таким чином, ЕП може використовуватись для невербального спілкування учасників навчального процесу. Крім того, ЕП можна використовувати для пересилки файлів та баз даних.Списки розсилок (mailing lists). Використання режиму „списки розсилок” мережі Інтернет надає можливість надання одноманітної інформації певній групі користувачів.Дискусійна група. Кожне повідомлення, відправлене в дискусійну групу будь-яким її учасником, автоматично розсилається усім учасникам. Викладач також є одним з учасників цього процесу. Учасники читають повідомлення, які надсилають інші члени дискусійної групи, та відправляють свої відповіді на повідомлення, але цей процес відбувається у пасивному режимі.Електронні конференції (ЕК) завдяки мережі Інтернет дозволяють отримувати користувачу тексти повідомлень, які передають учасники конференцій, віддалені один від одного. Тобто, ЕК об’єднують коло користувачів у складі учбової групи, які розділені поміж собою у часі та у просторі.Чати. Різновидом ЕК є чати. Спілкування учасників чату відбувається у режимі реального часу. Учасники надсилають свої повідомлення, які отримуються з невеликою затримкою, та одразу ж відповідають на них.Телеконференції забезпечують можливість двостороннього зв’язку між викладачем та студентом. Завдяки їм можлива передача у реальному часі відеозображення, звука, графіки.Консультації. Передбачається проведення запланованих та незапланованих консультацій. Графік запланованих консультацій складається заздалегідь. Ці консультації реалізуються у режимі телеконференцій або чатів. Незаплановані консультації відбуваються за наявності у студентів запитань щодо вивчення окремих тем курсу. У цьому разі використовується електронна пошта: студент надсилає свої запитання викладачу, а той –відповіді на них. Заплановані консультації мають, як правило, колективний характер з чіткою регламентацією у часі (початок і тривалість), а незаплановані консультації відбуваються переважно в індивідуальному режимі.Ідентифікаційно-контролюючий блокмістить завдання та контрольні роботи, які мають як проміжний, так і підсумковий характер. Головними формами контролю є вправи, практичні, лабораторні та контрольні роботи, проекти (вони розглянуті у навчальному блоці). Проведення підсумкового контролю передбачається з використанням засобів відеоконференцзв’язку.Моніторинг процесу ДН передбачає отримання:підсумкових результатів навчальної роботи студента;результатів діагностики навчально-пізнавальної діяльності;аналіз результатів різних видів контролю.Інформаційно-довідковий блок складається з довідкових матеріалів, у ролі яких може виступати електронна бібліотека, глосарій та література, яка була використана для реалізації навчального курсу.Інформаційно-довідкові навчальні матеріали містять вказівки, коментарі щодо виконання окремих завдань, пояснення та зразки вправ.Електронна бібліотека являє собою структурований набір альтернативних підручників, учбових посібників, статей, комп’ютерних програм навчального призначення, представлених у електронному варіанті й доступних через мережу Інтернет.Література представлена у вигляді повнофункціональної бази даних, що містить список рекомендованої для вивчення літератури та список джерел, які були використані для підготовки навчального матеріалу.Глосарій реалізується у вигляді електронної інформаційно-пошукової системи і містить всі терміни (що згадуються у навчальному матеріалі) та їх тлумачення.Таким чином, у цій статті пропонується узагальнена п’ятиблокова структурно-функціональна схема організації дистанційного навчання. У процесі створення курсу ДН з певної дисципліни змістове наповнення кожного із зазначених блоків повинно визначатись специфічними особливостями самої дисципліни та передбачуваними видами і характером навчальної діяльності та формами навчального процесу. Зазначене продемонстровано для дисципліни "Інформатика. Інформаційні технології".
APA, Harvard, Vancouver, ISO, and other styles
22

D.S., Malchykova, Molikevych R.S., and Saf’yanyk I.S. "IMITATION AND GAME STEM TECHNOLOGIES AND PRACTICES IN LESSONS OF NATURAL AND MATHEMATICAL CYCLE." Scientific Bulletin of Kherson State University. Series Geographical Sciences, no. 14 (July 22, 2021): 79–86. http://dx.doi.org/10.32999/ksu2413-7391/2021-14-9.

Full text
Abstract:
The article characterizes the main aspects of STEM-education: the development of critical thinking, integrated learning, active communication of all participants in the learning process, non-standard and innovative approaches and directions of STEM-education development. Its active introduction in teaching natural sciences and mathematics of secondary schools, especially the use of STEM-technologies in teaching. A well-organized, good STEM lesson is, first of all, a coordinated and motivated learning process, where each activity is of special interest and is accessible and understandable for students. To develop this type of training, the teacher must first think in a non-standardized and comprehensive way, experiment and usually constantly improve themselves to achieve the desired result. When designing a quality lesson in STEM format, special attention should be paid to the peculiarities of its creation and organization, namely: all students should form a single joint mechanism of interaction and be actively involved in the productive solution of real situations or problems; it is advisable to invite students to develop their own demonstration models or prototypes; in order to achieve the set goal and produce a truly high-quality innovative product, it is important to work effectively in a team that will work as a single coordinated mechanism, where each of the participants has a task. Following the path of innovative development, the teacher first of all diversifies his pedagogical approach to the presentation of educational material and expands the possibilities of its perception and assimilation by students.Innovative integrated approach to teaching is one of the ways that combines both STEM elements and non-standard forms of presenting information to students. Educational sites, simulation simulators, modern virtual laboratories such as: “VirtuLab”, laboratory – “GoogleSites”, online laboratories “GoLab / Graasp” and interesting, interactive, worksheets: “Liveworksheets” are highly effective in conducting STEM-classes. allowing students to conduct virtual exciting and cognitive experiments in physics, geography, chemistry, biology, ecology and other subjects, in three-dimensional and two-dimensional spaces. STEM-educational space is multidisciplinary, competence-oriented and provides the formation of a unique set of cognitive and social skills, in particular: the ability to identify, pose and solve problems, interact with others in different social and cognitive situations, critically evaluate events and phenomena, motivate and move common goal, etc.Key words: STEM-education, STEM-training, STEM-competencies, STEM-lesson, STEM-games. Стаття характеризує основні аспекти STEM-освіти: розвиток критичного мислення, інтегро-ваного навчання, активного спілкування всіх учасників освітнього процесу, нестандартних та інноваційних підходів та напрямків розвитку природничо-математичної освіти. Активне впровадження STEM-технологій у навчанні перш за все забезпечує злагоджений та мотивований про-цес навчання, де кожна діяльність викликає особливий інтерес та є доступною та зрозумілою для учнів. Щоб забезпечувати такий тип навчання, викладач повинен спочатку мислити нестандартизовано і всебічно, експериментувати і, як правило, постійно вдосконалюватись для досягнення бажаного результату. При розробці якісного уроку у форматі STEM особливу увагу слід звернути на особливості його створення та організації, а саме: усі учні повинні формувати єдиний спільний механізм взаємодії та брати активну участь у продуктивному вирішенні реальних ситуацій чи про-блем; доцільно запросити студентів розробити власні демонстраційні моделі чи прототипи; для досягнення поставленої мети та виробництва справді якісного інноваційного продукту важливо ефективно працювати в команді, яка працюватиме як єдиний злагоджений механізм, де кожен із учасників має своє завдання. Рухаючись шляхом інноваційного розвитку, учитель насамперед урізноманітнює свій педагогічний підхід до викладу навчального матеріалу та розширює можливості його сприйняття та засвоєння учнями. Інноваційний інтегрований підхід до навчання - один із способів, що поєднує як елементи STEM, так і нестандартні форми подання інформації учням. Навчальні сайти, імітаційні тренажери, сучасні віртуальні лабораторії, такі як: «VirtuLab», лабораторія –«GoogleSites», онлайн-лабораторії «GoLab / Graasp» та цікаві, інтерактивні робочі аркуші («Liveworksheets») дуже ефективні у проведенні STEM-класів. Вони дозволяють учням проводити віртуальні захоплюючі та когнітивні експерименти з фізики, географії, хімії, біології, екології та інших предметів, у тривимірних та двовимірних просторах. STEM-освітній простір мультидисциплінарний, орієнтований на компетентністний підхід і забезпечує формування унікального набору когнітивних та соціальних навичок, зокрема: здатність виявляти, ставити та вирішувати проблеми, взаємодіяти з іншими в різних соціальних і пізнавальних ситуаціях, кри-тично оцінювати події і явища, мотивувати та рухатися до спільної мети тощо.Ключові слова: STEM-освіта, STEM-навчання, STEM-компетентності, STEM-урок, STEM-ігри.
APA, Harvard, Vancouver, ISO, and other styles
23

Борейко, Володимир, Андрій Ясінський, and Олена Яницька. "ПСИХОЛОГО-ПЕДАГОГІЧНІ ОСОБЛИВОСТІ ВИКОРИСТАННЯ ІНФОРМАЦІЙНО-КОМП’ЮТЕРНИХ ТЕХНОЛОГІЙ В УМОВАХ ДИСТАНЦІЙНОГО НАВЧАННЯ." Психологія: реальність і перспективи, no. 16 (July 1, 2021): 27–36. http://dx.doi.org/10.35619/praprv.v1i16.211.

Full text
Abstract:
У статті розкрито можливості використання інформаційно-комп’ютерних технологій для запровадження дистанційних форм навчання. Визначено об’єктивну необхідність впровадження дистанційних технологій навчання для забезпечення підготовки вітчизняними закладами вищої освіти спеціалістів, які б відповідали вимогам сучасного інформаційного суспільства. Презентовано ідеї створення сприятливого середовища для здобувачів освіти, що поєднують трудову і навчальну діяльність чи мають особливі освітні потреби. Окреслено переваги використання інноваційних електронних методик та ефективність їх використання для дистанційного спілкування викладачів із студентами, формування студентських груп для спільного виконання завдань та проведення наукових досліджень. Охарактеризовано специфіку та можливості для використання окремих мультимедійних технологій Інтернету для подачі лекційного матеріалу, передачі завдань студентам, формування електронних бібліотек, навчально-методичних мультимедіа-матеріалів, віртуальних лабораторій і практикумів, груп за інтересами, спільного виконання практичних завдань та обміну інформацією. Обґрунтовано можливість використання мультимедійних Інтернет-технологій та електронних засобів зв’язку для розв’язання навчальних завдань викладачі закладів вищої освіти із застосуванням інтерактивних форм навчання: кейс-технологій; круглих столів, дебатів, ділових ігор, тренінгів, відео конференцій, «мозкового штурму», фокус-груп, рольових ігор; групових дискусій, методу проектів. Узагальнено можливості використання інформаційних комп’ютерних технологій для організації дистанційного навчання в межах України, залучення до начального процесу вітчизняних закладів освіти студентів з інших країн, а також проведення за допомогою Інтернет ресурсів спільних наукових конференцій, симпозіумів та обміну актуальною інформацією.
APA, Harvard, Vancouver, ISO, and other styles
24

Тулашвілі Ю.Й., Лук’янчук Ю.А., Марчук І.В., Марчук Ів.В., and Марчук В.І. "ЗАБЕЗПЕЧЕННЯ ТЕХНОЛОГІЧНОЇ ЯКОСТІ ВИГОТОВЛЕННЯ ДЕТАЛЕЙ ПІСЛЯ ПІДГОТОВКИ ФАХІВЦІВ НА СИМУЛЯТОРАХ-ТРЕНАЖЕРАХ." Перспективні технології та прилади, no. 17 (December 29, 2020): 127–34. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-19.

Full text
Abstract:
В даній статті описано використання програмного забезпечення, яке використовують під час підготовки фахівців інженерних спеціальностей. На виробництві користуються симуляторами для підготовки висококваліфікованих фахівців, що, у свою чергу, зменшує витрати часу на впровадження нового або переналагодження вже існуючого обладнання. Віртуальний тренажер являє собою програмний комплекс, що дозволяє проводити фізичні досліди на комп'ютері без безпосереднього контакту з реальною лабораторною установкою або стендом. У віртуальних тренажерах динаміка процесів реалізується за допомогою комп'ютерної анімації - комплексу методів відображення будь-яких об'єктів в часі. Мультимедійна навчально-наукова лабораторія поєднує в собі імітаційну динамічну модель обладнання і програмну оболонку, що включає методичний супровід лабораторної установки. Динамічна модель формується з сукупності елементів управління, що дозволяють регулювати конкретні вхідні параметри і зчитувати вихідні параметри досвіду, тим самим імітуючи протікання фізичних процесів.
APA, Harvard, Vancouver, ISO, and other styles
25

Подобівський, С. С., Л. Я. Федонюк, and Л. О. Шевчик. "РЕЗУЛЬТАТИ ОПИТУВАННЯ СТУДЕНТСЬКОЇ МОЛОДІ НАВЧАЛЬНИХ ЗАКЛАДІВ ВИЩОЇ ОСВІТИ м. ТЕРНОПІЛЬ ЩОДО УРАЖЕННЯ ЇХ ІКСОДОВИМИ КЛІЩАМИ." Здобутки клінічної і експериментальної медицини, no. 3 (December 1, 2021): 145–48. http://dx.doi.org/10.11603/1811-2471.2021.v.i3.12529.

Full text
Abstract:
Проведено опитування 278 студентів ТНМУ імені І. Я. Горбачевського МОЗ України та ТНПУ імені В. Гнатюка. Більшість учасників анкетування зазнали нападів іксодових кліщів у різних біотопах. Близько 14 % респондентів зверталися до спеціалізованих лабораторій для аналізу крові на виявлення збудників інфекційних захворювань або антигенів до цих збудників. У 10 респондентів було діагностовано бореліоз. Мета – дослідити особливості ураження кліщами студентів, виходячи з місця їх проживання, частоти відвідування ними небезпечних щодо активності кліщів біотопів та проаналізувати поведінку осіб, уражених кліщами, їх звернення до лікарів, знання про біологію кліщів та особливості поширення збудників кліщових інфекцій. Матеріал і методи. Було надіслано 374 онлайн-анкети і отримано 278 відповідей від студентів двох навчальних закладів м. Тернопіль. Результати й обговорення. Встановлено, що більше 63 % анкетованих осіб постійно проживають у міській місцевості, близько 60 % опитаних зрідка або майже не бувають у місцях із підвищеною активністю кліщів, проте понад 80 % їх піддавалися неодноразовим укусам кліщів. Це явно вказує на те, що іксодові кліщі активні не лише в природних біоценозах, але і в урбоценозах. З уражених кліщами студентів лише 14 % зверталися до спеціалізованих лабораторій. 10 студентам було поставлено діагноз бореліоз. Висновок. Понад 66 % опитаних респондентів мешкають у великих і малих містах, селищах міського типу, проте близько 80 % опитаних фіксували напади на них кліщів з різною частотою, чому, очевидно, сприяло їх відвідування парків, скверів, садів тощо; лише 14 % уражених кліщами зверталися у спеціалізовані лабораторії на предмет виявлення збудників інфекційних захворювань у крові, у майже 2 % ці результати були позитивними і було встановлено діагноз бореліоз; близько 25 % респондентів мало знають про бореліоз, а понад 33 % не могли відповісти на запитання «Які організми зумовлюють бореліоз?», ще близько 40 % – не знали збудників хвороб, окрім бореліозів, які переносять іксодові кліщі.
APA, Harvard, Vancouver, ISO, and other styles
26

Виноградов, Анатолій Григорович, and Геннадій Олегович Малигін. "Рейтингова система оцінки рівня знань з навчальної дисципліни." Theory and methods of learning fundamental disciplines in high school 1 (November 16, 2013): 81–83. http://dx.doi.org/10.55056/fund.v1i1.153.

Full text
Abstract:
Ця система дозволяє протягом навчального року визначати рівень, досягнутий кожним курсантом або студентом на даний момент при вивченні певної дисципліни. При цьому враховуються всі види занять і самостійних робіт, участь у науково-дослідній роботі і виготовленні навчального обладнання. Представлені матеріали враховують досвід впровадження рейтингової системи при вивченні фізики.Кожна оцінка і кожен результат заносяться у комп’ютер, який за певною програмою обчислює суму рейтингових балів (рейтинг) курсанта на даний час. Із часом ця інформація накопичується і на момент проміжного контролю дозволяє визначати атестаційну оцінку. На початок екзаменаційної сесії рейтинг служить підставою для того, щоб ті курсанти, які набрали достатню кількість балів, були звільнені від іспиту з даної дисципліни і автоматично отримали оцінку “4” або “5” (в залежності від рейтингу).Рейтинг обчислюється за такою методикою (на прикладі дисципліни “фізика”).За період від початку семестру (або від початку вивчення даного модуля навчальної дисципліни) визначаються середні оцінки за всі види занять і помножуються на відповідні рейтингові коефіцієнти:середня оцінка за всі практичні заняття Р1 (рейтинговий коефіцієнт А);середня оцінка за всі семінарські заняття Р2 (рейтинговий коефіцієнт B);середня оцінка за всі лабораторні заняття Р3 (рейтинговий коефіцієнт C);середня оцінка за всі контрольні роботи Р4 (рейтинговий коефіцієнт D).Для досягнення необхідної регулярності навчального процесу вводиться часовий критерій, тобто оцінка за певні види робіт (лабораторні, розрахункові, курсові тощо) залежить від того, чи вчасно вони виконані.Обчислюється сума цих оцінок, яка називається основним рейтингом:Росн = A Р1 + B Р2 + C Р3 + D Р4 .Цілком можливо взяти всі рейтингові коефіцієнти рівними 1. Підвищення ж певного рейтингового коефіцієнту дозволяє збільшити значимість відповідного виду занять, його вплив на розрахунок основного рейтингу.Обчислюється максимальна величина Росн max (за умови всіх оцінок “5”):Росн max = A  5 + B  5 + C  5 + D  5 .Загальний рейтинг може бути підвищений за рахунок додаткового рейтингуРдод, який враховує види діяльності курсантів поза навчальною програмою. До нього може бути нарахована, наприклад, така кількість балів:активна участь у роботі предметного гуртка – 1 бал;вдосконалення лабораторної роботи – до 2 балів за 1 прилад;виготовлення плакатів, стендів – від 0,5 до 2 балів за 1 шт.;участь в олімпіаді з даної дисципліни – 1 бал;і додатково за призові місця в олімпіаді:І місце – 3 бали, ІІ – 2 бали, ІІІ – 1 бал;доповідь на конференції – 2 бали;підготовка наукової роботи на міжвузівський конкурс – 3 бали.Загальний рейтингР визначається як сума основного і додаткового рейтингів:Р = Росн + Рдод .Розраховується процент від умовно максимальної кількості балів:П = (Р/Росн.max)100% .Ця величина за умови активної діяльності курсантів поза навчальною програмою може перевищувати 100%.Якщо П 90% – курсант отримує під час атестації оцінку “5” або під час екзаменаційної сесії – оцінку “5” без складання іспиту.Якщо 75% П < 90 % – курсант на іспиті автоматично отримує оцінку “4” або, якщо він не згоден, складає іспит на загальних підставах. Атестаційна оцінка “4” виставляється за умови 70% П < 90 %.При 50% П < 70 % курсант отримує під час атестації оцінку “3”, а під час сесії складає іспит на загальних підставах.При П < 50 % курсант отримує під час атестації оцінку “2”, а під час сесії складає іспит на загальних підставах.Для поточного розрахунку рейтингу кожного курсанта була створена розрахункова комп’ютерна програма в середовищі Microsoft Excel, формат якої дозволяє вносити в неї списки навчальних взводів і поточні оцінки окремо за кожний тип занять. Результат розрахунку представлений у вигляді таблиць зі списками особового складу навчальних взводів і рейтинговими балами за кожен вид занять, а також загальний рейтинг і процент від максимально можливого. Ці таблиці у надрукованому вигляді вивішуються на спеціальному стенді для інформування курсантів про стан їх успішності та про слабкі місця, на які необхідно звернути увагу. Вони періодично оновлюються, з метою відтворення стану успішності курсантів на даний момент.Рейтингова система оцінки рівня знань є досить гнучкою і легко може бути адаптована до будь-якої дисципліни з іншими типами занять та іншими критеріями оцінки знань.Ця система дозволяє підняти контроль за станом навчання для кожного курсанта на якісно новий рівень, зробити його більш наочним і прозорим як для самого курсанта, так і для всіх зацікавлених осіб: викладачів, навчально-методичного відділу, курсових офіцерів, ректорату.Результати впровадження цієї системи свідчать про її позитивний вплив на значну частину курсантів інституту, який проявляється у зростанні мотивації до підвищення якісних показників навчання та покращання регулярності навчального процесу (вчасне виконання розрахункових робіт і звітів лабораторних робіт).
APA, Harvard, Vancouver, ISO, and other styles
27

Золотова, Ніна Сергіївна. "Онтологічне представлення предметної області у автоматизованих навчальних системах на прикладі графічної САПР." Theory and methods of e-learning 3 (February 10, 2014): 106–12. http://dx.doi.org/10.55056/e-learn.v3i1.325.

Full text
Abstract:
Високі темпи оновлення техніки і технологій, які перевищують сьогодні темпи зміни поколінь людей, зумовлюють зміни в системі професійної освіти. Вона відрізняється від традиційної освіти, перш за все, своїм технологічним забезпеченням, оскільки не може функціонувати на базі традиційних освітніх технологій [1].Технологічність неперервної професійної освіти означає таке:– збільшення часових термінів і значущості етапів самоосвіти;–підвищення ролі засобів навчання, розроблених на основі сучасних інформаційних технологій;–підвищення значущості принципу індивідуалізації навчання.З розвитком інформаційних технологій все більшого поширення набувають автоматизовані навчальні системи, які мають реалізувати наведені вище принципи. У даній статті розглядатиметься модель представлення предметних знань у одній з таких навчальних систем, яка у свою чергу призначена для вивчення графічних САПР .Розглянемо структурування навчального матеріалу спочатку з найзагальніших позицій. Навчальний матеріал завжди являє собою систему, що має ту чи іншу структуру. Виділяють глобальну і локальну структуру навчального матеріалу. До глобальної структури відносять більш чи менш об’ємні частини навчального матеріалу, до локальної структури – систему внутрішніх зв’язків між поняттями, що входять у дану частину матеріалу.Моделювання навчальної предметної області істотно відрізняється від моделювання інших предметних областей. Цілі моделювання навчальних і не навчальних предметних областей є різними. Так відбувається тому, що будь-яка діяльність здійснюється шляхом розв’язання власних, специфічних задач. Але у ненавчальній діяльності розв’язання задач і є ціллю, тоді як для навчальної діяльності розв’язання задач – це не ціль, а засіб досягнення цілі (маються на увазі цілі навчання). Інакше кажучи, власне результат вирішення задач не настільки важливий, як сам факт його правильності чи неправильності. Важливий процес їх вирішення, так як саме під час процесу вирішення задач у учня формується спосіб дій.Для того, щоб навчити людину певній діяльності, необхідно виділити усі дії, які належать до цього виду діяльності, а у кожній дії – усі операції, що забезпечують успіх цієї дії.У відповідності до класифікації (рис. 1), існує розподіл предметних знань на декларативні і процедурні [2]. Рис. 1. Класифікація предметних знань При побудові моделі предметної області (ПО) її об’єкти та поняття вивчаються з точки зору структури чи зовнішніх форм (синтаксична модель ПО), властивостей та відношень між ними (семантична модель), методів та алгоритмів функціонування (прагматична модель ПО).Одним з актуальних підходів до побудови такої моделі знань є онтологічний аналіз, яки включає побудову словника понять і термінів для опису ПО та набір логічних висловлювань, які формулюють обмеження, що існують у предметній області.Онтологія визначає загальний словник для спеціалістів, яким необхідно разом використовувати інформацію у предметній області. Звичайно онтологія включає структури даних, які містять усі релевантні класи об’єктів, їх зв’язки і правила (теореми, обмеження), прийняті у цій області. Чому виникає потреба у розробці онтології? Ось деякі причини:– для спільного використання людьми чи програмними агентами, загального розуміння структури інформації;– для можливості повторного використання знань у предметній області;– для відділення знань у предметній області від оперативних знань;– для аналізу знань у предметній області.Онтологія предметної області сама по собі не є метою дослідження. Розробка онтології подібна до визначення набору даних і їх структури для використання іншими програмами.В основі онтологій лежать класи, об’єкти, їх властивості та обмеження, що реалізують представлення про об’єкти як про множину сутностей, які характеризуються певним набором властивостей. Ці сутності знаходяться у певних відношеннях між собою і за певними ознаками (властивостями та обмеженнями) об’єднуються у групи (класи). В результаті повного опису об’єктів та їх властивостей предметна область буде представлена як складана база знань, для якої можна здійснювати інтелектуальні операції, такі як семантичний пошук і визначення цілісності та достовірності даних.В рамках навчальних процесів застосування онтологій дозволить визначити основні компоненти навчальних дисциплін – лекції, практичні та лабораторні заняття, навчальні матеріали, що використовуються. Роль навчальних систем у такому випадку буде зводитися до ролі інтелектуальних агентів, які будуть здійснювати вибірки з бази знань у залежності від контексту навчання. Іншою досить важливою особливістю такої системи буде можливість збудувати тестуючу програмну систему, яка генеруватиме набори контрольних завдань виходячи з семантики описаних онтологій конкретних навчальних курсів.В основу онтології «Навчальна дисципліна» (рис. 2) покладено основні принципи, які використовуються для структуризації лекцій, практичних занять і т.д. в «звичайному» навчальному процесі. У відповідності до цих принципів було сформовано структуру і виділено основні компоненти навчальних курсів.Даний спосіб являє собою шаблон, що описує структуру електронних матеріалів навчального курсу. Іншими словами, було створено онтологію, що визначає структуру і поняття, характерні для більшості навчальних курсів.Предметною областю тут є вся термінологія, що використовується для організації навчального курсу: тема, лекція, практичне заняття, лабораторна робота, контрольні запитання, приклади, списки додаткової літератури, а також усі більш дрібні компоненти кожного з об’єктів [3].У цій статті онтологія – формальний явний опис понять розглянутої предметної області (класів), властивостей кожного поняття (слотів, атрибутів) та обмежень, накладених на слоти (інколи їх називають обмеженнями ролей). Онтологія разом з набором індивідуальних екземплярів класів утворює базу знань.Якщо ж ми будемо за допомогою онтологій описувати предметну область «графічна САПР», то вона виглядатиме дещо інакше. У центрі онтології знаходяться класи, що описують поняття предметної області. Наприклад, клас «Інструменти створення зображення» представляє всі засоби, якими можна скористатися для створення графічного зображення.Конкретні інструменти, такі як «Точка», «Відрізок», «Коло» – екземпляри цього класу.Деякі класи мають підкласи, які представляють більш конкретні поняття, ніж надклас. Наприклад, можна розділити клас усіх інструментів оформлення на розміри, умовні позначення, інструменти вставки текстів і таблиць. Рис. 2. Онтологічне подання змісту навчальної дисципліни В результаті вивчення було виявлено наступні види зв’язків в онтології (табл. 1):Таблиця 1Типи зв’язків у онтології Тип зв’язкуЗначення зв’язкуПриклад застосування у предметній області «Навчання»Приклад застосування у предметній області «Графічні системи»Таксономія («kind-of», «is-a»)Відношення приналежності до певного класу чи категоріїКонтрольні запитання, контрольні завдання, тести належать до категорії «Засоби контролю знань»Наприклад, інструменти «Колонна», «Балка», «Ферма» належать до більш загальної категорії «Несучі конструкції». Інструменти «Стіна», «Перегородка» належать до категорії «Огороджуючі конструкції»Партономія («part-of», «consists», «has part»)Відношення «частина-ціле», складова частина, компонентЛекції, практичні завдання, тести є складовими частинами навчального курсу. У свою чергу вони також поділяються на частини: тести складаються з запитань, лекції – з певних інформаційних блоків тощоКреслення може містити такі складові, як графічна частина, елементи оформлення, атрибути або метадані. У свою чергу графічна частина складається с шарів, шари з макрооб’єктів, макрооб’єкти з елементарних об’єктівГенеалогіяВідношення «предок-нащадок»На рис. 2 є наступний приклад такого відношення: класи «Електронна література» та «Друкована література» є нащадками класу «Література» «if-then»Причинно-наслідковий зв’язокПрикладом причинно-наслідкового зв’язку у навчальному процесі може бути адаптація навчального курсу у відповідності до результатів попередніх тестувань особи, що навчається.Прикладом причинно-наслідкового зв’язку може бути зміна розмірного напису при зміні геометричних характеристик об’єкту, перебудова зображення при зміні масштабу і т.д.Атрибутивний зв’язокСутність є одночасно атрибутом іншої сутностіНа рис.2 представлено сутність «Вид діяльності», атрибутами якої є «Теоретичні відомості», «Приклади», «Вправи», «Контроль», «Література». В той же час вони є окремими сутностями і мають власні атрибути. Існує декілька можливих підходів для розробки ієрархії класів: низхідний, висхідний та комбінований. Для даної розробки був обраний висхідний підхід, який починається з визначення найбільш конкретних класів, листків ієрархії, з наступним групуванням цих класів у більш загальні поняття. Наприклад, спочатку ми визначаємо класи для інструментів «Стіна», «Колона» й «Вікно». Потім ми створюємо загальний надклас для цих трьох класів «Інтелектуальні інструменти», який, у свою чергу, є підкласом для «Інструментів створення зображення».Класи самі по собі не містять достатньої інформації про об’єкти предметної області, після визначення ієрархії класів необхідно описати внутрішню структуру понять, тобто їхні властивості та обмеження.У процесі навчання системою фіксуються стійкі послідовності чи комбінації об’єктів (т.зв. патерни проектування) та понять, вони класифікуються і формуються у асоціативні ланцюги та метапоняття. Ланцюги операцій об’єднуються в операції більш високого рівня, в результаті на моделі ПО будується ієрархія операцій.Висновки. У даній статті описано процес розробки онтології інструментальних засобів для створення проектної документації з використанням графічних САПР. Детально розглянуто усі кроки створення онтології, питання визначення ієрархій класів та властивостей класів і екземплярів.
APA, Harvard, Vancouver, ISO, and other styles
28

Тимофеєв, А. В. "Правила безпеки під час проведення навчально-виховного процесу в кабінетах (лабораторіях) фізики та хімії загальноосвітніх навчальних закладів." Безпека життєдіяльності, no. 2, лютий (2013): 2–7.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Тимофеєв, А. В. "Правила безпеки під час проведення навчально-виховного процесу в кабінетах (лабораторіях) фізики та хімії загальноосвітніх навчальних закладів." Безпека життєдіяльності, no. 1, січень (2013): 2–9.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Білоусова, Людмила Іванівна, Тетяна Василівна Бєлявцева, Олександр Геннадійович Колгатін, and Лариса Сергіївна Колгатіна. "Навчальні дослідження при вивченні методів обчислювальної математики." Theory and methods of learning mathematics, physics, informatics 5, no. 3 (November 26, 2013): 26–30. http://dx.doi.org/10.55056/tmn.v5i3.207.

Full text
Abstract:
Постановка проблеми. У підготовці майбутніх фахівців в області математики курс чисельних методів відіграє значну роль, оскільки при його вивченні студенти опановують способи і засоби розв’язування тих математичних задач, що виникають на практиці і непідвласні строгим методам чистої математики.Курс чисельних методів можна розглядати як своєрідний “місток” між логічно вивіреними математичними теоріями і реальністю. Аналізуючи чисельні методи, легко помітити, що вони часто являють собою прямий наслідок з теорем чистої математики, їхню проекцію на практичні задачі. Серед них є методи настільки прості й очевидні, що їх можна вивести не з теоретичних посилок, а попросту спираючись на здоровий глузд чи геометричну інтерпретацію задачі. Однак, є і такі методи, що вражають уяву оригінальністю і своєрідністю ідеї, нестандартністю підходу до розв’язування задачі.Постановка курсу чисельних методів являє собою досить складну проблему. Це зумовлено низкою факторів, з яких наведемо основні.Теоретична частина курсу досить важка для сприйняття студентами, оскільки обґрунтування чисельного методу, з одного боку, вимагає широкого залучення апарату чистої математики з різних її областей; з іншого боку, математична основа чисельних методів ґрунтується на оцінках, що не завжди виглядають досить переконливими. Більш того, багато з них студент повинен прийняти на віру, тому що їхнє послідовне виведення виходить за межі навчального курсу і найчастіше навіть не наводиться в підручниках.Усе сказане вище ускладнюється ще і тією обставиною, що поряд з теоретично встановленими нормами застосування того чи іншого методу існують і практичні правила – “неписані закони”, що не мають строгого обґрунтування, але якими проте зручно і доцільно керуватися на практиці. Згідно з цими правилами встановлюється реальна сфера дії чисельного методу, що звичайно виходить за рамки тієї, котра визначена теорією; умови застосовності методу одержують конкретизацію з врахуванням реальних технічних можливостей, а для контролю обчислювального процесу й оцінювання досягнутої точності рішення задачі пропонуються досить прості прийоми і співвідношення.Використання практичних правил дозволяє додати процедурі застосування чисельного методу технологічність. Разом з тим, недоведеність практичних правил залишає деякий сумнів у їхній правомірності, усунути який дозволяє лише досвід багаторазового контрольованого застосування чисельного методу – той самий досвід, що і породив ці правила.Слід зазначити також, що світ чисельних методів надзвичайно різноманітний, кожен з них має свою специфіку, свою область ефективного застосування, тому основною задачею обчислювача є правильний вибір методу, найбільш придатного для розв’язування поставленої конкретної задачі, вміле сполучення різних методів на різних етапах її розв’язування, для чого вимагаються не тільки і не стільки теоретичні знання в галузі чисельних методів, скільки інтуїція, що здобувається в міру нагромадження знову ж такі особистого досвіду застосування цих методів.Таким чином, курс чисельних методів, у силу свого явно вираженого практичного характеру, з необхідністю має спиратися на лабораторний практикум, якість постановки якого значною мірою визначає результати навчання за курсом у цілому.Метою даної роботи є висвітлення цілей, способу і результатів реалізації навчально-дослідницького лабораторного практикуму з чисельних методів.У стандартній постановці лабораторний практикум з чисельних методів зводиться до виконання розрахунків, необхідних для розв’язування задачі за відомим алгоритмом. Використання засобів обчислювальної техніки дозволяє цю роботу полегшити або автоматизувати, однак, у будь-якому випадку, коли це використання здійснюється на рівнях, що не виходять за рамки виконання обчислень або програмування, діяльність студента зводиться до відтворення алгоритму методу і кропіткої роботи з числами, що фактично призводить до заміщення змістовної задачі рутинною роботою.У такому режимі за час, що відводиться на вивчення курсу, вдається лише випробувати окремі методи на прикладі розв’язування якої-небудь однієї задачі. У такому усіченому і, можна сказати, збитковому виді курс чисельних методів утрачає свою привабливість і внутрішню красу і, цілком природно, виявляється нудним і нецікавим для студентів.Наше глибоке переконання полягає в тому, що істотних змін у постановці курсу чисельних методів і, як наслідок, у математичній підготовці студентів, можна досягти лише перетворенням лабораторного практикуму на цикл навчальних досліджень. При цьому дуже істотними є дві обставини: навчальні дослідження не вкрапляються окремими епізодами в тканину практикуму, а складають сутність кожної лабораторної роботи; використання обчислювальної техніки здійснюється на рівні середовища підтримки професійної математичної діяльності.Перша обставина змушує переглянути весь курс, надавши лекціям характеру тематичних оглядів, а практикуму – систематичності, що є необхідною умовою для поетапного розвитку, поглиблення й ускладнення навчальних досліджень студентів з опорою на набутий досвід такої діяльності та дослідницькі уміння і навички, які формуються.Необхідно відзначити, що епізодичне використання навчальних досліджень у лабораторному практикумі за принципом "час від часу" недоцільно. Практика показала, що в такому випадку студенти не усвідомлюють суті запропонованих їм завдань, а недостатній рівень дослідницьких умінь привносить у їхню діяльність елементи хаотичності і безсистемності. В решті більш привабливою формою проведення практикуму для більшості студентів виявляється звична робота за інструкціями.Що стосується другої обставини, то орієнтація вузівського навчального процесу на використання сучасного професійного комп’ютерного інструментарію, а не на навчальні пакети, представляється найбільш доцільної. Така орієнтація, з одного боку, сприяє формуванню в студентів стійких навичок використання комп'ютера в професійних цілях, з іншого боку – визначає досить високий рівень постановки навчальних досліджень, відразу відтинаючи рутинну роботу.Професійні пакети підтримки математичної діяльності, що одержали широке поширення, не розраховані на застосування в навчанні. Вони забезпечують розв’язання широкого кола стандартних математичних задач, залишаючи схованими від користувача використані для розв’язання методи. Разом з тим, такі пакети оснащені досить потужними і зручними вбудованими засобами, що дозволяють розширити функції пакета, у тому числі і такі, котрі пристосовують його для використання з метою навчання.Для постановки навчально-дослідницьких робіт з курсу чисельних методів нами був узятий за основу пакет MathCAD, засобами якого був розроблений комплект динамічних опорних конспектів (ДОК’ів), що підтримують виконання таких робіт із усіх тем курсу. Таким чином, фактично студенту була надана віртуальна лабораторія для проведення обчислювальних експериментів.Вибір пакета MathCAD зумовлений тим, що він широко застосовується для розв’язування прикладних задач математики і разом з тим йому притаманні такі якості, що дозволяють використовувати його в навчанні: можливість створення динамічної екранної сторінки, вільне переміщення курсору по екрану, досить розвинена вбудована мова і т.д. Створення ДОК’а в середовищі MathCAD зводиться до розробки програми, що реалізує алгоритм відповідного чисельного методу, і інтерфейсу, зручного для введення даних задачі і відображення на екрані процесу і результатів роботи алгоритму. Математичні можливості пакета були використані для оцінювання якості отриманих результатів.Кожен ДОК орієнтований на роботу з одним з чисельних методів і надає можливість багаторазових випробувань цього методу на різних задачах з виведенням на екран результатів у числовій і графічній формі. Проводячи навчальне дослідження, студент здійснює серію таких випробувань і на підставі спостереження за обчислювальним процесом, шляхом аналізу його характеристичних показників робить висновки.Необхідно відзначити, що задачі, розв'язувані студентом у ході навчального дослідження, істотно відрізняються від тих, котрі складають суть традиційної лабораторної роботи. Так, наприклад, при дослідженні чисельних методів розв’язування рівнянь студенту пропонується встановити, який критерій варто обрати для оцінки близькості знайденого наближення до шуканого значення кореня рівняння – точність, з якою це наближення задовольняє рівняння, чи точність, з якою це наближення повторює попереднє. У кожному дослідженні студенту пропонується вирішити такі задачі: експериментально оцінити порядок і швидкість збіжності методу; виділити основні фактори, що впливають на ці характеристики; встановити область ефективного застосування методу.При дослідженні, наприклад, інтерполяційних формул, де, на перший погляд, усе ясно – чим більше вузлів інтерполяції, тим вище ступінь полінома, точніше наближення, – студент має переконатися в тому, що далеко не завжди це й справді так. Для досягнення потрібної точності іноді доцільно змінити тактику: замість нарощування вузлів використовувати дроблення проміжку інтерполяції. Студенту пропонується побудувати найкраще можливе наближення функції на відрізку по заданій на ньому обмеженій кількості її значень. Як варто розпорядитися цими даними? Який спосіб інтерполяції дасть найбільш надійний результат? Вивчаючи питання про точність відновлення значення функції в проміжній точці таблиці за інтерполяційними формулами, студент експериментально встановлює правило для вибору тих табличних значень, на які варто спиратися для мінімізації похибки і т.д.Для того, щоб діяльність студента була осмисленої, націленою і забезпечувала досягнення прогнозованого навчального ефекту, нами було розроблено методичну підтримку практикуму у виді планів-звітів з кожної лабораторної роботи.Плани-звіти виконані за єдиною схемою і складаються з двох частин – інформативної й інструктивної. В інформативній частині повідомляється тема роботи, її ціль, програмне забезпечення роботи, наводиться характеристика вхідних і вихідних числових і графічних даних.Інструктивна частина містить порядок виконання роботи, де позначені і зафіксовані її ключові моменти. Для орієнтації студента на виконання дослідження йому спочатку пропонується ланцюжок відповідним чином підібраних питань. Деякі з них адресовані до інтуїтивних уявлень студента про досліджуваний метод, інші – на те, щоб наштовхнути його на думку про можливу помилковість таких уявлень. У ході обмірковування запропонованих питань студент одержує можливість зорієнтуватися в проблемі, усвідомити її та вибудувати робочу гіпотезу дослідження.Уся наступна – основна – робота студента спрямована на перевірку, уточнення, конкретизацію гіпотези. Ця робота виконується за запропонованим планом, що визначає окремі етапи дослідження, задачі, що розв’язуються на кожному етапі, експериментальний матеріал, який потрібно отримати, форму його подання і т.д. У міру просування практикуму інструкції студенту все менш деталізуються, здобуваючи характер рекомендацій. Деякі експерименти він повинний продумати, поставити і здійснити самостійно.Для виконання кожної з лабораторних робіт підібрані індивідуальні варіанти комплектів задач, на яких пропонується випробувати метод для отримання експериментального матеріалу, що відповідає меті роботи. При бажанні студент може доповнити ці комплекти задачами за власним вибором.Завершальним етапом дослідження є підведення його підсумків. Це пропонується зробити у вигляді висновків, контури яких з більшим чи меншим ступенем виразності намічені в плані-звіті. Підказки допомагають студенту зафіксувати результати роботи, структурувати їх, дозволяють звернути увагу на ті моменти дослідження, що можуть залишитися непоміченими.Виконання запланованого дослідження дає студенту досить глибоке розуміння властивостей і специфіки застосування досліджуваного методу, і це повинно знайти відображення в "творі на вільну тему": придумати таку практичну задачу, для якої найбільш ефективним інструментом рішення є саме досліджуваний метод.Зазначимо, що плани-звіти надаються студентам як у друкованому виді, так і в електронній формі. Остання використовується паралельно з ДОК’ом під час проведення лабораторної роботи, що зручно для перенесення експериментальних даних з ДОК’а в заготовлені таблиці, для підготовки звітних матеріалів.Висновки. Досвід впровадження описаного практикуму в навчальний процес на фізико-математичному факультеті Харківського національного педагогічного університету дозволяє зробити наступні висновки. Курс чисельних методів набув більшої значимості у формуванні математичної культури студентів, було істотно розширено коло апробованих методів і коло розглянутих задач. Навчальні дослідження, при наявності відповідного програмного і методичного забезпечення, а також при певній наполегливості викладача виявилися цілком посильною і результативною формою навчальної роботи студентів.
APA, Harvard, Vancouver, ISO, and other styles
31

Бойчук, І. Д., В. А. Болух, and І. О. Першко. "ОСОБЛИВОСТІ ПІДГОТОВКИ ФАХІВЦІВ ЛАБОРАТОРНОЇ ДІАГНОСТИКИ ДО ЛІЦЕНЗІЙНОГО ІНТЕГРОВАНОГО ІСПИТУ «КРОК М» У ФАХОВОМУ КОЛЕДЖІ." Медична освіта, no. 3 (December 16, 2021): 11–16. http://dx.doi.org/10.11603/m.2414-5998.2021.3.12588.

Full text
Abstract:
У роботі представлено аналіз результатів ліцензійного інтегрованого іспиту «Крок М. Лабораторна діагностика» (ЛІІ), які демонстрували студенти, що здобували освітньо-кваліфікаційний рівень «Молодший спеціаліст» за освітньо-професійною програмою «Лабораторна діагностика» спеціальності 224 «Технології медичної діагностики та лікування» у Житомирському базовому фармацевтичному фаховому коледжі (ЖБФФК) за 2015–2020 рр. Тестові завдання ЛІІ містять питання професійно-орієнтованих дисциплін і є критерієм професійної відповідності випускників. У ЖБФФК здійснюється системна робота з підготовки студентів до складання ліцензійного інтегрованого іспиту «Крок М. Лабораторна діагностика», а саме: індивідуальні та групові консультації, тренувальні тестування у комп’ютерному класі та на платформі LMS Moodle тощо. За результатами складання студентами коледжу ЛІІ, найвищі показники було зафіксовано у 2015–2016 н. р., коли іспит склали усі екзаменовані, а загальна успішність становила 75,8 %. У подальші роки результати проходження ЛІІ «Крок М» були дещо нижчими, а з деяких навчальних дисциплін – критично низькими. У 2019–2020 н. р., коли підготовка до тестування здійснювалася дистанційно через запровадження в країні карантинних обмежень, загальний показник правильних відповідей студентів, за підсумками ЛІІ «Крок М. Лабораторна діагностика», становив 60,9 %, не подолали поріг «склав» 27 % студентів. Серед факторів, які впливають на якісний показник успішності при проходженні ЛІІ «Крок М. Лабораторна діагностика», в першу чергу, слід відмітити заходи з організації підготовки студентів з боку адміністрації, а також роботу викладачів окремих дисциплін, тестові завдання з яких включено в перелік завдань ЛІІ. Важливою умовою успішного проходження атестації у вигляді ЛІІ «Крок М. Лабораторна діагностика» вважаємо вмотивованість студентів до здійснення навчальної діяльності та систематичну роботу з теоретичним матеріалом і базами тестів.
APA, Harvard, Vancouver, ISO, and other styles
32

Струтинська, Оксана Віталіївна. "До питання вибору системи дистанційного навчання для підтримки навчання студентів економічних спеціальностей у педагогічному університеті." New computer technology 5 (November 10, 2013): 83–84. http://dx.doi.org/10.55056/nocote.v5i1.92.

Full text
Abstract:
В останні роки швидкими темпами розвивається дистанційна освіта, впровадження якої в Україні передбачено Національною програмою інформатизації. Цьому сприяє збільшення користувачів, які мають доступ до мережі Інтернет, поява нових технологічних рішень платформ дистанційного навчання (ДН), розвиток телекомунікаційних можливостей та ін. Тому на теперішній час поєднання елементів ДН з традиційними формами навчання є перспективним напрямком в освіті. Певні кроки у розвитку та впровадженні дистанційних технологій у навчальний процес зроблені у багатьох навчальних закладах, організаціях та установах України, де накопичені науково-методичний, кадровий та виробничий потенціал, інформаційні ресурси та технології, існує телекомунікаційна інфраструктура.Звичайно, цей процес не оминув педагогічні навчальні заклади. Особливо це є важливим для вищої педагогічної школи, де навчають майбутніх вчителів, які повинні володіти сучасними технологіями навчання. Для якісного оволодіння студентами новітніми інформаційними технологіями необхідні висококваліфіковані педагогічні кадри, які вміють застосовувати сучасні дидактичні засоби. Важливим кроком в цьому напрямку є визначене в програмі розвитку системи ДН завдання про включення до програми підготовки педагогічних кадрів дисципліни з технологій ДН, у тому числі з педагогічних, інформаційних та телекомунікаційних технологій [1].Однією з головних проблем, що постає перед організацією (закладом), яка прийняла рішення впроваджувати ДН (наприклад, у зв'язку з необхідністю розв’язання проблем перепідготовки та підвищення кваліфікації кадрів у своїй сфері) є питання вибору платформи підтримки ДН (e-learning platform). Аналізуючи різні дослідження щодо вибору платформи ДН, можна зробити висновок, що серед них ще недостатньо приділено уваги особливостям вибору платформи ДН для педагогічних університетів.На жаль, на сьогоднішній день в Україні вибір e-learning платформ вітчизняного виробництва дуже обмежений. Закордонні системи підтримки ДН, як правило, або мають високу вартість, або складні в технічному обслуговуванні, або не відповідають всім вимогам, потрібним для забезпечення якісного навчального процесу.Серед всіх платформ підтримки ДН для педагогічних університетів доцільніше вибирати ті, які підтримують педагогічний процес, тобто мають інструменти, призначені для підтримки складових елементів процесу навчання, специфічних для педагогіки, оскільки при виборі системи ДН для навчальних закладів дидактичний аспект повинен бути вирішальним.Важливу роль при цьому має функціональна еластичність, тобто можливість налагодження дистанційного курсу в залежності від потреб: можливість додавати або приховувати його окремі елементи.Технічне обслуговування платформи ДН не повинно викликати у користувачів проблем. Тому, для навчальних закладів бажано, щоб платформа не мала клієнтської частини, тобто доступ викладачів і студентів до курсу повинен здійснюватись через веб-браузер. Крім того, робота з дистанційним курсом у браузері має носити інтуїтивний характер (можливість редагування текстових документів, пересилання та зберігання файлів на сервері, зручний перегляд даних в різних форматах, в т.ч. мультимедійних, наявність засобів комунікації за допомогою простих в обслуговуванні інструментів, таких як дискусійні форуми та ін.).Одним з важливих аспектів при виборі платформи ДН є також широкий інструментарій розробника дистанційного курсу. Сюди можна віднести тренінги, лабораторні практикуми, комунікаційні засоби, тренажери, ігрові програми, навчальне моделювання, різноманітні інтерактивні форми навчання, такі як ділові ігри, групові семінари, а також засоби контролю (тестування). Не останнім серед факторів вибору платформи ДН для навчальних закладів є вартість платформи. Не кожний заклад може собі дозволити придбати e-learning платформу. Тому бажано, щоб вона мала невисоку вартість або була вільнопоширюваною (Open Sourse).Спираючись на досвід багатьох дослідників питання вибору систем ДН і практиків їх впровадження можна зробити вибір на користь вільнопоширюваної e-learning платформи Moodle. Вона задовольняє багатьом вимогам, необхідним для забезпечення якісного навчального процесу, зокрема педагогічним.На сьогодні платформа ДН Moodle впроваджується у навчальний процес на кафедрі інформатики Інституту фізико-математичної та інформатичної освіти і науки НПУ ім. М.П. Драгоманова в якості засобу для ознайомлення викладачів і студентів з можливостями роботи e-learning платформ. Посилання на роботу з системою ДН Moodle знаходиться на сайті кафедри інформатики http://www.ki.ifmion.npu.edu.ua. Тут розробляються різні курси. Зокрема для комп’ютерної підтримки дисципліни інформаційні системи і технології в економіці для студентів економічних спеціальностей розробляється відповідний дистанційний курс (в Moodle він називається ІСіТ в економіці), з яким можна ознайомитись, відвідавши сайт кафедри інформатики.
APA, Harvard, Vancouver, ISO, and other styles
33

Токарєва, А. В., Н. П. Волкова, and І. В. Гаркуша. "Навчальнi цифровi iгри: моделi та реалiзацiя." Освітній вимір 53, no. 1 (December 19, 2019): 5–25. http://dx.doi.org/10.31812/educdim.v53i1.3827.

Full text
Abstract:
У даний час соцiальнi медiа, IКТ, мобiльнi технологiї та додатки все бiльше використовують у якостi iнструментiв для комунiкацiї, взаємодiї, побудови соцiальних умiнь та унiкальних навчальних середовищ. Один з останнiх трендiв, що прослiдковується у навчаннi — спроба спрямувати навчальний процес за допомогою використання навчальних цифрових iгор. Однак незважаючи на численнi данi дослiджень, що доводять позитивний ефект цифрових iгор, їх iнтеграцiя у контекстi формальної освiти залишається достатньо низькою. Мета цiєї статтi — проаналiзувати, розiбрати та зробити висновокстосовно того, що є необхiдним для початку використання iгор як навчального засобу у формальнiй освiтi. Для досягнення цiєї мети було застосовано комплекс якiсних методiв дослiдження, включно з напiвструктурованим опитуванням експертiв. У результатi було визначено потенцiал навчальних цифрових iгор, що полягає у наданнi унiкального та безпечного середовища навчання з широким спектром вбудованих допомiжних рис, ефективних у специфiчних контекстах пiдготовки, якi допомагають запам’ятовувати матерiал що вивчається та включати рiзноманiтнi стилi навчання, разом з можливiстю бути iндивiдуально адаптованими. Одночасно було видiлено необхiднiсть комплексногопiдходу, який потребує залучення адмiнiстрацiї, IТ-вiддiлiв, педагогiв, батькiв, мiцної сукупностi навичок та широкого спектру рiзноманiтних ролей та завдань, якi здiйснює вчитель пiд час урокiв iгрового навчання. У якостi висновку та вектору подальших дослiджень було запропоновано органiзацiю Лабораторiї Навчального Дизайну як iнтегральної частини сучасного освiтнього закладу.
APA, Harvard, Vancouver, ISO, and other styles
34

Bybel, V., Valerii Hlukhov, and O. Prystopjuk. "Вибір бездротової технології передавання даних для обладнання навчальних лабораторій." Computer systems and network 1, no. 1 (February 23, 2016): 10–16. http://dx.doi.org/10.23939/csn2016.857.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Артемова, Л. "Лабораторні роботи як навчальне дослідження під час аудиторних занять." Вища школа, no. 5 (2012): 44–52.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Артемова, Л. "Лабораторні роботи як навчальне дослідження під час аудиторних занять." Вища школа, no. 5 (2012): 44–52.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Жарких, Юрій Серафимович, Сергій Васильович Лисоченко, and Богдан Богданович Сусь. "Науково-методичні і навчальні проблеми віртуального лабораторного практикуму." Theory and methods of e-learning 1 (November 11, 2013): 93–100. http://dx.doi.org/10.55056/e-learn.v1i1.138.

Full text
Abstract:
Показано, що розвиток віртуального лабораторного практикуму відбувається в основному за двома напрямками – через так звані віртуальні симулятори (тренажери), які певним чином є імітацією експериментів, і д истанційно виконувані лабораторні роботи, які дають можливість студентові отримати реальні умови для виконання експериментальних завдань, набуття експериментальних умінь і мають перспективу використання в системах дистанційного навчання.
APA, Harvard, Vancouver, ISO, and other styles
38

Буркіна, Наталя Валеріївна. "Використання активних методів навчання у дистанційних курсах." Theory and methods of e-learning 3 (February 5, 2014): 35–39. http://dx.doi.org/10.55056/e-learn.v3i1.313.

Full text
Abstract:
Сучасна освітня система ставить перед викладачами чимало прикладних питань, таких як «Як забезпечити становлення особистості, яка буде успішною в професійному та суспільному житті?», «Як формувати та розвивати у студентів навички адаптування до сучасних умов життя?», «Як створити умови всебічного розвитку студента у ВНЗ?», «Як зробити навчання творчим процесом, що зацікавлює та навіть захоплює всіх його учасників – як викладачів, так і студентів?». Відповідями на ці запитання, на нашу думку, можуть виступати активні методи навчання, які знаходять сьогодні все більше застосування у ВНЗ.Проте, у даній статті хотілося б зробити акцент на впровадження активних методів навчання саме у дистанційні курси та виявити особливості застосування цих методів при змішаному навчанні.Змішане навчання інтегрує в собі властивості як денної, так і дистанційної форми навчання. Сам навчальний процес при змішаному навчанні складається із трьох етапів. Перший етап – вивчення теоретичного матеріалу, пропонується студентам пройти дистанційно. Тобто, студенти отримують весь необхідний теоретичний матеріал заздалегідь. Цей матеріал складається з лекцій, наочних динамічних презентацій, методичних рекомендацій для вивчення курсу, глосарію, запитань для самоперевірки отриманих знань, начальних і навчально-контролюючих тестів та прикладів використання теорії на практиці тощо. Після вивчення теоретичного матеріалу студент переходить на другий та третій етапи, які вже, в свою чергу, є очними. На другому етапі студент потрапляє на очні лекційні, практичні та лабораторні заняття, на яких набуває певних знань, вмінь та навичок. І на третьому етапі, після закріплення отриманих навичок, студент захищає виконані домашні та індивідуальні роботи та отримує оцінку.Відомо, що найбільш ефективне сприйняття інформації відбувається під час максимального занурення студента у навчальний процес. Так, якщо на звичайній лекції засвоюється лише близько 20% інформації, то на дискутивній проблемній лекції засвоюється вже понад 75%, а в ділових іграх та при використанні інших активних засобів навчання цей показник досягає вже 90%. Різні педагоги-спеціалісти по-різному оцінюють ефективність активних навчальних засобів в процесі засвоєння матеріалу. Але в цілому майже всі вони сходяться на тому, що активні навчальні засоби при грамотному їх використанні здатні на 30-50% зменшити час, що необхідний для ефективного засвоєння навчального матеріалу та значно збільшити зацікавленість учбовими дисциплінами.Під активним навчанням ми розуміємо таку організацію та ведення навчального процесу, яка направлена на всебічну активізацію навчально-пізнавальної та практичної діяльності студентів у процесі засвоєння навчального матеріалу за допомогою комплексного використання як педагогічних, так і організаційних засобів.Незалежно від форми навчання активні методи відіграють значну роль. У традиційному навчанні активно використовуються такі методи як проблемна лекція, парадоксальна лекція, евристична бесіда, пошукова лабораторна робота, розв’язання ситуаційних задач, колективно-групове навчання, ситуативне моделювання, метод проектів, ділова гра тощо. Але пряме впровадження цих важливих методів у дистанційне навчання є або зовсім неможливим, або надзвичайно важким, або неефективним заняттям. Адже специфіка використання активних методів у дистанційному навчанні пов’язана не тільки зі специфікою саме цих методів, а й має враховувати особливості навчання на відстані.Всі вищеназвані активні методи навчання частково впроваджуються в навчальний процес як шкіл, так і вищих навчальних закладів, але, на жаль, цей процес впровадження дуже дискретний. Він має місце лише в практиці окремо взятих викладачів та вчителів новаторів як проява їх професійної майстерності і тим більше дуже рідко спостерігається в дистанційній практиці. Але активні методи навчання мають реальну можливість значно підвищити якість дистанційних курсів з будь-якої навчальної дисципліни та допомогти студентам побачити зв’язки навчальних завдань з реальними майбутніми професійними проблемами.Зазначимо основні особливості активних методів навчання: підвищення активізації діяльності студентів у процесі навчання; підвищення ступеня мотивації та емоційності; підвищення ступеня партнерства у навчанні; забезпечення тісної взаємодії між студентами та студентів з викладачами.Таким чином, у процесі використання активних методів навчання змінюється роль студентів і вони вже не тільки пасивно запам’ятовують та сприймають навчальний матеріал, але й перетворюються на активних учасників навчального процесу, які постійно перебувають в активному пошуку нової корисної інформації, контактів, рішень тощо та розвивають критичне мислення. Саме ця нова роль та притаманні їй характеристики дозволяють викладачам створити активного творчого студента, активну креативну особистість та як наслідок сучасну успішну людину.Загальновідомо, що центром сучасного заняття має бути не викладання, а саме навчання та самостійна робота студентів над матеріалом, що вивчається. Тим більше це стосується дистанційного навчання, де роль самостійної роботи збільшується в декілька разів і стає головною. Завдання викладача в цьому випадку не тільки забезпечити своїх дистанційних студентів навчальною та методичною літературою (переважно в електронному вигляді), а й намагатися зробити студентів більш активними та самостійними. І саме для цього на допомогу приходять кейсові активні методи навчання, які спонукають студентів активно працювати над інформацією як в групі з партнерами, так і самостійно.На жаль, групова дистанційна робота сьогодні ще мало вивчена та розроблена. Процеси її розробки та впровадження дуже трудомісткі та займають дуже багато часу. Особливо це стосується математичних дисциплін. Тому ми вирішили провести експеримент впровадження в дистанційний курс «Оптимізаційні методи та моделі» кейсових ситуацій.Аналіз конкретних ситуацій особливо привабливий для студентів, які не завжди добре сприймають традиційні курси науки в форматі лекцій і зосереджені більше на запам’ятовуванні фактичного матеріалу, ніж на розвитку розумових навичок високого рівню. Кейсовий метод навчання надзвичайно гнучкий і зручний в якості інструменту навчання, що буде продемонстровано на прикладах в даній статті. Хотілося б додати, що кейсовий метод здатний допомогти студентам навчитися критично оцінювати інформаційні матеріали, що необхідні в їх майбутній професійної діяльності, що містяться в ЗМІ, а також придбати навички колективної та групової роботи.Отже, основна мета кейсового навчання – не стільки передати зміст предметної галузі, скільки показати студентам, що являє собою науковий процес в реальному житті і сформувати навички на більш високому рівні. Кейси ідеально підходять для спільного вивчення дисципліни та навчання в малих групах, і у великих класах, як показує досвід міжнародних шкіл. Ми розробляємо кейси для впровадження їх в форуми дистанційного курсу «Оптимізаційні методи та моделі» для групового обговорення. У процесі навчання студентів оптимізаційним методам та моделям ми використовуємо дистанційний курс, що містить активні методи навчання – кейси (або ситуативні завдання). При проектуванні цього курсу ми намагалися гармонічно поєднати в ньому такі компоненти, як: теоретичний матеріал дисципліни; практикуми, що дозволяють студентам навчитися розв’язувати задачі; практичні і лабораторні завдання для перевірки ступеню засвоєння отриманих знань і вмінь та придбання навичок використання цих знань на практиці; активні методи навчання (кейси) для підвищення активізації, мотивації, зацікавленості курсом та практичної значущості курсу.Використання кейсових технологій у курсі базується на постійній активній взаємодії всіх учасників навчального процесу (тьютору, розробника курсу, слухачів). Таким чином організована тісна взаємодія в міні-колективі дозволяє стати викладачам і студентам рівноправними активними суб’єктами навчання. Вона значною мірою впливає на розвиток критичного мислення, надає можливість визначити власну позицію, формує навички відстоювати свою думку, поглиблює знання з обговорюваної проблеми. Активні методи також навчають студентів формувати аргументи, висловлювати думки з дискусійного питання у виразній і стислій формі, переконувати інших тощо.Розглянемо більш детально процес проектування цього курсу, а саме його частини, що стосується активних методів навчання.У процесі проектування курсу «Оптимізаційні методи та моделі» було виявлено, що кількість навчальних годин, що відведено для вивчення цього курсу досить незначна для детального оволодіння матеріалом курсу. Хоча знання та вміння, що мають бути отримані студентами з цієї дисципліни стають одними з головних при написанні дипломного проекту, а саме його частини, що стосується постанови математичної моделі, яка має надати прогноз та рекомендації щодо змін на краще на підприємстві, яке аналізується у роботі.Тому, вивчив теорію щодо різних методів навчання, увага була зосереджена саме на активних методах навчання. І найбільш зручним для вивчення дисциплін математичного циклу було обрано кейс-метод. Реальні данні для рейсових ситуацій було взято із збірнику [1] та доповнено новими запитаннями, що глибше розкривають міждисциплінарні зв’язки математичних методів та економічної теорії, а також дозволяють закріпити вже засвоєний на попередніх рівнях матеріал. Ці кейси було адаптовано для використання в дистанційному курсі у вигляді проблемних форумів і подавалося студентам як задача тижня, в обговоренні якої брали участь всі зацікавлені студенти, яких не задовольняв базовий рівень засвоєння дисципліни, які хотіли побачити та потренуватися на «живих» задачах та майбутніх професійних проблемах, які бажали спробувати себе у розв’язанні реальних нестандартних, творчих задач.Розглянемо детальніше, що являють собою спроектовані кейси для нашого дистанційного курсу. Так, кожна задача курсу ґрунтується на попередній, випливає з попередньої і враховує дані попередньої задачі. Для кожного завдання ми пропонуємо по три запитання – перше з яких стандартне запитання математичного програмування, яке вимагає від студента побудови моделі та рішення задачі лінійного програмування за допомогою електронних таблиць. Друге запитання – творчого характеру і передбачає від студента висунення гіпотези за отриманими даними в першому запитанні. Третє запитання – дослідного характеру, яке вимагає більш строгих логічних висновків або доведень, що підтверджують або спростовують припущення, сформульовані в другому запитанні. Причому кожне наступне запитання і кожна наступна задача є розвитком попередніх. Таким чином, при виникненні забруднень у студента відповісти на попереднє запитання він має можливість підглянути наступне запитання – і за його формулюванням спробувати знову відповісти на попереднє запитання.Таким чином, розробка та впровадження дистанційних курсів з використанням активних методів навчання, а саме кейсів, потребує високого ступеню професіоналізму викладача як зі свого навчального предмету так і з суміжних дисциплін, як висококласного спеціаліста-комп’ютерщика, так і грамотного психолога-організатора складного творчого навчального процесу на відстані. Адже тільки грамотно розроблені та професіонально впроваджені активні методи навчання дозволяють: забезпечити високий рівень навчання; сприяти розвитку навичок критичного мислення та пізнавальних інтересів студентів; продемонструвати практичну компоненту знань; посилити зворотний зв’язок, який вкрай необхідний у дистанційному навчанні; організувати ефективну систему мотиваційного контролю з розвивальною функцією; допомогти студентам зв’язати знання з різних дисциплін; зацікавити студентів реальними професійними проблемами; продемонструвати студентам їх спроможність розв’язувати ці проблеми.Змішана форма навчання студентів, що використовує активні методи навчання, дозволяє згладити основні недоліки дистанційного навчання, і в той же час максимально ефективно використовувати весь апарат дистанційного навчання з урахуванням всіх його переваг. А використання кейс-методу при цьому дозволяє студентам не тільки побачити практичні проблеми в дії та спробувати колективно їх розв’язати, а й актуалізувати певний комплекс знань, який необхідно засвоїти при вирішенні цих проблем при вдало суміщенні навчальної, аналітичної, соціальної та виховної діяльностей, що безумовно є ефективним в реалізації сучасних завдань системи освіти.
APA, Harvard, Vancouver, ISO, and other styles
39

ГУБІНА, Оксана. "ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА КЛЮЧОВИХ АСПЕКТІВ РОЗВИТКУ ВІДКРИТОЇ ОСВІТИ В РОБОТАХ ВІТЧИЗНЯНИХ КОМПАРАТИВІСТІВ." Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 3 (December 2020): 48–55. http://dx.doi.org/10.31494/2412-9208-2020-1-3-48-55.

Full text
Abstract:
У статті представлено результати дослідження соціально-педагогічного та технологічного аспектів розвитку відкритої освіти у вищих навчальних закладах України та Великої Британії. Встановлено, що в результаті інформатизації суспільства постають нові вимоги до навчання майбутніх фахівців. Вирішення вимог полягає у створенні вдосконаленого відкритого (комп’ютерно-орієтованого) середовища навчальних закладів, лабораторій, бібліотек; оновленням методичного забезпечення, педагогічних технологій та змісту дистанційного й електронного навчання на основі використання ІКТ; запровадженням нових форм і методів організації освітнього процесу; упровадженням відкритих навчальних систем; використанням методики формування інформаційно-комунікаційних компетентностей науково-педагогічних працівників, методики оцінювання якості відкритих електронних систем та вільного доступу до відкритих освітніх ресурсів; а також у дослідженні стану, тенденцій і моніторингу розвитку відкритої освіти. Представлено основні технології, що застосовуються у відкритій освіті, а саме: а) кейс-технологія, яка є близьким аналогом технологій заочного навчання; б) TV-технологія; в) мережна технологія. Наведено найбільш детальну в українській науці класифікацію технологій відкритої освіти: 1) науково-освітні інформаційні мережі; 2) технології підтримки віртуального навчання (зокрема, web 2.0 та ін.); 3) всесвітня мережа «Партнерство в навчанні» (Partners in Learning Network); 4) технології електронного проєктування педагогічних систем; 5) технології мережного е-дистанційного навчання; 6) електронні бібліотеки; 7) технології комунікацій близької зони, зокрема, мобільні електронні технології і спеціальні засоби; 8) електронні технології управління проєктами. Доведено, що головними перевагами відкритої освіти є доступність, гнучкість, паралельність, модульність, економічність, інтернаціональність та координованість, які надають можливість кожній людини отримувати освіту. Використання елементів відкритої освіти забезпечує не тільки доступ до цифрового контенту, а й сприяє вдосконаленню системи управління освітою та контролю її якості. Ключові слова: відкрита освіта, соціально-педагогічний та технологічний аспекти, інноваційні технології, інформаційно-комунікаційні компетентності, індивідуалізація навчання, навчальні ресурси.
APA, Harvard, Vancouver, ISO, and other styles
40

Чухно, Михайло Васильович, and Володимир Маркусович Михалевич. "Оперативний обмін електронно-освітніми ресурсами засобами хмароподібних технологій." New computer technology 12 (December 25, 2014): 295–300. http://dx.doi.org/10.55056/nocote.v12i0.724.

Full text
Abstract:
Мета дослідження: пошук ефективних прийомів використання СКМ у навчанні вищої математики. Завдання дослідження: вирішення проблеми оперативної роздачі останніх версій електронних матеріалів; запровадження хмароподібних технологій у навчання вищої математики. Об’єкт дослідження: навчання вищої математики студентів нематематичних спеціальностей. Предмет дослідження: використання СКМ у навчанні вищої математики студентів нематематичних спеціальностей. Використані методи дослідження: аналіз науково-методичної літератури, навчання, спостереження за навчальним процесом. Результати дослідження. Виділено проблему оперативної роздачі останніх версій електронних матеріалів під час аудиторних занять з вищої математики. Для вирішення зазначеної проблеми запроваджено хмароподібні технології. Указані технології базуються на різних моделях проведення занять із застосуванням навчальних математичних тренажерів (НМТ): аудиторній, лабораторній та комбінованій. Основні висновки. Розроблені та впроваджені технології для вирішення проблеми оперативної роздачі надали можливість підвищити ефективність використання НМТ у навчанні розв’язування диференціальних рівнянь майбутніх інженерів.
APA, Harvard, Vancouver, ISO, and other styles
41

Хмеляр, Інеса, and Оксана Мялюк. "ФОРМУВАННЯ ДОСЛІДНИЦЬКОЇ КОМПЕТЕНТНОСТІ СТУДЕНТІВ-ЛАБОРАНТІВ." New pedagogical thought 99, no. 3 (February 11, 2020): 152–56. http://dx.doi.org/10.37026/2520-6427-2019-99-3-152-157.

Full text
Abstract:
У статті обґрунтовано підходи до визначення змісту дослідницької компетентності студентів, визначено ефективні форми, методи і засоби її формування у процесі викладання навчальної дисципліни «Клінічна лабораторна діагностика». Представлено пріоритетні освітні технології та методи, які не надають готових знань, а спонукають до пошуку, та в яких роль викладача зводиться до функції тьютора й організатора, що сприяє підвищенню самооцінки особистості студента, закладає основи його професійного зростання. З’ясовано структуру та етапи проведення практичних занять із навчальної дисципліни «Клінічна лабораторна діагностика».
APA, Harvard, Vancouver, ISO, and other styles
42

Якусевич, Юрій Геннадійович. "Дистанційне навчання як прогресивна інформаційна технологія." Theory and methods of learning fundamental disciplines in high school 1 (April 19, 2014): 259–65. http://dx.doi.org/10.55056/fund.v1i1.445.

Full text
Abstract:
Бурхливий розвиток інформаційних технологій в останні кілька років привів до появи нового популярного терміна – комп’ютерне дистанційне навчання [1]. І якщо з комп’ютерами все зрозуміло, то з дистанційним навчанням (ДН) усе набагато складніше. Більшість авторів з деякими розбіжностями сходяться до наступного визначення ДН – це сукупність методик і сучасних технічних засобів навчання, що дозволяють вести процес навчання, коли викладач і учень територіально віддалені один від одного [2].Але останнім часом головним критерієм проблеми індивідуального навчання стає час. У системі підвищення кваліфікації і перепідготовки критерій часу виявляється головним чином у розбіжності термінів потреби фахівця у вивченні матеріалу з оголошеним офіційним графіком занять у навчальних закладах. Іншою важливою стороною цього питання є зміст оголошених програм навчання, що не враховують індивідуальних запитів тих, хто навчається [3]. Таким чином, пошук альтернативних шляхів індивідуалізації навчання є не новою, а як і раніше актуальною проблемою.В усьому світі відома практика заочного навчання шляхом централізованого розсилання друкованих текстових посібників і матеріалів. Однак, така форма навчання звичайно страждає відсутністю достатніх внутрішніх мотивацій до вивчення навчального матеріалу з боку фахівців. До такого навчання інтерес фахівців, як правило, невисокий, як невисока і якість одержуваних знань.Якісно нові можливості самопідготовки й удосконалювання професійних знань надають нові інформаційні технології навчання на відстані з використанням локальних і розподілених мереж, відеокасет, телевізійного кабельного і супутникового відеовіщання.На противагу традиційно побудованим курсам очного і тим більше заочного навчання, використання інформаційних технологій відкриває дорогу навчанню безпосередньо на робочому місці, що при правильній організації дозволяє індивідуалізувати процес і відводити на навчання персоналу необхідну кількість часу без яких-небудь відчутних зупинок у роботі.Комп’ютерне ДН базується на принципах автономії (самоврядування) процесу пізнання. Його реалізація має потребу в новому педагогічному підході, заснованому на діалозі “викладач–студент–компьютер” і припускає розумне сполучення навчальних і контролюючих програм з розгорнутою компонентою взаємної моральної відповідальності викладачів і студентів. Автономія в навчальному процесі припускає не тільки самостійність Вузів, але і право студента в рамках багаторівневої системи освіти вибирати індивідуальну траєкторію навчання.Формально діалогову систему “викладач–студент–комп’ютер” можна представити в такий спосіб:М={T, Р, A, К, П, Л, Х},де:Т – модель викладача в процесі навчання;Р – модель того, кого навчають, з повним аспектом особистих і фізіологічних особливостей;.А – безліч комунікативних цілей, з якого кожен учасник процесу навчання вибирає свою;К – комунікативні стратегії;П – комунікативні тактики;Л – знань про предметну галузь;Х – лінгвістичні змінні, тобто способи спілкування між викладачем і тим, кого навчають.Опускаючи методичні аспекти ДН, покажемо його перевагу над попередніми видами навчання в суспільстві. Для цього розкладемо дуже умовний розподіл всієї історії навчального процесу на три етапи:– докомп’ютерний;– комп’ютерний;– мережний.Докомп’ютерний етап зв’язаний із традиційними методами навчання – паперовими підручниками, уроками, лекціями, семінарами і т.д.Комп’ютерний етап був ознаменований приходом в освіту комп’ютерів. Як наслідок, стали з’являтися комп’ютерні навчальні засоби – комп’ютерні підручники, різні демонстраційні, навчальні і контролюючі програми, що використовуються на уроках. Із поширенням персональних комп’ютерів освітні програми одержали новий поштовх до розвитку, і це не завжди вело до підвищення їхньої якості. Вони поширюються на дискетах або на CD, BBS і FTP носіях. Як правило, такі програми застосовуються для демонстрацій навчальних занять або для самостійного вивчення предмета. Найбільшу популярність серед таких навчальних матеріалів одержали різні курси іноземних мов, менше зустрічаються навчальні програми по природничій тематиці, наприклад “Фізика на комп’ютері”. З’явились окремі різновиди навчальних посібників – різноманітні мультимедійні енциклопедії, такі як “Microsoft Encarta” чи “Велика Енциклопедія Кирила і Мефодія”. Не будучи чисто навчальними матеріалами, вони можуть виявитися дуже корисні в школах як довідкові посібники і як засоби розширення кругозору студентів. Можливість швидко знайти у великому обсязі інформації потрібні дані є дуже корисною і незаперечною перевагою комп’ютерного підручника в порівнянні з простим паперовим.Мережний етап в утворенні тільки починається. Глобальна комп’ютерна мережа Інтернет породила зовсім новий вид навчальних матеріалів – Інтернет-підручників. Область застосування Інтернет-підручників велика: звичайне і дистанційне навчання, самостійна робота. Але найбільші перспективи обіцяє об’єднання підручників із контролюючими програмами знань учнів, що доповнене спілкуванням між викладачем і студентами в реальному часі (у цьому плані Інтернет надає найбагатші можливості – від традиційної електронної пошти, до відеоконференцій і web-chat). Представлений єдиним інтерфейсом, такий Інтернет-підручник може стати не просто посібником на один семестр, а навчальним і довідковим середовищем.Використання новітніх інформаційних технологій у ДН дозволяє більш активно використовувати науковий і освітній потенціал ведучих університетів і інститутів, залучаючи кращих викладачів до створення курсів ДН, розширюючи аудиторію тих, яких навчають, і дозволяє здійснювати широкомасштабну підготовку і перепідготовку фахівців не залежно від місця проживання.Велика кількість існуючих у даний час комп’ютерних підручників базується на звичній парадигмі “книги” – деякої кількості ілюстрованої текстової інформації. Подібний підхід цілком виправданий у випадку, якщо підручник служить допоміжним матеріалом у процесі “звичайного” навчання, але явно недостатній у випадку навчання дистанційного, коли спілкування викладача й студента зведено до мінімуму. Тому побудований на гіпертекстових технологіях електронний підручник для ДН, крім інших, має наступні переваги:1. Наявність гіпертекстової структури, що покриває як понятійну частину курсу (означення, теореми), так і логічну структуру викладу (послідовність викладу, взаємозалежність частин). Гіпертекст – це можливість створення “живого”, інтерактивного навчального матеріалу, із забезпеченням посилань між різними частинами матеріалу. Можливості гіпертексту дають викладачу можливість розділити матеріал на велике число фрагментів, з’єднавши їх гіперпосиланнями в логічні ланцюжки. Наступним кроком тут може бути створення на основі того самого матеріалу “власних” підручників для кожного студента, з урахуванням рівня його підготовки, швидкості засвоєння матеріалу, його інтересів і т.п.2. Гнучка система керування структурою – це система, коли викладач може задати найбільш прийнятну, на його думку, форму представлення і послідовність викладу матеріалу. Це дозволить використовувати той самий навчальний матеріал для аудиторії різного ступеня підготовленості і для різних видів навчальної діяльності (первинне навчання, перепідготовка, тренінг, самостійне чи факультативне вивчення матеріалу) чи як довідкову систему.3. Використання, якщо це методично виправдано, мультимедіа можливостей сучасних персональних ЕОМ, зокрема, звуку, анімації, графічних уставок, слайд-шоу і т.п. При цьому інформація повинна бути якомога більш ідентично представлена як під час перегляду, так і в “паперовій копії” (роздруківці) – по можливості, студент повинен мати можливість роздрукувати будь-яку “сторінку” подібного підручника, мінімально втративши в поданні матеріалу.4. Підручник доступний студентові, по можливості, декількома способами (наприклад, і по Інтернет, і на CD-диску).5. Наявність підсистеми контролю знань, інтегрованої в підручник. Такими якостями повною мірою володіють дистанційні навчальні системи, створювані на базі гіпертекстових технологій, що використовуються в Інтернет.Крім цього, гіпертекстові технології володіють ще іншими перевагами:1. Сучасні інформаційні технології (зокрема середовище WWW у мережі Інтернет) дозволяють досить просто створювати інформаційні матеріали, навіть не маючи спеціальних знань про мови форматування документа (існують різноманітні конвертори з найбільш розповсюджених текстових форматів у формат гіпертекстовий).2. В даний час існує багато программ-перегляду (Netscape, Mosaic, Internet Explorer і т.п.), що володіють зручним інтерфейсом і адаптованих для більшості існуючих платформ комп’ютерів (IBM PC, Macintosh і т.д.).3. Оскільки гіпертекстовий протокол є стандартом у WWW, то такий підручник легко може бути включений у глобальну інформаційну мережу і буде доступний широкому колу користувачів.Важлива частина будь-якого навчального процесу – самостійна робота. До неї можна віднести домашні роботи, твори, практикуми, лабораторні роботи і т.п. Це, мабуть, та область, де розвиток інформаційних технологій, з погляду педагогів, приніс більше шкоди, ніж користі для освіти (проблема “плагіату”). Але це – ще одна можливість, що можуть успішно використовувати сучасні вчителі і професори:– розвиток і заохочення творчого потенціалу учнів, публікація в Інтернет кращих дипломів і курсових, творів, збір робіт з навчального курсу, гіпертекстових рефератів;– допоможуть викладачу формувати банк матеріалів за досліджуваним курсом.Контроль знань – ця найбільш спірна область. У будь-якому випадку використання комп’ютера допомагає викладачу зменшити рутинну, малоцікаву роботу по перевірці тестів, контрольних робіт (що дозволяє проводити контроль частіше) і знижує фактор суб’єктивності.Одна з головних проблем контролю знань – ідентифікація. І в міру переходу до комп’ютерних і мережних програм контролю знань усе більш складно визначити, чи дійсно студент сам правильно відповів на всі питання, чи йому хтось допомагав. І якщо при письмовому іспиті можна розсадити абітурієнтів по різних партах, то перевірити, хто відповідав на питання контрольної в Мережі, практично неможливо. Цей аргумент, як правило, приводять прихильники консервативного підходу до перевірки знань. Контраргументом на користь комп’ютеризованих методів може бути те, що дистанційне навчання, як правило, має на увазі більш високу умотивованість тих, хто навчається (вони самі вибирають собі курс, та й найчастіше до такої форми навчання приходять ті хто одержує другу освіту, при підвищенні кваліфікації – тобто тоді, коли людина найбільше зацікавлена одержати реальні знання).Інша проблема контролю знань при дистанційному навчанні – те, що контролююча система повинна бути досить складною і мати достатню базу питань, що вимагає великих зусиль з боку викладача. Правда, один раз створивши таку базу, нею можна користатися протягом тривалого часу, але це відноситься далеко не до всіх курсів.Контролююча система має наступні характеристики:– питання типу "”вибір однієї відповіді з багатьох”;– адаптивний вибір наступного питання в залежності від правильності попередніх відповідей студента;– можливість створення різних завдань з одного набору питань;– можливість включення в питання графічних зображень і гіпертекстових посилань;– ведення журналу проходження опитування;– наявність підсистеми “робоче місце викладача” для введення і корегування питань, зміни характеристик завдань при перегляді результатів і т.д.Як приклад такої контролюючої системи можна назвати систему електронного контролю знань. Інший приклад системи контролю звань, з яким знайомі всі автомобілісти країни – це білети по перевірці знань правил дорожнього руху.Об’єднання гіпертекстових навчальних посібників і системи електронного контролю знань, що базуються на технологіях Інтернет, дозволяють, у перспективі, створити єдине навчальне середовище, що адаптується під рівень знань і, фактично, створює індивідуальний “електронний підручник” для кожного, хто навчається. А додаткове використання технології Web-Chat дає можливість у рамках WWW технологій створити єдиний процес Дистанційного Навчання, що складається не тільки з “навчальної бібліотеки”, але і з повноцінного спілкування між викладачем і студентом.В міру переходу від паперових підручників до комп’ютерних а від них – до мережних – росте оперативність підготовки матеріалу. Це дозволяє зменшувати час підготовки навчальних посібників, тим самим збільшуючи число доступних студенту навчальних курсів. Уже зараз багато навчальних закладів пропонують дистанційні форми навчання по одному чи декільком курсам.
APA, Harvard, Vancouver, ISO, and other styles
43

Мамченко, Віталій, Оксана Лавринюк, and Вікторія Вечорка. "ОЦІНКА ТЕХНІКИ ГОДІВЛІ СЛУЖБОВИХ СОБАК В УМОВАХ НАВЧАЛЬНОЇ ЛАБОРАТОРІЇ КІНОЛОГІЇ ПОЛІСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ." Bulletin of Sumy National Agrarian University. The series: Livestock, no. 2 (45) (May 31, 2021): 103–7. http://dx.doi.org/10.32845/bsnau.lvst.2021.2.15.

Full text
Abstract:
У статті наведена оцінка техніки годівлі службових собак в умовах навчальної лабораторії кінології Поліського національного університету. Аналізуючи звіти лабораторії кінології, слід відмітити, що кількість та породний склад собак за останні 3 роки поступово збільшується і на кінець 2020 року становить: Німецька вівчарка – 10 голів, Середньоазіатська вівчарка – 4, Лабрадор – 4, Самоїд –2, Далматинець – 1 голова. Основу раціону для службових собак займають корми тваринного походження (субпродукти, м'ясо, молоко та молочні продукти, жир тваринний), рослинного походження (крупа вівсяна, ячмінна, пшоно, овочі), морська риба або морепродукти, мінеральні добавки (кісткове борошно, сіль кухонна), вітамінні препарати (тетравіт, катозал). В умовах навчальної лабораторії собаки харчуються двічі на добу – уранці і у вечері, приблизно за 1,5 години до виконання службових обов’язків і через 30-60 хвилин після роботи. Годівля собак залежить від розпорядку доби. Собакам, які охороняють територію у нічні часи годування проводять за 80-120 хвилин до роботи, а зранку після того, як їх зняли з охорони після відпочинку. Напування службових собак без обмежень. Результати дослідження крові доводять нам про те, що всі фізіологічні процеси в організмі тварин відбуваються нормально, без відхилень. При розрахунках економічної ефективності наведені дані говорять про те, що витрати на раціони годівлі тварин у періоді спокою на 2115 гривень менші, ніж у собак, які виконують службові обов’язки. Це пояснюється тим, що тварини, які залучені на охорону об’єктів, територій, витрачають значно більше енергії та потребують підвищену потребу у поживних речовинах (м'ясо, риба).
APA, Harvard, Vancouver, ISO, and other styles
44

Papinov, V. M. "Automated production warehouse: hybrid modeling in a computerized training laboratory." Optoelectronic information-power technologies 39, no. 1 (2020): 61–77. http://dx.doi.org/10.31649/1681-7893-2020-39-1-61-77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Будник, Олена Богданівна, and Ольга Володимирівна Дзябенко. "ВИКОРИСТАННЯ ІНСТРУМЕНТАРІЮ ПЛАТФОРМИ GO-LAB ДЛЯ РОЗВИТКУ ДОСЛІДНИЦЬКИХ УМІНЬ ШКОЛЯРІВ." Information Technologies and Learning Tools 80, no. 6 (December 22, 2020): 1–20. http://dx.doi.org/10.33407/itlt.v80i6.3953.

Full text
Abstract:
У статті обґрунтовано актуальність використання методу дослідницько орієнтованого навчання предметів STEAM у закладах загальної середньої освіти. Представлено можливості екосистеми Go-Lab (https://www.golabz.eu), яка сьогодні містить найбільшу колекцію віддалених / віртуальних лабораторій, освітніх додатків, понад тисячу дослідницьких навчальних середовищ (Inquiry Learning Space – ILS) для інноваційного викладання в класі, змішаного та дистанційного навчання. Ця платформа активно використовується в школах Західної Європи, деяких країн Африки і стала доступною для України завдяки проєкту програми ЄС ERASMUS+ К2 «Модернізація вищої педагогічної освіти з використанням інноваційних інструментів викладання – MoPED» (№586098-EPP-1-2017-1-UA-EPPKA2-CBHE-JP). Авторами висвітлено особливості побудови ILS як персоналізованого дослідницького середовища для самостійного вивчення предметів STEAM, де учні мають змогу здійснювати наукові експерименти, розвивати дослідницькі навички та цифрову компетентність. Доведено переваги використання віртуальних / віддалених лабораторій у роботі з учнями, зокрема в інклюзивній освіті. Описано типи навчання-дослідження на основі запитів. Охарактеризовано етапи цілісного дослідницького циклу на порталі Go-Lab: орієнтація, концептуалізація, дослідження, висновки та обговорення. Висвітлено можливості цієї платформи для створення власного віртуального сценарію навчання або модифікації імпортованого ILS, створеного іншими користувачами. Наведено приклади деяких ILS українською мовою для активного експериментування онлайн, що уможливлює самостійне навчання здобувачів освіти, розвиток їхнього критичного мислення та ін. Виокремлено критерії оцінювання створеного дослідницького навчального середовища на платформі Go-Lab з використанням віртуальних лабораторій, навчальних ігор, симуляцій тощо, які розроблені під час проведення навчальних тренінгів у Прикарпатському національному університеті імені Василя Стефаника. Наголошено на потребі розроблення нових онлайн лабораторій українською мовою, адаптованих до Державних стандартів загальної середньої освіти з урахуванням вимог до результатів і компетентностей школярів за освітніми галузями. Новизна результатів дослідження полягає в обґрунтуванні теоретико-методичних засад використання дослідницько орієнтованого навчання з допомогою екосистеми Go-Lab у Новій українській школі.
APA, Harvard, Vancouver, ISO, and other styles
46

Колгатін, Олександр Геннадійович, and Лариса Сергіївна Колгатіна. "Інтерпретація тестових результатів на основі логістичної моделі в табличному процесорі." Theory and methods of learning mathematics, physics, informatics 13, no. 2 (April 13, 2018): 338–39. http://dx.doi.org/10.55056/tmn.v13i2.795.

Full text
Abstract:
У середині ХХ сторіччя видатними вченими було розроблено нову на той час теорію інтерпретації результатів педагогічного тестування. В основу цієї теорії покладено ідею моделювання імовірності правильної відповіді на завдання тесту за допомогою функції спеціального виду. Аргументами цієї функції є показник підготовленості тестованого й параметри, що характеризують завдання. В англомовній літературі теорія відома під назвою IRT (Item Response Theory), що може бути дослівно перекладено як теорія відгуку (характеристики) тестового завдання. У вітчизняній тестологічній термінології цю теорію часто називають сучасною або математичною, але частіше за все застосовують абревіатуру IRT. Означена теорія внесла неоцінний внесок у розвиток тестових технологій. Завдяки застосуванню IRT з’явилася можливість порівнювати результати тестування за варіантами тесту з різними завданнями, навіть з різною кількістю завдань. По-перше, це відкрило перспективи для розвитку комп’ютерного адаптивного тестування. По-друге, сприяло розвитку технології психометричного зрівнювання варіантів класичних тестів. Поширене впровадження тестових технологій у систему освіти потребує всебічного ознайомлення майбутніх педагогів із досягненнями світової тестології. Враховуючі значення IRT, її вивчення має бути одним із ключових питань фахової підготовки студентів. Але повноцінне викладення теорії спирається на спеціальні розділи обчислювальної математики, і це стримує впровадження IRT у навчальний процес педагогічних університетів. Безумовно, існує безліч програмних засобів, які реалізують обчислення, пов’язані із застосуванням IRT, але ці засоби – вузько спеціалізовані, їх застосування передбачає ознайомлення з специфічним інтерфейсом і потребує багато навчального часу. Тому ми пропонуємо здійснити навчальне моделювання процедури інтерпретації тестових результатів на основі IRT за допомогою табличного процесора загального призначення Microsoft Excel. Під час виконання обчислень студенти власноруч створюють відповідну модель інтерпретації, що сприяє поглибленому розуміння методології IRT. Застосування вбудованого засобу Microsoft Excel «Пошук розв’язку» звільняє студентів від необхідності будувати й налагоджувати алгоритми обчислювальної математики для визначення параметрів логістичної моделі та показників підготовленості тестованих. Виконання лабораторної роботи сприяє розвитку навичок володіння інформаційними технологіями загального призначення, що також є одним із завдань фахової підготовки майбутніх учителів. Розроблені навчально методичні матеріали впроваджено нами в процес підготовки спеціалістів за спеціальностями 7.04010101 «Хімія» (спеціалізація «Інформатика»), 7.04030201 «Інформатика» (спеціалізація «Англійська мова»), 7.04030201 «Інформатика» (спеціалізація «Математика») і магістрів за спеціальністю 8.04030201 «Інформатика» в Харківському національному педагогічному університеті імені Г. С. Сковороди.
APA, Harvard, Vancouver, ISO, and other styles
47

Фільо, Ірина Євгенівна. "Методичні засади технології е-портфоліо в професійній підготовці інженерних фахівців." Theory and methods of e-learning 3 (February 13, 2014): 314–18. http://dx.doi.org/10.55056/e-learn.v3i1.355.

Full text
Abstract:
Модель методичної системи навчання будь-якого курсу у вищій школі має відображати специфіку діяльності майбутнього фахівця. Спрямованість підготовки майбутніх фахівців інженерного профілю має своє відображення у змісті навчання курсу інформатики, який має бути побудований таким чином, аби студент під час проходження курсу міг розвинути уміння творчо розв’язувати навчальні та реальні задачі професійного характеру науковими методами, використовуючи можливості персонального комп’ютера. Навчальний вплив здійснюється шляхом різнопрофільного добору змісту навчального матеріалу; визначення рівнів вимог до знань та вмінь, пред’явлення їх студентам через відповідні теоретичні завдання (лекції) та практичні вправи (лабораторні, практикуми); вибору таких форм організації навчального процесу, які б стимулювали активність студентів, раціонально поєднували фронтальне, групове та індивідуальне навчання і при цьому визначали б рівень діяльності студентів.Однією з перспективних технологій активізації навчального процесу та творчого розвитку студентів можна назвати технологію Е-портфоліо. Проблемам використання технології портфоліо в навчальному процесі вищих навчальних закладів присвятили свої праці Я. Бельмаз, О. Бояринцева, С. Блинова, І. Возвишаєва, О. Григор’єва, Ю. Зоря, В. Завіна, М. Кадемія, О. Насирова, Т. Ніфонтова, Т. Новікова, О. Свєт та ін. Проте проблема використання технології електронного портфоліо, зокрема під час професійної підготовки майбутніх інженерів, залишається актуальною та не вивченою у вітчизняній педагогічній науці.Враховуючи актуальність проблеми, метою статті є розгляд методичних засад технології Е-портфоліо та її реалізації в професійній підготовці інженерних фахівців.Аналіз науково-педагогічної літератури та електронних ресурсів стверджує, що єдиного розуміння поняття «електронне портфоліо» ще не існує. В публікаціях та матеріалах мережі Інтернет можна зустріти такі терміни пов’язані з електронним портфоліо як: «digital portfolio», «electronic portfolio», «e-portfolio», «web-portfolio», «web based portfolio», «eFolio» [1; 2]. Ми спробували проаналізувати різноманітні підходи до визначень сутності поняття «електронне портфоліо» та уточнити його [3].Таким чином, нами була виведена формула, яка допомагає зрозуміти зміст поняття Е-портфоліо: Е-портфоліо = Електронне портфоліо + Веб-портфоліо.Метою ведення портфоліо є: систематизація досвіду; чітке визначення напрямів розвитку студента, що полегшує самоосвіту або консультування з боку науково-педагогічних працівників; об’єктивніша оцінка рівня сформованості професійних умінь; допомога в написанні курсових та дипломних робіт, студентських наукових досліджень.До принципів запропонованої технології належать [3]: самооцінка результатів (проміжних, кінцевих) – вміння приймати самостійні рішення в процесі пізнання, прогнозувати наслідки цих рішень, проводити відповідну корекцію; здатність до комунікації (участь у дискусії, вміння аргументувати свою позицію, докладно, грамотно, лаконічно пояснювати матеріал іншим); систематичність та регулярність самомоніторингу; структуризація матеріалів портфоліо, логічність та грамотність ведення всіх супроводжуючих матеріалів; культура ведення документації, естетичність оформлення; цілісність, тематична завершеність поданих у портфоліо матеріалів; наочність, обґрунтованість презентації портфоліо студентом.Використання технології Е-портфоліо під час професійної підготовки майбутніх інженерів допомагає розв’язувати важливі педагогічні завдання:• підтримувати високу навчальну мотивацію студентів;• заохочувати активність і самостійність студентів, розширювати можливості навчання й самонавчання;• розвивати навички рефлексивної й оцінної (самооцінної) діяльності студентів;• формувати вміння вчитися — ставити цілі, планувати й організовувати власну навчальну діяльність [4].Варто зазначити, що порівняно зі звичайним паперовим портфоліо, Е-портфоліо має значні переваги, до яких слід віднести [5]:– мобільність і гнучкість (у разі електронного оформлення легко вносити зміни до структури і змісту матеріалів);– широкі можливості для оформлення портфоліо;– розширює можливості для вибору засобів роботи з текстовою та числовою інформацією (це можуть бути текстові документи, електронні таблиці, діаграми тощо);– може бути мультимедійним, тобто до складу Е-портфоліо входять анімація, аудіо- і відеокліпи, що знайдені студентом в мережі Інтернет або створені самостійно;– Е-портфоліо окремих студентів можуть бути легко об’єднані в групи, студенти можуть обмінюватися створеними порт фоліо або окремими матеріалами;– у складі Е-портфоліо можуть бути презентовані матеріали з Інтернету, що представляють альтернативні точки зору.Окреслимо основні функції Е-портфоліо, застосовуючи пропозиції Т. Г. Новикової [6]: діагностична – фіксує зміни і зростання за певний період часу; цільова – підтримує навчальні цілі; змістова – розкриває весь спектр виконуваних робіт та інтересів; розвивальна – забезпечує неперервність розвитку у процесі всього навчання; мотиваційна – заохочує студентів до підвищення результатів; рейтингова – показує діапазон навичок і вмінь студента.Е-портфоліо – сучасна освітня технологія, в основі якої використовується метод автентичного оцінювання результатів освітньої та професійної діяльності. Автентичне оцінювання – це вид оцінювання, який застосовується, перш за все, у практико-орієнтованій діяльності і передбачає оцінювання сформованості вмінь та навичок особистості в умовах поміщення її у ситуацію, максимально наближену до вимог реального життя – повсякденного чи професійного.Л. В. Шелехова вважає, що технологія роботи з портфоліо передбачає такі етапи [7]:1. Мотивація: кожен студент повинен усвідомлювати, що портфоліо: 1) виконує накопичувальну і модельну функції, відображаючи динаміку розвитку студента і результатів його самореалізації; 2) допомагає студенту проводити рефлексію власної навчальної роботи та встановити зв’язки між попередніми і новими знаннями; 3) є критерієм підготовленості до здійснення майбутньої професійної діяльності; 4) служить предметом обговорення і чинником самооцінки (оцінкою) результатів роботи студента на заліку або підсумковому занятті.2. Визначення виду портфоліо.3. Терміни здачі і час роботи над портфоліо: на заняттях, під час самостійної роботи, під час домашньої підготовки.4. Розділи та рубрики. Кількість розділів і рубрик (а також їх тематика) може бути різним і визначається в кожному окремому випадку. Зміст рубрики визначається її назвою, об’єм – призначенням матеріалу, який у неї включається; структура та оформлення – індивідуальними особливостями студента. Усередині розділів можуть бути виділені рубрики, які допомагають систематизувати матеріал, і формують структуру розділу. Рубрики можуть бути обов’язковими і необов’язковими.5. Критерії оцінювання: обговорюються і визначаються спільно зі студентами. Механізм оцінки портфоліо може бути реалізований таким чином: а) оцінюється тільки процес і характер роботи над портфоліо; б) оцінюються за заданими критеріями тільки окремі частини портфоліо (наприклад, обов’язкові рубрики); в) оцінюються всі рубрики, загальна оцінка виводиться як середнє арифметичне; г) оцінюється остаточний варіант портфоліо; оцінюється не тільки сам портфоліо, але й якість його презентації; д) портфоліо не оцінюється, а студент вибирає окремі частини для презентації на підсумковому занятті, що є допуском до заліку або іспиту. Як критерії можна розглядати: а) наявність обов’язко­вих рубрик та висновків; б) використання дослідницьких методів; в) креативний характер портфоліо; г) наявність особистісного компонента; д) якість оформлення; е) аналіз корисності портфоліо для самого студента, ж) наявність рефлексії власної діяльності (самооцінка роботи над портфоліо).Аналіз існуючих у літературі поглядів на структуру студентських портфоліо доводить, що в мінімізованому варіанті Е-портфоліо повинно містити такі пункти: професійно складене резюме, що відповідає сучасним вимогам, і автобіографію; список засвоєних навчальних курсів за основною сферою діяльності й пов’язаних із нею галузей знань, враховуючи додаткову спеціалізацію, тренінги, спеціалізовані семінари й майстер-класи провідних викладачів; список позанавчальних заходів і посад, де на практиці застосовуються навички лідерства (наприклад, староста групи, керівник наукової студентської групи тощо); опис кар’єрного потенціалу й готовності до кар’єри в межах надбання навичок і досвіду; рекомендації провідних викладачів, керівників курсових проектів, дипломних робіт, виробничих практик.Портфоліо може складатися з інваріантної частини (комплекту документів, розробленого викладачем) й варіативної частини (комплекту документів, розробленого самостійно студентом й узгодженого з експертною групою). Інваріантна частина портфоліо містить такі документи: домашні роботи; результати поточних письмових робіт, підсумкових контрольних робіт, тестів; результати групової роботи: опис навчально-дослідницького завдання, у розв’язанні якого брав участь студент, чернетки, схеми; обов’язкові індивідуальні роботи; блок-схеми, таблиці; коментарі з кожного виду роботи; рефлексія своєї діяльності; заповнені студентом анкети; оцінка експертів [8]. Варіативна частина портфоліо може бути одним документом, запропонованим студентом самостійно або дібраним ним із такого переліку документів: питання, що виникають під час роботи; формулювання й обґрунтування цілей майбутнього навчання; робота над помилками; індивідуальний проект.Висновок. Аналіз науково-методичної літератури та електронних ресурсів мережі Інтернет свідчить, що створення Е-портфоліо майбутніми фахівцями інженерних спеціальностей дозволяє: відобразити ступінь творчої активності студента під час вивчення різноманітних тем, розділів або дисциплін; простежити індивідуальний прогрес студента, що відбувався під час навчання; підтримувати і стимулювати навчальну мотивацію студента; заохочувати активність і самостійність; розширювати можливості навчання й самоосвіти; розвивати навички рефлексивної діяльності й здатність до антиципації; здійснювати інтеграцію кількісної та якісної оцінок; переносити акцент з оцінки на самооцінку; формувати вміння вчитися; активізувати пізнавальну, інформаційно-пошукову та дослідницьку діяльність.
APA, Harvard, Vancouver, ISO, and other styles
48

Шокалюк, Світлана Вікторівна, and Ірина Станіславівна Закарлюка. "Хмарні технології у загальноосвітніх навчальних закладах." New computer technology 13 (December 25, 2015): 24–28. http://dx.doi.org/10.55056/nocote.v13i0.879.

Full text
Abstract:
Метою даного дослідження є визначення ролі та місця хмарних технологій у сучасній школі, основним завданням – визначення складових системи засобів хмарних технологій підтримки навчання окремих шкільних предметів, об’єкт дослідження – засоби організації та підтримки електронного навчання у загальноосвітніх навчальних закладах, предмет – засоби хмарних технологій підтримки електронного навчання учнів, основний метод дослідження – теоретичне дослідження. Система засобів хмарних технологій навчання певного шкільного предмета складається із загальнонавчальних засобів хмарних технологій (засоби онлайн-розробки електронних навчальних матеріалів та їх онлайн-сховища, засоби хмарних технологій управління навчанням) та спеціалізованих засобів хмарних технологій – браузерних систем програмування та моделювання (на підтримку вивчення інформатики), мобільних математичних середовищ (на підтримку вивчення математики), віртуальних онлайн-лабораторії та системи моделювання (на підтримку вивчення фізики, хімії або біології) тощо. Використання хмарних технологій у навчальному процесі загальноосвітніх навчальних закладів перш за все дозволить вирішити проблему забезпечення рівного доступу учнів та вчителів до якісних освітніх ресурсів як на уроках, так і у позаурочний час.
APA, Harvard, Vancouver, ISO, and other styles
49

Радкевич, Валентина Олександрівна. "Енергоефективність у професійній підготовці майбутніх фахівців будівельного профілю." New computer technology 8 (November 22, 2013): 58–60. http://dx.doi.org/10.55056/nocote.v8i1.167.

Full text
Abstract:
Стратегічним завданням Уряду нашої держави є стабілізація економіки, підвищення конкурентоспроможності вітчизняного виробництва на основі його глибокої модернізації. Однак заплановане створення в різних регіонах України нових технологічних укладів, модернових виробництв, перспективних секторів економіки неможливе без наявності компетентних кваліфікованих робітників, яких покликана готувати система професійно-технічної освіти. Саме тому ця система потребує державної підтримки й інвестицій в напрямі модернізації усіх її підсистем, приведення у відповідність до вимог сучасного енергоефективного виробництва.У зв’язку з цим, актуальним є оновлення змісту і засобів професійної підготовки майбутніх кваліфікованих робітників, спрямованих на оволодіння сучасними виробничими технологіями, що уможливлять їх здатність працювати на високотехнологічному обладнанні, використовувати в професійній діяльності енергоефективні матеріали.Зазначимо, що проблема заощадження енергетичних ресурсів України обговорюється політиками, науковцями, роботодавцями протягом 16 років. Однак у професійно-технічній освіті і до сих пір відсутні навчальні дисципліни, які б забезпечували формування у молодих робітників культури енергоефективної діяльності.З огляду на це в Інституті професійно-технічної освіти НАПН України було започатковано новий напрям досліджень, що стосується впровадження питань енергоефективності у первинну професійну освіту і професійне навчання кваліфікованих робітників на виробництві. Створений з цією метою Центр енергоефективності спрямовував свої зусилля на розробку інноваційного навчального курсу «Основи енергоефективності».Підґрунтям створення цього навчального курсу стали результати аналізу практики діяльності підприємств галузей народного господарства, в тому числі й будівельної, а також змісту навчальних планів і програм за якими здійснюється підготовка кваліфікованих робітників.Виявилося, що на підприємствах гальмується забезпечення заходів щодо: впровадження енергозберігаючих технологій, енергоефективного обладнання; зменшення енергоємності продукції; скорочення витрат ресурсів; контролю й управління витратами паливно-енергетичних ресурсів; участі робітничих кадрів у планових заходах підприємств з енергозбереження.Аналіз змісту професійно-технічної освіти показав, що недостатньою є популяризація і пропагування економічних, екологічних і соціальних переваг енергозбереження серед учнівської молоді ПТНЗ і виробничого персоналу підприємств. Було запропоновано до змісту професійного навчання кваліфікованих робітників вводити навчальний матеріал з енергоефективних технологій. Наприклад, для фахівців будівельного профілю доцільно вводити навчальний матеріал, що стосується комплексних енергосистем, вітроенергетики, сонячної енергетики, гідроенергетики, біоенергетики, геотермальної енергетики тощо. Цінною навчальною інформацією для учнів ПТНЗ є сучасні технології будівництва будинків із низькою енергетичною потребою, будинків типу «нуль енергії», будинків «плюс», пасивних будинків тощо.Енергозберігаюче будівництво потребує від кваліфікованих робітників широких компетенцій і знань інтегрованого характеру стосовно: будівельної фізики, систем опалення, вентиляції та акліматизації, технологій сонячної енергії, енергозберігаючої техніки тощо.Розуміючи, що енергозбереження є важливою народногосподарською проблемою, а отже має ґрунтуватися на науковій основі з використанням системного підходу, методів моделювання економічної доцільності використання енергоефективних технологій, матеріалів і обладнання у виробництві, а також альтернативних джерел енергії відбір змісту навчального курсу «Основи енергоефективності» здійснювався з урахуванням досягнень фундаментальної та галузевих наук. У даному випадку підґрунтям відбору змісту навчального матеріалу, що розкриває потенціал енергоефективності й енергозбереження слугували об’єкти, поля й види професійної діяльності кваліфікованого робітника будівельного профілю.У структуруванні навчального матеріалу використовувався модульний підхід, що дозволило утворити п’ять модулів:Загальний, у якому розглядаються питання щодо необхідності енергоресурсів для забезпечення якісного життя як окремої людини, так і суспільства в цілому; обґрунтовується актуальність розв’язання проблеми підвищення енергоефективності на основі економного використання енергоресурсів.Галузевий, у якому розглядаються характерні особливості енергоспоживання в галузі й, відповідно, розв’язання проблем заощадження енергоресурсів.Виробничий, у якому питання підвищення енергоефективності вирішується на рівні підприємства.Професійний, у якому питання підвищення енергоефективності вирішуються в межах професійного поля діяльності, на робочому місці.Побутовий, у якому розглядаються питання енергозбереження в побуті (в умовах ПТНЗ, дома).На вивчення цього курсу розробники відвели 20 годин, з них 6 годин на лабораторно-практичні роботи.Вивчення кваліфікованими робітниками будівельного профілю навчального курсу «Основи енергоефективності» сприятиме формуванню у них енергозберігаючої свідомості, активної громадянської позиції щодо прийняття екологічно й енергетично грамотних рішень у професійній діяльності.
APA, Harvard, Vancouver, ISO, and other styles
50

Сяська, Інна. "ШЛЯХИ ПІДВИЩЕННЯ ЯКОСТІ НАВЧАЛЬНО-ДОСЛІДНИЦЬКОЇ ПІДГОТОВКИ МАЙБУТНІХ УЧИТЕЛІВ ПРИРОДНИЧИХ ДИСЦИПЛІН." Інноватика у вихованні 1, no. 11 (May 30, 2020): 135–43. http://dx.doi.org/10.35619/iiu.v1i11.233.

Full text
Abstract:
Анотація. У статті здійснено аналіз практики фахової підготовки вчителів природничих наук у Європі і в Україні. Охарактеризовано ті дослідження, які акцентують увагу саме на важливості навчально-дослідницької підготовки майбутніх вчителів у галузі природничих наук та відповідають сучасним освітнім потребам. Встановлено, що у контексті зазначеної проблеми прогресивним можна вважати досвід Фінляндії, де організація підготовки вчителів природничих наук у здійснюється із застосуванням мультидисциплінарного підходу та залученням педагогічних технологій, які дають змогу у навчальному процесі поєднувати одночасно теоретичну і практичну підготовку майбутнього фахівця через спрямування її на дослідно-орієнтовану практичну діяльність. Обґрунтовано методичні підходи до створення спеціального освітнього середовища з метою підвищення якості навчально-дослідницької підготовки в освітньому процесі закладів вищої педагогічної освіти України. Визначено форми, засоби й технології її реалізації в освітньому процесі Рівненського державного гуманітарного університету. Доведено, що навчально-дослідницька діяльність студентів у лабораторіях навчально-методичного центру природничої освіти зумовлює розвиток низки професійних компетентностей та soft-skills навичок майбутніх вчителів природничих дисциплін.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography