Journal articles on the topic 'Механічна енергія'

To see the other types of publications on this topic, follow the link: Механічна енергія.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Механічна енергія.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

НАЛОБІНА, Олена, Микола ГОЛОТЮК, Олег БУНДЗА, Олександр ГЕРАСИМЧУК, Віталій ПУЦЬ, Олександр ШОВКОМУД, and Віктор МАРТИНЮК. "Дослідження динамічних процесів у рушії мінітрактора." СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, no. 12 (November 21, 2019): 14–21. http://dx.doi.org/10.36910/automash.v1i12.19.

Full text
Abstract:
Ходові системи сільськогосподарських тракторів мають техногенний вплив на ґрунт. За умови багатократноговпливу погіршуються його фізико-механічні та агротехнічні властивості. Внаслідок переущільнення ґрунту, утворення коліїпогіршується якість виконання технологічних операцій, пов’язаних із обробітком ґрунту, посівом та збиранням врожаю. Зметою зменшення негативного впливу металевих гусениць на ґрунт застосовують рушії з гумовометалевими елементами(наприклад, шарнірами), гумовометалеві гусениці, пневмогусениці, гумовоармовані гусениці, еластичні траки гусениць.Не зважаючи на досвід, накопичений у сільськогосподарському машинобудуванні, проектування конструкційгусеничних рушіїв з гумовими та гумовоармованими елементами вимагає подальшого проведення значного об’єму науково-дослідних робіт як теоретичного так й експериментального характеру.Одним із актуальних напрямків є дослідження перехідних процесів у системі рушія гусеничних машин. Під часзміни напрямку руху, на початку руху, гальмуванні виникають значні динамічні навантаження, що перевищують статичні.Потреба в аналізі перехідних процесів пов’язана, зокрема з тим, що продуктивність та енерговитрати машини залежать відчасу їхнього протікання.У даній статті розглянуто початок руху гусеничного рушія для мінітрактора з еластичною гусеницею з метоюотримання диференційних рівнянь, які описують динамічний процес в механічній системі. В основу досліджень покладенорозроблену авторами методику для вирішення задач підвищення тягово-пружинних характеристик мінітрактора шляхомрівномірного розподілу тиску з боку гусеничного рушія на ґрунт, підвищення плавності ходу та маневреності на ділянках ізскладним рельєфом. Ключові слова: рушій, механічна система, кінетична енергія, узагальнена сила, робота, навантаження, перехідний процес.
APA, Harvard, Vancouver, ISO, and other styles
2

Ярошенко, В. М. "Ексергетичний аналіз повітряної компресорної установки." Refrigeration Engineering and Technology 57, no. 3 (October 15, 2021): 158–64. http://dx.doi.org/10.15673/ret.v57i3.2166.

Full text
Abstract:
Визначення енергетичної ефективності компресорних установок за допомогою коефіцієнтів перетворення енергії , які базуються тільки на першому законі термодинаміки, не є об'єктивним показником їх енергетичної ефективності , а навіть хибним. Так як при цьому не враховуються якість енергетичних потоків та рівень їх оборотності – обмеження, які витікають із другого закону термодинаміки , відповідно до якого теплова енергія являється енергією нижчого ґатунку в порівнянні з енергією стиснутого газу або механічною та електричною. В результаті такого підходу автори деяких робіт стверджують, що тільки 5-15 % електричної енергії, що витрачається, трансформується в енергію стислого повітря, а 85-95 % передається тепловому потоку, який скидається до навколишнього середовища. При термодинамічному аналізі термомеханічних систем найбільш доцільним являється метод функцій (ексергетичний), який по відношенню до традиційного методу циклів є більш простим та універсальним, так як не потребує визначення та аналізу допоміжних моделей порівняння. Застосування ексергетичного методу при термодинамічному аналізі повітряних компресорних установок дозволяє враховувати не тільки кількісні показники при енергетичних перетворюваннях в процесах, але і визначати якісні характеристики енергетичних потоків. Приводяться результати розрахунку ексергетичних показників суднової повітряної компресорної установки та побудована на їх основі діаграма ексергетичних потоків , що дозволяє визначити при цьому процеси з найбільшим рівнем необоротності (рівнем деградації енергії), як в абсолютних так і в відносних показниках, до яких в першу чергу відносяться проміжні та кінцеві охолоджувачі. Такий підхід дозволяє рекомендувати першочергові заходи для оптимізації процесів енергетичних перетворень в компресорних системах з метою підвищення їх загальної термодинамічної та техніко-економічної ефективності
APA, Harvard, Vancouver, ISO, and other styles
3

Сагін С.В., С. В. "ЗНИЖЕННЯ МЕХАНІЧНИХ ВТРАТ У СУДНОВИХ СЕРЕДНЬООБЕРТОВИХ ДИЗЕЛЯХ." Ship power plant 1 (August 5, 2020): 5–11. http://dx.doi.org/10.31653/smf340.2020.5-11.

Full text
Abstract:
Постановка проблеми в загальному вигляді. Механічні втрати енергії при передачі корисної (індикаторної) потужності від суднового двигуна внутрішнього згоряння (ДВЗ) до споживача лежать у широких межах і можуть становити 6...10 % – у разі експлуатації ДВЗ на номінальному режимі, і до 100 % – під час експлуатації на холостому ходу. Рівень механічних втрат оцінюється механічним коефіцієнтом корисної дії (ККД). Мінімізації цих втрат і забезпечення мінімальних значень протягом тривалого часу є актуальним завданням, на розв’язання якого спрямовано наукові дослідження, що проводяться як дизелебудівними корпораціями, так і окремими науково-виробничими фірмами та інститутами [1]. Аналіз останніх досліджень і публікацій. Конструкційні та технологічні заходи, що забезпечують зниження механічних втрат енергії під час експлуатації суднових ДВЗ, розглядалися в різних роботах. При цьому увага приділялася модифікації поверхонь циліндро-поршневої групи, забезпеченню мінімальної витрати палива, загальній методології оцінки енергетичних витрат, регенерації властивостей робочих поверхонь основних елементів дизеля.
APA, Harvard, Vancouver, ISO, and other styles
4

Zamkovyj, R. V. "Цілі сталого розвитку в міжнародній системі стандартизації." Scientific Papers of the Legislation Institute of the Verkhovna Rada of Ukraine, no. 2 (April 25, 2019): 162–72. http://dx.doi.org/10.32886/instzak.2019.02.17.

Full text
Abstract:
Мета статті полягає у визначенні міжнародних стандартів, які відповідають цілям сталого розвитку у процесах глобалізації. Наукова новизна полягає у виділенні та наповненні змістом матриці цілей сталого розвитку і відповідних їм секторів, які визначають напрямок у системі міжнародної стандартизації. Висновки. Загальновизнані принципи та основи міжнародного співробітництва представлені в опублікованих (більше 22 000) міжнародних стандартах і пов’язаних з ними документах Міжнародної організації зі стандартизації (ISO). Побудовані на основі консенсусу, вони забезпечують міцну базу, на якій інновації можуть процвітати і є важливими інструментами, які допомагають урядам, промисловості та споживачам сприяти досягненню кожної з цілей сталого розвитку. Стандарти ISO охоплюють практично всі можливі об’єкти, від технічних рішень до систем, що організовують процеси та процедури, підтримують цілі сталого розвиту завдяки узгодженим на міжнародному рівні специфікаціям, які відповідають вимогам якості, безпеки та сталості й містяться у таких секторах, як: безпека, безпека і ризик, будівництво, горизонтальні предмети, енергія, здоров’я, медицина і лабораторне обладнання, інформаційні технології, графіка і фотографія, механічна інженерія, неметалеві матеріали, продовольство і сільське господарство, руди і метали, сервіс, спеціальні технології, стійкість і навколишнє середовище, транспорт, управління бізнесом та інновації, фрахт, упаковка і дистрибуція. За результатами проведеного аналізу і виходячи з означених цілей сталого розвитку та відповідних їм секторів, які визначають напрямок у системі міжнародної стандартизації ISO, побудовано матрицю відповідності позначення елементів.
APA, Harvard, Vancouver, ISO, and other styles
5

Varyvoda, Yu Yu, A. M. Tymoshyk, and B. R. Tsizh. "Управління ефективністю роботи міні-ГЕС." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 20, no. 85 (March 2, 2018): 86–89. http://dx.doi.org/10.15421/nvlvet8516.

Full text
Abstract:
Розглядається гідро-вітроенергетична установка, у якій залежно від добових потреб електроенергії та природніх коливань напору води і сили вітру оперативно здійснюється регулювання ефективності виробленої електроенергії за рахунок ситуативного використання енергії вітрогенератора. Встановлено, що стихійні зміни параметрів енергоносіїв негативно впливають на техніко-економічні показники енергообладнання. Внаслідок цього втрати і собівартість електроенергії суттєво зростають. Підтверджено, що залежність собівартості виробництва електроенергії від числа годин використання встановленої потужності енергоустановки оцінюється коефіцієнтом екстенсивного використання Кекс, коефіцієнтом інтенсивного використання Кінт та коефіцієнтом інтегрального використання Кін = Кекс × Кінт . Запропонована схема гідро-вітроенергетичної установки, в якій механічно об’єднані процеси виробництва електроенергії через використання сили вітру і напору води. Механічно об’єднуючи (для спільного регулювання) процеси виробництва електроенергії в одній гідро-вітроенергетичній установці, можна підвищити ступінь використання встановленої потужності міні-ГЕС за рахунок збільшення тривалості безперервної роботи з максимально високим ККД. Ступінь використання встановленої потужності міні-ГЕС зростає за рахунок збільшення тривалості безперервної роботи з максимально високим ККД. У нічний період гідрогенератор з турбіною може використовуватися як насос для накопичення води у водоймищі і її подальшого використання в денний максимум навантаження. Підвищення ефективності роботи таких установок буде відчутним, коли один з генераторів буде здатний підсилювати механічною або (і) електричною енергією потужність іншого, забезпечуючи більший ступінь їх використання. Розглянуто і проаналізовано різні варіанти механічного управління роботою гідро-вітроенергетичної установки при можливих змінах напору води чи (і) вітру. Подано висновки та перспективи подальших досліджень висвітленої проблеми.
APA, Harvard, Vancouver, ISO, and other styles
6

ГРЕЧИХИН, Леонид, Надежда КУЦЬ, Юрий БУЛИК, and Александр ДУБИЦКИЙ. "Транспорт и вихревой тепловой насос." СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, no. 14 (August 31, 2020): 78–85. http://dx.doi.org/10.36910/automash.v1i14.349.

Full text
Abstract:
У роботах [1, 2] для транспорту запропоновано застосувати вихровий тепловий насос на штучно створеному вітрові. В результаті показано, що такий вихровий насос перетворює не механічну енергію вітру в електричну потужність, а теплову складову потоку повітря, що прокачується. Розглянуто загальний принцип роботи такого вихрового теплового насоса. Конкретний розрахунок перетворення енергій виконаний для повітряних вітрогенераторів. Вихровий тепловий насос, який може бути застосований на транспорті, описаний якісними параметрами. У зв'язку з цим виникла необхідність провести розрахунок енергій перетворення вихровим тепловим насосом із застосуванням конкретного електричного двигуна, електричного генератора, повітряного гвинта і лопатей вітрогенератора для транспортних систем. Вентилятор створює повітряний потік, який впливає на лопаті вітрогенератора, вітрогенератор виробляє потужність більше потужності, споживаної електродвигуном вентилятора і витраченої потужності на подолання сил тертя при обертанні якорів в електромоторах, а також тертя об повітря при обертанні лопатей вітрогенератора. В результаті проведених досліджень встановлено, що для збільшення захоплюваної поверхні вентилятором необхідно використовувати високооборотний гвинт порівняно великого діаметра, а обертання такого гвинта повинен забезпечувати електромотор з підвищеною потужністю, але це суттєво зменшить коефіцієнт перетворення. Збільшення числа лопаток в вітрогенераторі можливе при зростанні діаметра електрогенератора, що також знижує коефіцієнт перетворення. Встановлено, що найбільш ефективний спосіб отримання максимального коефіцієнта перетворення енергії - це збільшення швидкості руху потоку повітря до певної межі. Якщо застосувати каскадну схему шляхом розташування двох і більше лопатевих кілець в вітрогенераторі, то різко зросте коефіцієнт перетворення вихрового теплового насоса. Ключові слова: тепловий насос, вітрогенератор, вентилятор, повітряний гвинт, лопаті, зривний потік.
APA, Harvard, Vancouver, ISO, and other styles
7

Ткач, М. В., Ю. О. Сеті, and І. В. Бойко. "Вплив нелінійної міжелектронної взаємодії на тунелювання електронів крізь несиметричну двобар’єрну резонансно-тунельну структуру." Ukrainian Journal of Physics 57, no. 8 (August 30, 2012): 849. http://dx.doi.org/10.15407/ujpe57.8.849.

Full text
Abstract:
У моделі ефективних мас і прямокутних потенціалів, враховуючи взаємодію між електронами, розвинуто квантово-механічну теорію коефіцієнта прозорості, позитивної і від'ємної провідностей моноенергетичного пучка електронів крізь відкриту плоску несиметричну двобар'єрну резонансно-тунельну структуру, яка може слугувати активним елементом квантового каскадного лазера чи квантового каскадного детектора. На прикладі несиметричної двобар'єрної резонансно-тунельної структури встановлено властивості коефіцієнта прозорості і провідності наносистеми залежно від енергії електронів та частоти електромагнітного поля. Показано, як властивості активної провідності можуть бути використані дляекспериментальної оцінки резонансних енергій та резонансних ширин електронних квазістаціонарних станів.
APA, Harvard, Vancouver, ISO, and other styles
8

Kravets, I. P. "Дослідження процесу пропарювання букових заготовок і пиломатеріалів." Scientific Bulletin of UNFU 29, no. 6 (June 27, 2019): 98–101. http://dx.doi.org/10.15421/40290620.

Full text
Abstract:
Зменшити втрати деревини від грибкових пошкоджень під час зберігання і транспортування можна завдяки проведенню теплової стерилізації. Теплову обробку деревини використовують у багатьох деревообробних процесах: виробництво лущеного і струганого шпону, у лісопильному виробництві, процесах гнуття та пресування. Одним із видів теплової обробки деревини є пропарювання. Відсутність процесу пропарювання букових пиломатеріалів після лісопилення є причиною значних втрат деревини від розтріскування, враження грибами та комахами. У виробничих умовах, під час пропарювання, не враховують багато чинників: особливостей будови деревини бука, її густини, теплових та механічних властивостей. Все це призводить до зайвих втрат матеріалу, теплової енергії та якісних показників букових пиломатеріалів. Тому дуже важливо досліджувати режими та технології пропарювання букових пиломатеріалів із збереженням їх фізико-механічних властивостей. Дослідження проведено з використанням пропарювального ковпака виробничого зразка. Здійснено експериментальні дослідження пропарювання букових заготовок та пиломатеріалів, яке охоплює початковий прогрів, сам процес пропарювання та охолодження. Внаслідок проведення експериментальних досліджень вибрано оптимальні режими пропарювання, які зберігають якісні фізико-механічні показники, такі як: запобігання втратам деревини під час зберігання і транспортування, вирівнювання забарвлення або надання деревині потрібного кольору, покращення міцності та пластичності, прискорення подальшого сушіння.
APA, Harvard, Vancouver, ISO, and other styles
9

Лавренченко, Г. К., М. Б. Кравченко, and Б. Г. Грудка. "Термодинамічне дослідження нового циклу для виробництва енергії, холоду і тепла." Refrigeration Engineering and Technology 55, no. 4 (September 5, 2019): 217–26. http://dx.doi.org/10.15673/ret.v55i4.1630.

Full text
Abstract:
У промислових енергетичних установках утворюється велика кількість відносно низькотемпературного тепла, утилізація якого може забезпечувати енергозбереження та захист навколишнього середовища. При утилізації відпрацьованого тепла вдається виробляти електроенергію, тепло для опалення або гарячого водопостачання, а також холод. Для цієї мети підходить цикл Каліни, що дозволяє при використанні низькотемпературного тепла реалізовувати зазначені процеси. Робочим тілом в досліджуваній установці є водоаміачний розчин. При аналізі показників установки враховується, що в ній не тільки потреби в теплі і холоді, а й електроенергії – непостійні. Виходом із цієї ситуації є створення установок, які можуть виробляти електроенергію, тепло і холод як одночасно, так і окремо. Причому, бажано, щоб цим вимогам задовольняла одна установка, а не кілька, які включаються або вимикаються у міру виникнення потреби в тому чи іншому вигляді енергії, тепла або холоду. Це дозволить, по-перше, зменшити термін окупності таких установок за рахунок того, що вони будуть працювати практично безперервно, змінюючи лише кількість і якість виробленої енергії, по-друге, поліпшити енергетичні показники самих установок, так як при їх експлуатації не доведеться витрачати час і енергію на висхід установки в необхідний режим роботи. Наведено характеристики установки при експлуатації її в «зимовому» і «літньому» режимах роботи. Урежимі тригенерації показники запропонованої установки порівнювалися з характеристиками теплової машини для отримання механічної енергії; водогрійного котла для вироблення тепла; холодильної машини для охолодження. Ступінь термодинамічної досконалості теплової і холодильної машин склала 23,7%, що для установок, що використовують викидне тепло, цілком прийнятно
APA, Harvard, Vancouver, ISO, and other styles
10

Петров, Л. М., І. В. Кішянус, Н. Я. Масліч, and О. І. Скориченко. "ЕЛЕМЕНТИ ТЕОРІЇ ГНУЧКОЇ ТРАНСМІСІЇ ВАНТАЖНОГО АВТОМОБІЛЯ." Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes, no. 4 (46) (April 7, 2022): 25–34. http://dx.doi.org/10.32845/msnau.2021.4.4.

Full text
Abstract:
Робочий процес кочення колісного рушія супроводжується навантаженням колісного рушія гравітаційною силою, що приводить до стискання та розтягування шини при її деформації. У статті розглянуті питання дослідження механічної системи «автомобільне колесо-пружинний реактивний поштовх» із застосуванням теореми про зміну кінетичної енергії цієї системи, загального рівняння динаміки, а також рівняння Лагранжа другого роду. Метою дослідження є удосконалення технологічної схеми навантаження колісного рушія, перетворення енергії підведеної до колісного рушія в обертальний рух пружинного реактивного поштовху з підвищенням тягового зусилля автомобіля, який є допоміжним фактором до інноваційної технології його переміщення. Науковий та практичний напрям роботи полягає в тому, що вперше запропонована технологія, у якій при обертанні колісного рушія застосовано енергію обертального руху механічної системи «автомобільне колесо-пружинний реактивний поштовх», яка дозволяє підвищити реалізацію крутного моменту на колісному рушії. Методологією дослідження являлося встановити математичний зв’язок між силою, яку створює «автомобільний колісно-пружинний реактивний поштовх», з динамічною рухливістю безпосередньо автомобіля. Результатом дослідження є розроблена конструкція автомобіля з динамічно-рухливою платформою у циклі демпфування «автомобільним колісно-пружинним реактивним поштовхом» яка працює при «фізичному дискомфорті опорної поверхні». При розкритті поняття «фізичний дискомфорт опорної поверхні» були використані диференційні рівняння, які математично підтверджують виникнення такої поверхні в певних умовах експлуатації автомобіля. Розрахунки проводились в середовищі EXEL з дотриманням зв’язку між вхідними та вихідними параметрами. Результати досліджень були впроваджені в графічних залежностях ƞ = ʄ(Ft), dm = ʄ(i), Pt = ʄ(i), Fa = ʄ(Ft), i = ʄ(Ft). Цінність проведеного дослідження, результати проведеної роботи дозволять зробити внесок в галузь автомобільного виробництва. Запропоновано модель автомобіля придатна для використання з метою підвищення тягових можливостей транспортного засобу.
APA, Harvard, Vancouver, ISO, and other styles
11

Булат, А. Ф., В. І. Єлісєєв, Є. В. Семененко, М. М. Стадничук, and Б. О. Блюсс. "Течія неньютонівської рідини в екструзійному апараті для тривимірного друку." Reports of the National Academy of Sciences of Ukraine, no. 5 (October 27, 2021): 25–32. http://dx.doi.org/10.15407/dopovidi2021.05.025.

Full text
Abstract:
Математичні моделі екструдування показують, що під час течії високов’язких рідин в процесі тривимірного друкування виникає проблема нагріву робочого середовища. Вона полягає в тому, що під час подачі матеріалу включається механізм дисипації механічної енергії в теплову, що зумовлює перегрів рідини. У свою чергу це може призводити до невідповідності форм одержуваного виробу. Для стійкого формування необхідно, щоб матеріал, що подається, оплавлявся біля стінок апарата. Перегрів має бути мінімальним, щоб,виходячи з насадка, матеріал міг швидко застигнути, бажано без додаткових обдувних пристроїв. У цій статті розглядається задача про рух полімерної маси в каналі з підігрівом з метою визначення необхідних умов виконання такої операції, виходячи з певних геометричних форм екструдера. Як модельна рідина використовується непружне середовище із в’язкістю, що залежить від температури та градієнтів швидкостей. Це досить широко використовуваний у практичних розрахунках клас неньютонівських модельних рідин для визначення параметрів течії полімерів і передбачення певних властивостей одержуваних виробів. Нехтування пружними властивостями полімерів часто є виправданим у зв’язку з незначністю проявів цих властивостей або з чіткою локалізацією цих ефектів. Для розв’язання задачі, сформульованої в рамках теорії вузького каналу, використовується метод смуг, в межах яких температура приймається постійною, тобто незалежною від поперечної координати. Це дає можливість покласти в основу розв’язання відомі аналітичні вирази для швидкостей з подальшим уточненням їх, у зв’язку зі складною залежністю в’язкості від градієнтів швидкості. Уточнюючи на кожному кроці динамічні параметри течії з попереднього кроку, можна чисельно отримати досить стійкі гладкі розв’язки. Розрахунки були проведені для неньютонівської рідини, близької за своїми властивостями до полімеру АБС-3А. Розрахунки показали, що властивість псевдопластичності, яка притаманна цьому полімеру, відіграє важливу роль у процесі екструдування. Завдяки тому, що зі збільшенням поперечного градієнта поздовжньої швидкості в’язкість цього полімеру значно падає, величина дисипації механічної енергії теж падає, тобто зменшується теплова енергія, що виділяється під час дисипації. Це в свою чергу призводить до меншого нагрівання полімерного матеріалу, що рухається. Отже, виходячи з геометричних розмірів апарата, можна моделювати течію полімерної рідини та підбирати параметри формування і температури рідини на виході з апарата.
APA, Harvard, Vancouver, ISO, and other styles
12

Звєрьков, Д. О., and С. В. Сагін. "ЗНИЖЕННЯ МЕХАНІЧНИХ ВТРАТ У СУДНОВИХ ДИЗЕЛЯХ." Ship power plant 41 (November 5, 2020): 20–25. http://dx.doi.org/10.31653/smf341.2020.20-25.

Full text
Abstract:
Постановка проблеми в загальному вигляді. Під час експлуатації двигунів внутрішнього згоряння (ДВЗ) суден річкового та морського транспорту здійснюється безперервний і періодичний контроль не тільки показників, що характеризують робочий цикл дизеля (тиску і температури в характерних точках, частоти обертання, потужності, температури випускних газів), але також експлуатаційних і реологічних характеристик моторного мастила (ММ). При цьому, основними параметрами, контроль яких обов’язковий в процесі експлуатації дизеля, є в’язкість, густина, кислотне число, температура спалаху, зміст води і механічних домішок. Під час експлуатації ці параметри постійно змінюються, причому в деяких випадках можуть перевищувати гранично допустимі значення (бракувальні показники). Це неминуче призводить до збільшення контактних напруг в основних трибологічних системах і підвищення втрат енергії, що витрачається на їх подолання. Найпростішим, а тому і найпоширенішим способом відновлення реологічних характеристик ММ є їх очищення (шляхом частково- або повно-проточної фільтрації і сепарації), а також додавання в обсяг ММ, яке вже знаходиться в мастильній системі, свіжого мастила (як чистого, так і зі спеціальними присадками). При цьому необхідно забезпечувати не тільки вимоги щодо отримання ефективної потужності і підтримки екологічних параметрів дизелів суден річкового та морського транспорту, але й мінімальний рівень механічних втрат під час перетворенні вхідної енергії на корисну роботу [1, 2]. Тому зниження механічних втрат у суднових дизелях є актуальним завданням, розв’язання якого сприятиме підвищенню потужності та забезпеченню надійності роботи дизелів річкового та морського транспорту
APA, Harvard, Vancouver, ISO, and other styles
13

Григор'єва, Л. О., and О. І. Безверхий. "РЕЗОНАНСНІ КОЛИВАННЯ П’ЄЗОКЕРАМІЧНИХ ЦИЛІНДРІВ З УРАХУВАННЯМ ДИСИПАЦІЇ ЕНЕРГІЇ." Проблеми обчислювальної механіки і міцності конструкцій, no. 31 (August 26, 2020): 44–54. http://dx.doi.org/10.15421/4220004.

Full text
Abstract:
Досліджуються коливання радіально поляризованих циліндрів на резонансних частотах з урахуванням дисипації енергії. Для врахування електричних, механічних та діелектричних втрат вводяться комплексні матеріальні сталі. Для розв’язування використовується варіаційно-сплайновий метод. Проаналізовано коливання циліндрів з п'єзокераміки PZT -4 при моногармонічних електричних навантаженнях та різних граничних умовах на торцях, визначено резонансні частоти, досліджено вплив дисипації енергії на амплітудні значення при резонансах.
APA, Harvard, Vancouver, ISO, and other styles
14

Горовий, С. О., and Г. С. Головченко. "ФІЗИЧНІ ПРОЦЕСИ, ЩО ВИЗНАЧАЮТЬ КОЕФІЦІЄНТ КОРИСНОЇ ДІЇ ТУРБОНАСОСНОГО АГРЕГАТА ПЛАСТОВОЇ РІДИНИ." Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes, no. 2 (44) (May 5, 2022): 26–29. http://dx.doi.org/10.32845/msnau.2021.2.6.

Full text
Abstract:
Потужні енергетичні машини з внутрішнім гідроприводом у вигляді багатоступінчатої турбіни та насосної частини з розвиненою системою автоматичного розвантаження вісьової сили – це турбонасосні агрегати пластової рідини. При цьому економічна доцільність їх використання потребує досягнення високого коефіцієнта корисної дії (к.к.д.), головна складова якого створюється максимально можливим зовнішнім об’ємним к.к.д. за рахунок проектування статично стійкої системи вісьового автоматичного розвантаження з мінімально можливими витоками робочої рідини. Транспортування рідини до місця споживання супроводжується втратами енергії рідини, які зумовлені як внутрішніми, так і зовнішніми чинниками цього процесу. Значну частину цих втрат складають зовнішні механічні втрати. Ці втрати пропорційні третьому ступеню частоти обертання ротора ТНА. Реальні значення частот обертання сягають десяти тисяч обертів на хвилину, тому зовнішні механічні втрати можуть сягати десятків кіловат. Свій енергетичний внесок в значення загального к.к.д. дає як насосна, так і турбінна частини агрегата. Розрахунок загального к.к.д. турбонасосного агрегата доцільно вести методом послідовних наближень з виконанням необхідної умови балансу потужностей турбінної та насосної частин з урахуванням зовнішніх втрат енергії.
APA, Harvard, Vancouver, ISO, and other styles
15

Roschenko, О. "Перспективні напрямки розширення функціональності портативних електронних пристроїв: зарубіжний досвід." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 43 (June 18, 2021): 129–33. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-21.

Full text
Abstract:
У статті розкрито зарубіжний досвід напрямків розширення функціональності портативних електронних пристроїв. Визначено слабкі сторони сучасних портативних електронних пристроїв. Зазначено, що переносні електронні пристрої, включаючи мобільні телефони, портативні комп’ютери, планшети та мобільні (переносні) електронні пристрої сприяють швидкому зростанню обробки та обміну інформацією. Підкреслено, що швидкий прогрес портативних електронних пристроїв неможливий без поступового вдосконалення технологій акумуляторних батарей. Первинні батареї вже використовувались як основне джерело енергії портативних електронних пристроїв протягом тривалого періоду. Наведено внутрішні та зовнішні методи захисту батарей портативних електронних пристроїв. Окремо відзначено портативні електронні пристрої, що мають механічну гнучкість (наприклад, зсувні дисплеї), вони представляють новий напрямок для електронної промисловості. Крім того, вони можуть поєднуватися з мобільними датчиками (наприклад, розумним одягом), щоб зробити революцію в житті людини. Наголошено, що електрохімічні функції гнучких батарей зазвичай погіршуються при тривалих частих механічних деформаціях, наприклад, при згинанні, згортанні, скручуванні та інших режимах деформації. З високою ємністю, можливістю швидкого заряджання / розряджання та чудовою стабільністю на циклі, що може бути додатково поєднано з гнучкими електролітами та сепараторами. Зазначається, що з метою подальшого задоволення постійно високих вимог до акумуляторних батарей у портативних електронних пристроїв, значні зусилля у галузі досліджень у всьому світі були спрямовані на вдосконалення існуючих акумуляторних систем з використанням нових матеріалів, передових технологій та нових енергетичних хімічних сполук.
APA, Harvard, Vancouver, ISO, and other styles
16

Roschenko, О. "Перспективні напрямки розширення функціональності портативних електронних пристроїв: зарубіжний досвід." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 43 (June 18, 2021): 129–33. http://dx.doi.org/10.36910/6775-2524-0560-2021-43-21.

Full text
Abstract:
У статті розкрито зарубіжний досвід напрямків розширення функціональності портативних електронних пристроїв. Визначено слабкі сторони сучасних портативних електронних пристроїв. Зазначено, що переносні електронні пристрої, включаючи мобільні телефони, портативні комп’ютери, планшети та мобільні (переносні) електронні пристрої сприяють швидкому зростанню обробки та обміну інформацією. Підкреслено, що швидкий прогрес портативних електронних пристроїв неможливий без поступового вдосконалення технологій акумуляторних батарей. Первинні батареї вже використовувались як основне джерело енергії портативних електронних пристроїв протягом тривалого періоду. Наведено внутрішні та зовнішні методи захисту батарей портативних електронних пристроїв. Окремо відзначено портативні електронні пристрої, що мають механічну гнучкість (наприклад, зсувні дисплеї), вони представляють новий напрямок для електронної промисловості. Крім того, вони можуть поєднуватися з мобільними датчиками (наприклад, розумним одягом), щоб зробити революцію в житті людини. Наголошено, що електрохімічні функції гнучких батарей зазвичай погіршуються при тривалих частих механічних деформаціях, наприклад, при згинанні, згортанні, скручуванні та інших режимах деформації. З високою ємністю, можливістю швидкого заряджання / розряджання та чудовою стабільністю на циклі, що може бути додатково поєднано з гнучкими електролітами та сепараторами. Зазначається, що з метою подальшого задоволення постійно високих вимог до акумуляторних батарей у портативних електронних пристроїв, значні зусилля у галузі досліджень у всьому світі були спрямовані на вдосконалення існуючих акумуляторних систем з використанням нових матеріалів, передових технологій та нових енергетичних хімічних сполук.
APA, Harvard, Vancouver, ISO, and other styles
17

Артюшин, Леонід, Володимир Герасименко, and Володимир Коваль. "МЕТОД ФОРМУВАННЯ СПІЛЬНОЇ АВІАЦІЙНОЇ ГРУПИ." Сучасні інформаційні технології у сфері безпеки та оборони 40, no. 1 (June 9, 2021): 63–68. http://dx.doi.org/10.33099/2311-7249/2021-40-1-63-68.

Full text
Abstract:
Сьогодні, все частіше з’являється інформація щодо спільних польотів пілотованої та безпілотної авіації для виконання єдиного завдання. Користь такого симбіозу полягає у підвищенні ефективності бойового застосування авіації, збереженні життя льотного складу, зниженні витрат на виконання завдання, зростанні можливостей щодо відновлення боєздатності тощо. Але постає проблема, яким чином керувати формуванням спільних авіаційних груп пілотованої та безпілотної авіації у польоті? Який математичний апарат існує сьогодні, що дозволить ефективно, відповідно до визначених критеріїв, керувати авіацією у складі спільних авіаційних груп? Метою статті є розв’язання вищезазначеної проблеми шляхом застосування положень теорій класичної механіки та динаміки складних механічних систем. Актуальність проблематики пояснюється тим, що серед великої кількості задач, пов’язаних з управлінням складними механічними системами, задача формування потрібної (заданої) конфігурації є найбільш затребуваною та поліваріантною, залежною від початкових умов. За кінцеву мету формалізації процесу формування спільної авіаційної групи вважатимемо формування конфігурації складної механічної системи шляхом двокритеріальної оптимізації за мінімальний час з мінімумом витрат енергії. При цьому рух кожного з елементів системи будемо описувати диференційними рівняннями. Запропонований порядок розв’язання задачі оптимального управління конфігурацією спільної авіаційної групи пілотованої та безпілотної авіації складає основу методу формування спільної авіаційної групи, який з метою зменшення потрібного часу на розрахунки може бути реалізований у нейронній мережі, що підвищить загальну ефективність симбіотичного (спільного) бойового застосування пілотованої та безпілотної авіації.
APA, Harvard, Vancouver, ISO, and other styles
18

Holovko, V., V. Kokhanievych, M. Shykhailov, and I. Kovalenko. "ВПЛИВ АЕРОДИНАМІЧНИХ ХАРАКТЕРИСТИК ПРОФІЛЮ ЛОПАТІ НА ЕНЕРГЕТИЧНІ ХАРАКТЕРИСТИКИ РОТОРА ВІТРОУСТАНОВКИ." Vidnovluvana energetika, no. 4(59) (December 27, 2019): 49–55. http://dx.doi.org/10.36296/1819-8058.2019.4(59).49-55.

Full text
Abstract:
Різноманітність аеродинамічних профілів різних типів і їхня кількість викликає необхідність розроблення певних підходів для доцільного вибору аеродинамічного профілю, який би відповідав вимогам раціонального перетворення енергії вітру з максимальною ефективністю. Робота присвячена визначенню енергетичних показників ротора вітроелектричної установки при різній швидкості вітру в залежності від профілю лопаті, шляхом аналізу аеродинамічних характеристик різних типів профілів. В даній роботі використані методи аналізу аеродинамічних параметрів профілю лопаті та характеристик ротора вітроустановки. Наведені методичні вказівки щодо їх вибору при проектуванні автономних вітроенергетичних установок малої потужності. В залежності від коефіцієнта оберненої якості профілі були поділені на дві групи: 1 – традиційні профілі Р-ІІ, А-6, BS-10, BS-10 , p-11-18 – дані профілі дозволяють отримати найкращі показники коефіцієнта використання енергії вітру ротором в межах ξ = 0,36…0.4 в діапазоні швидкохідності z = 4…5; 2 – профілі серії GA(W)-1 та ламінізовані профілі FX – профілям даної групи притаманні значення коефіцієнта використання енергії вітру ξ=0,53…0,57 в діапазоні швидкохідності Z=6…11, а при Z=5…6 забезпечують коефіцієнт потужності ξ=0,49…0,53. Проведений аналіз показав, що профілі групи 1 дозволяють отримати максимальні значення механічної потужності 91,8…93,3 Вт/м2 при значеннях коефіцієнтів використання енергії вітру ξ=0,33…0.44 в діапазоні швидкохідності z = 4…5. Профілі групи 2 дозволяють отримати максимальні значення механічної потужності вітрового потоку, що проходить через обтікаючу вітротурбіною площу 114,3…115,8 Вт/м2 при ξ= 0,54…0,55 в діапазоні швидкохідності z = 6…7. Максимальна потужність розвивається вітроустановкою, лопаті ротора якої виконані на основі профілю FX та GA(W)-1. Інші профілі за даним показником відрізняються незначно. Отримані залежності є основою для розробки системи керування вихідною потужністю електрогенератора при змінній швидкості вітру. Бібл. 7, рис. 3.
APA, Harvard, Vancouver, ISO, and other styles
19

Биткін, Сергій Віталійович, Тетяна Володимирівна Критська, and Володимир Вікторович Литвиненко. "МОДЕЛЮВАННЯ НЕЛІНІЙНОЇ ЗМІНИ РАДІАЦІЙНО-МЕХАНІЧНИХ ХАРАКТЕРИСТИК СТАЛІ 45ХН2МФА ПРИ ТЕХНОЛОГІЧНОМУ ОПРОМІНЕННІ РЕЛЯТИВІСТСЬКИМИ ЕЛЕКТРОНАМИ." Scientific Journal "Metallurgy", no. 2 (February 22, 2022): 140–51. http://dx.doi.org/10.26661/2071-3789-2021-2-17.

Full text
Abstract:
Запропоновано методику обробки експериментальних даних (моделювання окремих ділянок дозової залежності з застосуванням MathCAD і OriginPRO) для наочного опису і прогнозу можливості технологічного застосування потоку релятивістських електронів з енергією ≅ 5 МеВ для підвищення ударної в'язкості (KCU) 45ХН2МФА. Показано, що зміна радіаційно-механічних властивостей є суттєво нелінійною – з ростом дози опромінення спостерігається кілька ділянок зміни радіаційно-механічних властивостей металопрокату. Запропоновано ймовірний механізм фізичних процесів, що змінюють властивості 45ХН2МФА при опроміненні релятивістськими електронами.
APA, Harvard, Vancouver, ISO, and other styles
20

Kondratiev, V., E. Loshevich, A. Pchelintsev, A. Sokolov, and V. Gostilo. "Результати розробки портативного ОЧГ‑спектрометра гамма-вимпромінювання з електроохолодженням для польових застосувань." Nuclear and Radiation Safety, no. 3(67) (September 20, 2015): 54–56. http://dx.doi.org/10.32918/nrs.2015.3(67).10.

Full text
Abstract:
Наведено результати розробки портативного спектрометра на основі особливо чистого германію (ОЧГ‑спектрометра) з електроохолоджувачем Стірлінга для польових застосувань. Кріостат спектрометра дає змогу встановлювати коаксіальні ОЧГ-детектори ефективністю до 40 % і планарні детектори з чутливою площею до 3000 мм2. Час охолодження детектора — не більший за 8 год. Незважаючи на механічні вібрації, створювані електроохолоджувачем, отримане енергетичне розділення спектрометра з коаксіальним детектором ефективністю 10 % становило менше 1,0 і 2,0 кеВ по енергіях 122 і 1332 кеВ, відповідно. Мініатюрний процесорний пристрій (Android) дозволяє управляти всіма режимами роботи спектрометра, забезпечує самодіагностику, первинну обробку, індикацію й збереження спектрів.
APA, Harvard, Vancouver, ISO, and other styles
21

КРИШТОПА, Святослав, Людмила КРИШТОПА, Іван МИКИТІЙ, Марія ГНИП, and Федір КОЗАК. "ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ЗНИЖЕННЯ ВТРАТ ЕНЕРГІЇ В АГРЕГАТАХ ТРАНСМІСІЇ ПІДЙОМНИХ УСТАНОВОК ДЛЯ РЕМОНТУ СВЕРДЛОВИН." СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 2, no. 17 (November 14, 2021): 89–103. http://dx.doi.org/10.36910/automash.v2i17.638.

Full text
Abstract:
Стаття спрямована на вирішення проблеми зниження втрат енергії в трансмісійних агрегатах підйомних установок для ремонту свердловин. Були проаналізовані основні напрямки з скорочення енергоспоживання підйомних установок для ремонту свердловин. Проведений аналіз особливостей конструкції трансмісій підйомних установок для ремонту свердловин. Виконані дослідження в'язкісно-температурних характеристик сучасних трансмісійних олив та температурного режиму в трансмісійних агрегатах. Був запропонований метод швидкого прогріву та підтримання оптимального температурного режиму в трансмісійних агрегатах підйомних установок за рахунок використання теплоти відпрацьованих газів. Досліджена типова механічна трансмісія підйомної установки для ремонту свердловин на колісному шасі. Наведена методика та засоби експериментальних досліджень енергоефективності трансмісій підйомних установок. Виконані експериментальні дослідження реалізації запропонованого методу зниження втрат енергії в трансмісійних агрегатах. Встановлена залежність зміни температури трансмісійної оливи в коробці перемикання передач при різних режимах обертання первинного валу коробки передач. Одержана залежність втрат потужності в коробці перемикання передач підйомної установки моделі УПА 60/80А в залежності від температури та сорту трансмісійної оливи. Наведені результати розрахунків перевитрат палива в коробці перемикання передач підйомної установки моделі УПА 60/80А з різними силовими приводами та за різних температур трансмісійної оливи. Ключові слова: підйомна установка для ремонту свердловин, нафтогазовий технологічний транспорт; дизельний двигун; трансмісійний агрегат; коробка перемикання передач; утилізація теплоти; відпрацьовані гази; потужність; питома витрата палива.
APA, Harvard, Vancouver, ISO, and other styles
22

Середа, Д., Д. Кругляк, І. Бєлозір, Д. Кіфорук, and А. Проломов. "ФІЗИКО-МЕХАНІЧНЕ МОДЕЛЮВАННЯ ОТРИМАННЯ ЗАХИСНИХ ПОКРИТТІВ ДЕТАЛЕЙ, ЛЕГОВАНИХ КРЕМНІЄМ, ТИТАНОМ ТА БОРОМ." Математичне моделювання, no. 2(45) (December 13, 2021): 114–20. http://dx.doi.org/10.31319/2519-8106.2(45)2021.246968.

Full text
Abstract:
В роботі розглянуто отримання борованих, силіційованих та титанованих покриттів при нестаціонарних температурних умовах. Проведено термодинамічний аналіз та фізико-механічне моделювання формування покриттів на мідних сплавах, на кожній із стадій нанесення покриттів в умовах СВС. Визначено концентрації газоподібних продуктів, для розрахунків рівноважних складів порошкових СВС-шихт у режимі теплового самозаймання знаходили дані по двом термодинамічним властивостям: ентальпії Нт і енергії Гиббса GТ. Для розрахунків рівноваги хімічних реакцій у досліджуваній системі, а також для визначення рівноважних складів компонентів, що брали участь у цих реакціях, визначали константи рівноваги всіх незалежних реакцій, можливих у даних шихтах. Проведені розрахунки і їх аналіз дозволяють одержати інформацію про механізм отримання покриттів в умовах СВС, а застосування програмного аналізу — виконати об'єктивну оцінку складу порошкових СВС- шихт для регулювання даного процесу. Основними продуктами в газовій фазі, у діапазоні температур 1200—1800 К, є йодиди, фториди, хлориди хрому, алюмінію, бору, титану й кремнію. В результаті розрахунків концентрації газоподібних продуктів СВС- реакцій встановлено, що при температурі 400—750 К відбувається розпад ГТА (NH4Cl, NH4F и I2). З температури 750—900 К, відбувається розпад продуктів реакції, що підтверджується появою продуктів розкладання й різке збільшення кількості молей газу.
APA, Harvard, Vancouver, ISO, and other styles
23

Pogrebnyak, S. V., and O. O. Vodka. "Моделювання механічної поведінки еластомірних матеріалів за допомогою штучної нейронної мережі." Scientific Bulletin of UNFU 28, no. 11 (December 27, 2018): 130–34. http://dx.doi.org/10.15421/40281123.

Full text
Abstract:
У ХХІ ст. нейронні мережі широко використовують у різних сферах, зокрема в комп'ютерному моделюванні та механіці. Така популярність через те, що вони дають високу точність, швидко працюють та мають дуже широкий спектр налаштувань. Створено програмний продукт із використанням елементів штучного інтелекту для інтерполяції та апроксимації експериментальних даних. Програмне забезпечення повинно коректно працювати та давати результати з мінімальною похибкою. Інструментом розв'язання задачі було використання елементів штучного інтелекту, а точніше – нейронних мереж прямого поширення. Збудовано нейронну мережу прямого поширення. Її навчив вчитель із використанням методу зворотного розповсюдження похибки на основі навчаючої вибірки попередньо проведеного експерименту. Для тестування було побудовано декілька мереж різної структури, що отримували на вхід однаковий набір даних, якого не використовували під час навчання, але він був відомий з експерименту. Отже, було знайдено похибку мережі за кількістю виділеної енергії та середньоквадратичним відхиленням. Докладно описано тип мережі та її топологію. Метод навчання і підготовки навчаючої вибірки також описано математично. Внаслідок проведеної роботи збудовано та протестовано програмне забезпечення з використанням штучної нейронної мережі та визначено її похибку.
APA, Harvard, Vancouver, ISO, and other styles
24

Коваленко, І. Я. "РОБОТА СИНХРОННОГО ГЕНЕРАТОРА З ПОСТІЙНИМИ МАГНІТАМИ ПРИ ПІДМАГНІЧУВАННІ СТОРОННЬОЮ ЄМНІСТЮ." Vidnovluvana energetika, no. 1(64) (March 30, 2021): 50–58. http://dx.doi.org/10.36296/1819-8058.2021.1(64).50-58.

Full text
Abstract:
Вітроенергетика є екологічно чистим та ефективним засобом перетворення механічної енергії вітру на електричну. Вітроагрегати продовжують активно використовуватись до сього часу. Разом з тим проводяться активні роботи з вдосконалення вітрогенерувальних комплексів та підвищення ефективності перетворення енергії вітру на електричну. Одним зі способів підвищення ефективності перетворення енергії вітру на електричну є підмагнічування електрогенератора з постійними магнітами сторонньою статичною ємністю. Розроблено математичну модель для оцінки величини ємності, яку необхідно приєднати до обмотки статора електрогенератора, залежно від ряду умов: величини та характеру навантаження; параметрів електрогенератора; підвищення величини напруги на затискачах; підвищення активної потужності на виході електрогенератора. За результатами розрахунків отримано вираз, що дозволяє оцінити необхідну величину ємності при чисто активному навантаженні. Для діапазону потужності електрогенератора, що досліджувався, від нуля до номінального значення, величина ємності, яку необхідно приєднати до обмотки якоря електрогенератора з постійними магнітами становить 4,3–32,1 мкФ, що дає змогу забезпечити напругу на затискачах генератора близько номінальної з похибкою ±5 %. При використанні додаткової підмагнічувальної ємності для підвищення активної потужності генератора спостерігається її приріст на рівні 10–15 %. Результати розрахунку необхідної величини сторонньої ємності генератора підтверджують адекватність розробленої моделі та достовірність отриманих результатів, що дозволяє використовувати цю модель для подальших досліджень та оцінки ефективності методів і засобів підвищення ефективності перетворення енергії вітру. Бібл. 7, табл. 3, рис. 5.
APA, Harvard, Vancouver, ISO, and other styles
25

Sokolovskyi, О., Y. Yarosh, N. Tsyvenkova, and S. Kukharets. "ОБҐРУНТУВАННЯ КАНАЛУ ЕЛЕКТРОПОСТАЧАННЯ НА ОСНОВІ ГАЗОГЕНЕРАТОРНОЇ УСТАНОВКИ." Vidnovluvana energetika, no. 1(56) (August 9, 2019): 72–82. http://dx.doi.org/10.36296/1819-8058.2019.1(56).72-82.

Full text
Abstract:
Сучасною тенденцією розвитку енергетики є прагнення до збалансованості енергетичного комплексу, підвищення надійності електропостачання споживачів. Важливе місце в стратегії розвитку електроенергетики займають автономні системи електропостачання. Вони використовуються на підприємствах, в аеро-, морських і річкових портах, в енергоблоках лікарень, у фермерських господарствах, в системах аварійного енергопостачання, на об'єктах оборонного комплексу – скрізь, де потрібна електроенергія, в той час як мережа або віддалена, або працює з перебоями. Представлено автономну систему енергопостачання з двигунами внутрішнього згорання. Основним перетворювачем механічної енергії приводних двигунів в електричну є електромеханічний перетворювач змінного струму з обмоткою збудження, яка розташована на роторі. Представлено алгоритм, згідно з яким на початку циклу контролер визначає добову норму споживання електроенергії та, відповідно до типу дня і часу доби, виконує дії за коротким чи розгалуженим алгоритмом. У разі використання добової норми електроенергії може виникнути ситуація, за якої увімкнутою залишиться тільки частина світильників, що спричинить дискомфорт для персоналу та впливатиме на продуктивність праці співробітників. Пропонується впровадження другого незалежного каналу електропостачання з використанням газогенераторних технологій. Вироблений газ забезпечує роботу двигуна внутрішнього згорання, який обертає вал генератора. Представлено графік прогнозованого вироблення енергії фотоелектричною системою встановленою потужністю 3,5 кВт на основі даних сонячної інсоляції на широті м. Житомира. Також представлено графік продуктивності газогенераторної установки потужністю 5 кВт за однозмінної роботи. Розраховано прогнозоване споживання електроенергії освітлювальною установкою протягом першого місяця року для корпусів Житомирського національного агроекологічного університету. Представлено графік різниці між спожитою та виробленою енергією за днями тижня. Величина спожитої електрики за місяць становила 767,8 кВт·год за встановленої норми 251 кВт·год. Фотоелектричними панелями та газогенераторною установкою вироблено відповідно 184,8 кВт·год та 493,2 кВт·год. Другий резервний канал живлення забезпечив більше половини потреб на освітлення навчального корпусу. Розроблено структурну схему контролера, що реалізує спеціалізований алгоритм. Представлено графік регульованих змінних під час роботи контролера. Застосування спеціалізованого алгоритму дозволяє зменшити енергоспоживання установки, забезпечує можливість повноцінного використання глибокого резервування на базі фотоелектричної системи та газогенераторної установки. Подальші дослідження спрямовані на встановлення впливу продуктивності газогенераторної установки на стійкість роботи системи двигун-генератор в умовах мінливого попиту на електроенергію та з врахуванням нестабільного значення коефіцієнта потужності. Бібл. 10, рис. 9.
APA, Harvard, Vancouver, ISO, and other styles
26

Теряєв, В. І., С. О. Бур’ян, and В. П. Стяжкін. "УЗГОДЖЕНЕ РЕГУЛЮВАННЯ КООРДИНАТ ДВИГУНА-ГЕНЕРАТОРА В РЕЖИМІ ЕЛЕКТРИЧНОГО ГАЛЬМУВАННЯ." Vidnovluvana energetika, no. 3(62) (September 28, 2020): 62–69. http://dx.doi.org/10.36296/1819-8058.2020.3(62).62-69.

Full text
Abstract:
Існує ряд установок і технологічних процесів, рух в яких здійснюється за рахунок зовнішнього джерела енергії, а електрична машина, не будучи основним джерелом руху, постійно або періодично перебуває в режимі генераторного електричного гальмування для забезпечення потрібних характеристики робочого процесу. Завдання даного дослідження полягає в розширенні функціональних можливостей генератора і двигуна в режимі електричного гальмування. Поставлена задача вирішується за рахунок регулювання координат електричної машини в генераторному режимі. Особливістю запропонованого способу управління є те, що одна або кілька координат генератора або двигуна в режимі електричного гальмування примусово задаються зовнішнім джерелом енергії, а метою узгодженого регулювання інших координат електричної машини є забезпечення заданого закону перетворення механічної енергії в електричну або алгоритму руху виконавчого органу робочої машини. У статті наведено приклад синтезу алгоритму управління регульованим електроприводом на основі принципу узгодженого регулювання координат. У прикладі розглядається обернений режим роботи насосної установки гідроакумулюючої електростанції. За критерієм незмінності потужності генерації в умовах зміни рівня рідини синтезований алгоритм частотного управління асинхронної машиною, який реалізується шляхом регулювання розрахункової швидкості холостого ходу двигуна, ротор якого обертається зовнішнім джерелом руху зі швидкістю, яка в загальному випадку може змінюватися за довільним законом. Завданням алгоритму управління є підтримка постійної потужності генерації енергії, незалежно від фактичної швидкості обертання ротора. Поєднання функцій генератора і електродвигуна в єдиному функціональному комплексі забезпечує енергозбереження та поліпшення якісних характеристики технологічних процесів і установок з регульованими електромеханічними системами. Бібл. 9, рис. 6.
APA, Harvard, Vancouver, ISO, and other styles
27

Заблоцький, Ю. В. "ПІДВИЩЕННЯ ЕКОНОМІЧНОСТІ РОБОТИ СУДНОВИХ ДИЗЕЛІВ." Ship power plant 1 (August 5, 2020): 12–16. http://dx.doi.org/10.31653/smf340.2020.12-16.

Full text
Abstract:
Постановка проблеми в загальному вигляді. Отримання корисної роботи у будь-якому тепловому двигуні супроводжується витратами палива (рідкого або газоподібного), яке є джерелом енергії. За різними оцінками, витрати на паливо можуть досягати до 35…40 % від загальних витрат на обслуговування суднової енергетичної установки. Використання палива в судновій енергетиці неможливо без його попередньої обробки, при цьому забезпечується видалення з палива механічних домішок та води, а також підтримання необхідної в’язкості палива, за якої можливі його рух у системі та впорскування в циліндр дизеля. Одним із методів підготовки палива до використання є його хімічна обробка, яка забезпечується за рахунок введення в нього паливних присадок
APA, Harvard, Vancouver, ISO, and other styles
28

Морозов, Ю. П., and С. В. Дубовський. "ТЕХНОЛОГІЧНІ СХЕМИ ГЕОТЕС НА ГЕОТЕРМАЛЬНИХ РОДОВИЩАХ З АНОМАЛЬНО ВИСОКИМ ПЛАСТОВИМ ТИСКОМ." Vidnovluvana energetika, no. 2(65) (June 28, 2021): 81–92. http://dx.doi.org/10.36296/1819-8058.2021.2(65).81-92.

Full text
Abstract:
Представлені результати термодинамічного та гідравлічного моделювання технологічних варіантів виробництва електричної енергії в геотермальному циркуляційному контурі з використанням теплової, механічної та хімічної енергії флюїду геотермальних родовищ з аномально високим пластовим тиском (АВПТ). Геотермальні поклади такого типу зустрічаються на глибинах до 4000 м і характеризуються позитивною температурною аномалією, що визначає перспективність їх використання у геотермальній енергетиці. Однак використання покладів АВПТ ускладнює високий тиск флюїду на поверхні, що зумовлює підвищену металоємність наземного обладнання та потенційну небезпеку для оточення внаслідок можливої розгерметизації. Які базову модель прийнято бінарну ГеоТЕС на органічному циклі Рєнкіна під повним тиском геотермального флюїду. Заразом, з метою зниження металоємності та попередження наслідків аварійних ситуацій, розглянуто технологічні схеми ГеоТЕС з попереднім зниженням тиску за допомогою турбіни Пелтона із відділенням та використанням розчиненого метану для виробництва електричної й теплової енергії у газопоршневій когенераційній установці. Порівняльні розрахунки технологічних схем проводились за даними геотермального родовища АВПТ Мостицька, Україна, з температурою до 140 оС, пластовим тиском 500 бар і вмістом розчиненого метану 1 м3/м3 на глибині 3600 м. Наведено результати математичного моделювання гідродинаміки та теплообміну руху флюїду в свердловинах, процесів зниження тиску в турбіні Пелтона, видалення та використання розчиненого метану в когенераційній установці, термодинамічного розрахунку паротурбінного циклу ГеоТЕС, які дозволили провести порівняння базового й альтернативних варіантів технологічних схем за рівнем електричної й теплової потужності. Одержані дані призначені для подальшого використання у техніко-економічному зіставленні розглянутих технологічних схем. Бібл. 10, табл. 6., рис. 4.
APA, Harvard, Vancouver, ISO, and other styles
29

В. Ю. Денисюк, Симонюк В.П., Лапченко Ю.С, Кайдик О.Л., and Пташенчук В.В. "ДОСЛІДЖЕННЯ ПРОЦЕСІВ ОБРОБКИ ДЕТАЛЕЙ ПРИ УДАРНО-ІМПУЛЬСНОМУ НАВАНТАЖЕННІ ВІБРОБУНКЕРА." Перспективні технології та прилади, no. 18 (June 30, 2021): 43–50. http://dx.doi.org/10.36910/6775-2313-5352-2021-18-6.

Full text
Abstract:
В статті представлені результати досліджень закономірностей циркуляційного вихрового руху робочого середовища та переміщення корпусу вібробункера при його симетричному ударно-імпульсному навантаженні. Встановлено, що ударно-імпульсні навантаження на вібробункер призводять до виникнення повільного циркуляційного руху робочого середовища, який інтенсифікується при несиметричному ударному навантаженні. Представлено результати експериментальних досліджень процесу вібраційної обробки деталей, перевірено відтворюваність експерименту та достовірність отриманих результатів. Здійснено аналіз технологічних можливостей віброобробки в широкому діапазоні частоти та розмаху коливань. Наочно представлено причини проблематичності вибору оптимальних режимів віброобробки та можливі напрямки їх подолання. Здійснено моделювання різних режимів роботи вібраційної установки. Аналіз результатів дав можливість виявити принципи оптимального підбору режимів віброобробки. Встановлено спосіб досягнення режиму роботи вібраційної установки з максимально ефективним використанням механічної енергії коливань.
APA, Harvard, Vancouver, ISO, and other styles
30

Chaban, S., and A. Kovra. "ВПЛИВ КОНСТРУКЦІЙНИХ ТА ЕКСПЛУАТАЦІЙНИХ ФАКТОРІВ НА ЗАПАС ХОДА ЕЛЕКТРОАВТОМОБІЛІВ." Аграрний вісник Причорномор'я, no. 95 (February 24, 2020): 210–19. http://dx.doi.org/10.37000/abbsl.2019.95.29.

Full text
Abstract:
У статті приводиться аналіз розвитку електроавтомобілів в Україні, використання яких збільшується і в агропромисловому комплексі, що обумовлено можливістю зарядки акумуляторів в міжзмінний час та використання нетрадиційних джерел енергії. Використання електроавтомобілів обумовлено їх економічністю порівняно з традиційним автомобілями та меншими затратами на технічне обслуговування. Технічна досконалість електроавтомобілів проявляється в подальшому покращені конструкції та технології їх виготовлення. Конструктивна досконалість проявляється в зменшені деталей, вузлів та агрегатів, так як у електроавтомобіля відсутній двигун внутрішнього згоряння, система охолодження з радіатором, коробка передач, зчеплення та механічна трансмісія, компактність за рахунок спрощення конструкції тримальної системи, трансмісії, форми кузова та рівномірним розподілом навантаження. Важливою конструктивною технічною характеристикою електроавтомобілів являється їх економічність, яка оцінюється питомою витратою електроенергії та запасом ходу. В статі розрахунковим шляхом досліджується вплив експлуатаційних факторів на питому витрату електроенергії та запас ходу. Показано вплив швидкості руху, прискорення, коефіцієнта опору коченню, величини підйому, наявності вітру та температури навколишнього середовища на показники економічності. Приведені розрахунки показують кількісні величини впливу експлуатаційних факторів на економічність електроавтомобілів. Дані розрахунків можуть бути використанні при виборі режимів руху в експлуатації, а також в учбовому процесі при проектуванні електроавтомобілів.
APA, Harvard, Vancouver, ISO, and other styles
31

Zadorozhniaia, I. N., and N. A. Zadorozhnii. "ANALYSIS OF QUALITY INDICATORS INTO THE PROCESS OF ENERGY TRANSFORMATION DURING DAMPING VIBRATIONS OF ELASTIC MECHANICAL TRANSMISSION BY THE DRIVE." Tekhnichna Elektrodynamika 2020, no. 1 (January 16, 2020): 27–32. http://dx.doi.org/10.15407/techned2020.01.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Турчина, Тетяна Яківна, Едуард Костянтинович Жукотський, Ганна Валеріївна Декуша, and Андрій Анатолійович Макаренко. "ВПЛИВ СТУКТУРУЮЧОЇ ДОБАВКИ НА ВИХІД ГРИБНОГО ПОРОШКУ ПРИ СУШІННІ МЕТОДОМ РОЗПИЛЮВАННЯ." Scientific Works 84, no. 2 (December 29, 2020): 67–75. http://dx.doi.org/10.15673/swonaft.v2i84.1891.

Full text
Abstract:
Стаття присвячена експериментальним дослідженням тепломасообмінних процесів при сушінні методом розпилювання складної за реологічними властивостями гетерогенної системи – суспензії з гриба шиїтаке. В дослідженнях використовувались водні суспензії із цілісного плодового тіла гриба шиїтаке та окремо його шапинок, підготовлені шляхом їх обробки методом дискретно-імпульсного введення енергії (ДІВЕ). Дослідження процесу сушіння грибних суспензій проводились на розпилювальній сушарці РЦ-1,3 у три етапи. На І-му етапі апробація процесу сушіння грибних суспензій, виготовлених з цілісного гриба без біополімерної добавки, підтвердила необхідність її застосування, оскільки порошок характеризувався полідисперсним складом і високою вологістю. Це спричинило погіршення структурно-механічних характеристик порошку, утворення відкладень на стінках камери та низький вихід з сушарки. На ІІ-му етапі досліджень використання біополімерної добавки у складі суспензії з цілого гриба дозволило підвищити температурні режими сушіння і сприяло значному покращенню органолептичних і структурно-механічних характеристик порошків. Встановлено, що використання добавки в кількості ≥10% є недоцільним через посилення адгезійних та когезійних явищ в камері сушарки, агрегації частинок порошку, підвищення вологості і зменшення його виходу. На ІІІ-му етапі досліджень використання виключно шапинок гриба з додаванням біополімерної добавки дозволило забезпечити однорідність дисперсного складу крапель суспензії у факелі розпилу та рівномірність їх висушування, уникнути відкладень на стінках камери сушарки і підвищити вихід порошку до 92%. Отриманий грибний порошок характеризувався високою якістю, покращеними органолептичними характеристиками і збільшенням терміну зберігання до 1 року. А його переважною особливістю є збільшення у 6 разів вмісту біодоступного лікувального полісахаридного комплексу.
APA, Harvard, Vancouver, ISO, and other styles
33

Побережний, Р. В. ,., and С. В. Сагін. "ЗАБЕЗПЕЧЕННЯ ЕКОЛОГІЧНИХ ПОКАЗНИКІВ ДИЗЕЛІВ СУДЕН РІЧКОВОГО ТА МОРСЬКОГО ТРАНСПОРТУ." Ship power plant 41 (November 5, 2020): 5–9. http://dx.doi.org/10.31653/smf340.2020.5-9.

Full text
Abstract:
Дизель, виробляючи механічну енергію за рахунок окислення палива повітрям, в процесі роботи здійснює безперервний тепло-масообмін з навколишньою атмосферою. Він забирає повітря і споживає паливо, потім викидає відпрацьовані гази, що складаються з частини повітря і продуктів окислення палива. Таким чином, повітря, що надходить в циліндр дизеля, робить певний термодинамічний цикл, зазнаючи при цьому хімічні зміни, в результаті чого перетворюється в випускні гази (ВГ) – складну газову суміш з безліччю компонентів. Чотири компонента N2, О2, СО2 і Н2О складають понад 99...99,9 % обсягу газу, решта 0,1...1,0 % обсягу відпрацьованих газів складають домішки, які не представляють інтересу з технічної точки зору, але є шкідливими для навколишнього середовища, живої природи і людини. При випуску в атмосферу відпрацьовані гази зазвичай розсіюються і вступають в контакт з людиною вже в сильно розбавленому стані. Концентрація ряду шкідливих компонентів і температура газів в основному знижуються до безпечного рівня, але бувають зони, де ця речовина концентрується в кількостях, що надають шкідливу дію на живий організм і природу. Ця обставина змушує шукати шляхи зниження шкідливих речовин. До найбільш небезпечних речовин можна віднести СО, NОХ, SО2, альдегіди, вуглеводні, бенз--пірен
APA, Harvard, Vancouver, ISO, and other styles
34

Нємий, С. В. "Енергетичні витрати у приводі компресора гальмівної системи автомобільних транспортних засобів." Scientific Bulletin of UNFU 30, no. 3 (June 4, 2020): 89–92. http://dx.doi.org/10.36930/40300315.

Full text
Abstract:
Визначено умови, за яких виникають найбільші енергетичні витрати під час роботи компресора автомобільного транспортного засобу (АТЗ). Розроблено методику оцінювання витрат енергії на привод компресора. Запропоновано у ролі показника експлуатаційної ефективності автомобільного компресора величину питомої приводної потужності. Показником експлуатаційної ефективності компресора, окрім надійного живлення гальмівної системи та надійності конструкції, є витрати енергії для його привода. Зазначений показник безпосередньо впливає на паливну ощадливість автомобіля та опосередковано – на надійність конструктивних елементів гальмівної системи і автомобіля загалом. Метою дослідження є спроба розробити методику оцінювання величини енергетичних витрат для привода компресора автомобіля з урахуванням умов і режимів експлуатації. Для запобігання тривалій безперервній роботі компресора і його частих вмиканням, а також для підтримання нормального тиску в системі в разі випадкових збільшень витрат повітря, у АТЗ застосовують компресори, масова продуктивність яких у 4…6 разів більша від масової витрати повітря на одне повне гальмування. Значення витрат потужності двигуна на привод компресора у будь-який момент часу знаходиться у діапазоні, мінімальне значення якого відповідає відсутності протитиску на виході компресора, а максимальне відповідає нагнітанню компресора при протитиску, рівному номінальному значенню тиску в пневмосистемі. Величина приводної потужності компресора складається із двох складових: постійної і змінної. Постійна становить витрати потужності за відсутності протитиску. Змінна залежить від умов експлуатації, тобто інтенсивності гальмувань, що визначають тривалість роботи компресора під повним навантаженням. Для мінімізації витрат потужності двигуна для привода компресора, важливою є його експлуатаційна ефективність. Показником експлуатаційної ефективності компресора доцільно прийняти величину його питомої потужності привода – відношення приводної потужності компресора до його продуктивності. Питома потужність привода компресорів одного і того самого діапазону потужності може значно відрізнятися – практично у півтора раза. Це пояснюють значною різницею механічних ККД компресорів. Під час вибору компресора для живлення пневмосистеми АТЗ, окрім необхідної продуктивності, потрібно враховувати і питому потужність привода для зменшення енерговитрат двигуна для привода компресора. Результати роботи: визначено умови, за яких виникають найбільші енергетичні витрати під час роботи компресора АТЗ; розроблено методику оцінювання витрат енергії двигуна АТЗ для привода компресора; показником експлуатаційної ефективності автомобільного компресора доцільно прийняти величину питомої потужності привода.
APA, Harvard, Vancouver, ISO, and other styles
35

Головко, В. М., М. А. Коваленко, І. Я. Коваленко, and І. Р. Галасун. "МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ АВТОНОМНОЇ ВІТРОУСТАНОВКИ З СИНХРОННИМ ГЕНЕРАТОРОМ МАГНІТОЕЛЕКТРИЧНОГО ТИПУ." Vidnovluvana energetika, no. 4(63) (December 27, 2020): 50–58. http://dx.doi.org/10.36296/1819-8058.2020.4(63).50-58.

Full text
Abstract:
Одним із напрямків підвищення ефективності перетворення енергії вітру є удосконалення конструкції відомих генераторів або розробка принципово нових типів генераторів. Природа вітру носить мінливий характер, тому актуальною задачею є використання максимально можливого потенціалу вітру при електромеханічному перетворенні енергії. Жорстка залежність потужності на валу ротора вітроустановки від аеродинамічних характеристик лопаті відомі і втілені в інженерні рішення, проте узгодження отриманої потужності з потужністю електричної машини, що під’єднана до ротора, вимагає додаткових досліджень. Розроблено чисельну математичну модель для дослідження параметрів та характеристик синхронного генератора із постійними магнітами, що враховує двосторонню активну зону статора та аеродинамічні параметри ротора вітроустановки.При низьких швидкостях вітру (3-5 м/с) напруга генератора знаходиться на половинних значеннях свого максимуму, що пояснюється аеродинамічними параметрами ротора та параметрами електрогенератора. При більших значеннях швидкості вітру (6-7 м/с) мінімальне значення напруги на виході генератора становить досягає свого максимуму у 18 В та 26 В при збільшенні швидкості обертання генератора, що пояснюється зростанням ЕРС обертання, з подальшим падіння напруги до 6 В та 16 В відповідно із зростанням аеродинамічних втрат в роторі вітроустановки. Відповідні максимуми на кривих напруги відповідають максимумам вихідної активної потужності 45 Вт.При більших значеннях швидкості вітру (6-7 м/с) мінімальне значення напруги на виході генератора становить досягає свого максимуму у 18 В та 26 В при збільшенні швидкості обертання генератора, що пояснюється зростанням ЕРС обертання, з подальшим падіння напруги до 6 В та 16 В відповідно із зростанням аеродинамічних втрат в роторі вітроустановки. Відповідні максимуми на кривих напруги відповідають максимумам вихідної активної потужності 45 Вт.При більших значеннях швидкості вітру (6-7 м/с) мінімальне значення напруги на виході генератора становить досягає свого максимуму у 18 В та 26 В при збільшенні швидкості обертання генератора, що пояснюється зростанням ЕРС обертання, з подальшим падіння напруги до 6 В та 16 В відповідно із зростанням аеродинамічних втрат в роторі вітроустановки. Відповідні максимуми на кривих напруги відповідають максимумам вихідної активної потужності 45 Вт. Результати моделювання механічних характеристик вітрової турбіни та генератора підтверджують адекватність розробленої моделі та достовірність отриманих результатів, що дозволяє використовувати дану модель для подальших досліджень та оцінки ефективності методів та засобів підвищення ефективності перетворення енергії вітру. Бібл. 6, табл.1, рис. 8.
APA, Harvard, Vancouver, ISO, and other styles
36

Горбик, Юрий. "Моделювання випробувань автомобіля на паливну економічність на дорозі і на стенді з біговими барабанами." Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», no. 21 (December 7, 2020): 156–63. http://dx.doi.org/10.37700/ts.2020.21.156-163.

Full text
Abstract:
Витрата палива є комплексним показником, який характеризує ефективність використання транспортного засобу, енергетичне досконалість конструкції автомобіля, рівень технічного стану машини, різноманітність умов експлуатації. Зміна технічного стану вузлів і систем автомобіля призводить до підвищених втрат енергії, що в підсумку збільшує витрату палива і знижує потужність автомобіля. Якщо проводити контроль втрат енергії в кожному агрегаті автомобіля, то по витраті палива можна діагностувати не тільки загальний стан автомобіля, а й локалізувати несправність по агрегатам. Загальна оцінка технічного стану автомобіля може виконуватися по експериментально-розрахунковим даними витрати палива. Індивідуальна оцінка технічного стану агрегатів також може оцінюватися по приватних ККД і індикаторного витраті палива. Метою роботи є подальше вдосконалення методики та розробка алгоритму діагностування технічного стану автомобіля зі зміни індикаторного витрати палива і ККД автомобіля. Для вирішення цієї мети були запропоновані математичні залежності та алгоритм розрахунку витрати палива та коефіцієнтів корисної дії автомобіля по агрегатам (індикаторний і механічний двигуна, трансмісії і підвіски автомобіля). З використанням моделювання можна вирішити такі завдання діагностики: - оцінити якість функціонування автомобіля; - видати рекомендації по видам і обсягам профілактичного обслуговування і ремонту для даного автомобіля; - розробити раціональні варіанти застосування діагностичних приладів і обладнання для різних вузлів і систем автомобіля, при моделюванні їх функціонування. Стосовно до автомобілів може здійснюватися фізичне моделювання при визначенні (нормуванні) витрати палива, токсичності ОГ, ККД автомобіля, коефіцієнта опору коченню і зчеплення з дорогою, ефективності гальмівних систем, плавності ходу і ін. Результати моделювання витрати палива з використанням пропонованої математичної моделі, в залежності від гальмівного моменту стенду, з певним ступенем точності збігаються з результатами дорожніх і стендових випробувань автомобіля на різних режимах руху Для забезпечення відповідності режимів випробувань автомобілів реальним необхідно, з використанням отриманих результатів, підбирати навантажувальні режими стендового діагностування так, щоб вони максимально відповідали дорожнім умовам.
APA, Harvard, Vancouver, ISO, and other styles
37

Любека, А., and Я. Корнієнко. "МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ТЕМПЕРАТУРНОГО ПОЛЯ В АПАРАТІ З ПСЕВДОЗРІДЖЕНИМ ШАРОМ." Automation of technological and business processes 10, no. 4 (December 24, 2018): 11–22. http://dx.doi.org/10.15673/atbp.v10i4.1226.

Full text
Abstract:
Авторами наведенні результати експериментальних досліджень процесів гранулоутворення складних гетерогенних систем для одержання гуміно-мінеральних композитів з пошаровою структурою. При застосуванні оригінальної конструкції відцентрового механічного диспергатора. Який забезпечив збільшення зони диспергування і підвищив ефективність процесу тепло-масообмінну. Досліди проводились із застосуванням методу струменево-пульсаційного псевдозрідження в автоколивальному режимі який створить збільшену зону інтенсивного тепло-масообміну всередині апарату. Початковими центрами грануляції були гранули сульфату амонія з домішками гумінових речовин . В середині шару встановлений механічний диспергатор конічного типу. Маса шару в процесі роботи підтримувалась постійною шляхом вивантаження гранульованого продукту. Перепад тиску в шарі вимірювався за допомогою водяного дифманометра, а температура – компютерно-інформаційним комплексом з точністю 0,5 ºС. Розроблена карта треків термопар, по паралельним площиннам, для проведенно дослідження температурного поля в робочій зоні механічного диспергатора. Запропонована математична модель процесу зневоднення та грануляції, що враховує витрати енергії на випаровування вологи при зневодненні та гранулоутворенні, адекватно описує процес при застосуванні струменево-пульсаційного режиму псевдозрідження. Порівняльний аналіз доводить високу збіжність усереднених значення температурного поля та значень отриманих при розрахунку математичної моделі при реалізації струменево-пульсаційного псевдозрідження в автоколивальному режимі з застосованням конічного диспергатора. Визначено температуру при якій реалізується стійкий процес грануляції при підвищеному питомому навантаженні за вологою в апараті в цілому.
APA, Harvard, Vancouver, ISO, and other styles
38

Садретдінова, Н. В., and М. В. Яценко. "Оцінювання комфортності текстильних матеріалів різного сировинного складу з використанням комплексного підходу." Fashion Industry, no. 3 (January 24, 2022): 26–35. http://dx.doi.org/10.30857/2706-5898.2021.3.1.

Full text
Abstract:
Метою роботи є оцінювання комфортності текстильних матеріалів різного сировинного складу з використанням комплек сного підходу, який базується на поєднанні експериментальних досліджень показників комфортності та діагностиці впливу матеріалів на функціональний стан організму людини. Для досягнення поставленої мети використано експериментальні методи дослідження механічних і фізичних властивостей текстильних матеріалів, принципи порівняльного аналізу, статистичний метод обробки даних. Енерго-інформаційний вплив на організм людини визначався з використанням методу біорезонансної енерго-хвильової діагностики. Проведені у процесі роботи дослідження показали, що рівень комфортності текстильних матеріалів для одягу, визначений експериментальним шляхом, не завжди збігається з тим, як реагує людський організм на їх використання. Якщо найкращі значення показників комфортності були встановлені для лляних та шовкових тканин, то найбільш позитивно на організм впливають лляні та вовняні, а для шовкових є характерним високий рівень негативного впливу. Це ще раз підтверджує той факт, що комфортність є комплексним показником і може оцінюватися лише із врахуванням суб’єктивних відчуттів людини. Загалом найкращі результати були встановлені для зразка лляного матеріалу: для нього характерні високі значення показників комфортності в поєднанні з низьким рівнем негативного впливу та досить високим рівнем позитивного впливу. Запропонована методика оцінювання комфортності дає можливість враховувати реакцію організму на вплив тих чи інших видів текстильних матеріалів. Наукова новизна полягає в тому, що в даній роботі вперше використано комплексний підхід для оцінювання комфортності матеріалів, який включає поєднання об’єктивних та суб’єктивних методів. Практична значимість підтверджується рекомендаціями щодо конфекціювання текстильних матеріалів для виготовлення літнього одягу на основі їх комфортності.
APA, Harvard, Vancouver, ISO, and other styles
39

Васько, П. Ф. "АПРОКСИМАЦІЯ УНІВЕРСАЛЬНИХ ХАРАКТЕРИСТИК ГІДРОТУРБІН МЕТОДАМИ ІНЖЕНЕРНОЇ ГЕОМЕТРІЇ." Vidnovluvana energetika, no. 3(66) (September 30, 2021): 62–71. http://dx.doi.org/10.36296/1819-8058.2021.3(66).62-71.

Full text
Abstract:
Апробовано застосування методів інженерної геометрії для апроксимації функціональних двопараметричних залежностей універсальних характеристик гідротурбін, які являють собою сукупність розімкнених та зімкнених ліній на площині, що характеризують результати експериментальних досліджень фізичних моделей турбін. Універсальні характеристики наведені в номенклатурі гідротурбін і слугують вихідною інформацією для вибору параметрів натурних зразків та визначення режимів їх ефективної експлуатації. Вони дозволяють розрахувати діаметр робочого колеса для отримання заданої потужності; номінальне число обертів турбіни; значення ККД і допустимі висоти відсмоктування при всіх напорах і потужностях; відкриття напрямного апарату для будь-якого навантаження турбіни. Проведення багатоваріантних розрахункових досліджень потребує цифрового оброблення вихідної графічної інформації та її подальшого використання. Тому були розглянуті питання апроксимації кривих та поверхні кубічними сплайн-функціями, графічного визначення максімори поверхні та графічного визначення перетину поверхонь. Розроблено методичні положення визначення енергоефективного режиму роботи пропелерних та радіально-осьових гідротурбін при змінних витратах води та частоти обертання. Положення ґрунтуються на застосуванні методів інженерної геометрії для апроксимації універсальної характеристики турбіни у формі поверхні тривимірного геометричного тіла та визначення максімори поверхні, яка характеризує оптимальну функціональну залежність між відкриттям напрямного апарату і частотою обертання, що забезпечує найбільшу енергетичну ефективність процесу перетворення гідроенергетичного потенціалу водотоку в механічну енергію обертового руху турбіни. Запропоновано алгоритм розрахунку коефіцієнтів апроксимаційних кубічних сплайн-функцій універсальної характеристики гідротурбіни для визначення та реалізації законів керування енергоефективними режимами роботи гідроагрегатів при одночасній зміні двох параметрів керування. Алгоритм полягає в апроксимації вихідної універсальної характеристики гідротурбіни на рівномірну сітку параметрів керування з подальшим прямим розрахунком коефіцієнтів сплайн-функцій за рекурентними співвідношеннями. Бібл. 17, рис. 7.
APA, Harvard, Vancouver, ISO, and other styles
40

Тарельник, Вячеслав. "Нові технології виготовлення та ремонту шнеку технічних засобів видалення, переробки та екологічно безпечної утилізації гною на тваринницьких комплексах." Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», no. 21 (December 7, 2020): 126–38. http://dx.doi.org/10.37700/ts.2020.21.126-138.

Full text
Abstract:
Представлено аналіз особливостей формування товстошарових комбінованих електроіскрових покриттів (КЕІП), отриманих на плоских і криволінійних поверхнях деталей з нержавіючої сталі 12Х18Н10Т. КЕІП наносили на поверхню зразків у вигляді товстостінної циліндричної труби. Зразки піддавалися цементації методом електроіскрового легування (ЦЕІЛ) на установці «Елитрон-52А» і алітуванню методом ЕІЛ на механізованій установці «ЕИЛ-9» при енергії розряду Wр = 3,4 Дж. На алітовану поверхню за допомогою цієї ж установки наносили покриття електродами з твердого сплаву Т15К6 при Wр = 0,9 і 3,4 Дж. Шорсткість КЕІП знижують обкаткою кулькою і нанесенням металополімерного матеріалу (МПМ), армованого порошком з твердого сплаву ВК6. Після чого від труби відрізають кільце з нанесеним покриттям. Кільце розрізають на окремі сегменти, методом пластичного деформування (ПД) розгинають на пресі до необхідних розмірів і прикріплюють механічним способом до ділянок деталі, що зношуються. Для практичного застосування запропоновано нову технологію відновлення плоских і криволінійних поверхонь деталей, що дозволяє формувати на сталі 12Х18Н10Т КЕІП в послідовності: ЦЕІЛ + ЕІЛ Al + ЕІЛ Т15К6 + ППД + МПМ (армований ВК6) + ПД, товщина до 1,3 мм, суцільність 100%, мікротвердість порядку 10500 - 11000 МПа і шорсткістю Rа ~ 1,0 мкм. Розроблена технологія пройшла промислову апробацію при ремонті шнека центрифуги з нержавіючої сталі ОГШ-631К-02, що використовується на очисних спорудах для обробки промислових та побутових стічних вод.
APA, Harvard, Vancouver, ISO, and other styles
41

Середа, Б. П., О. С. Баскевич, В. В. Соболев, and Д. Б. Середа. "МОДЕЛЮВАННЯ УМОВ ФАЗОВИХ ПЕРЕТВОРЕНЬ В МІКРООБЛАСТЯХ МЕТАЛЕВИХ МАТЕРІАЛІВ ПРИ НАДГЛИБОКОМУ ПРОНИКАННІ МІКРОЧАСТИНОК." Математичне моделювання, no. 2(45) (December 13, 2021): 91–102. http://dx.doi.org/10.31319/2519-8106.2(45)2021.246963.

Full text
Abstract:
Проведено моделювання стійкості хімічних зв’язків під дією ударних хвиль та вільних електронів в товщі металічних мішеней на основі квантово-механічних розрахунків. При цьому проведені аналітичні розв’язки рівняння Шредингера в еліпсоїдальних координатах та отримані залежності енергії хімічних зв’язків при різних умовах, які наглядно показують умови їх стійкості. Залежно від швидкості, температури, властивостей частинок та оброблюваної поверхні утворюються покриття та відбувається імплантація в поверхневий шар. При цьому можуть використовуватися потоки частинок, що мають широкий діапазон швидкостей — від десятків до декількох тисяч метрів в секунду та тисків до десятків ГПа. Для з'ясування умов надглибокого проникнення мікрочастинок у металеві перешкоди запропоновано ідею дестабілізації мікроструктури металевих матеріалів в обмежених мікрооб'ємах під час дії зовнішніх фізичних факторів. Рух мікрочастинки в металевій мішені вздовж каналу супроводжується високим тиском, впливом мікросекундних високоенергетичних ударних хвиль, що призводять до руйнування хімічних зв'язків. Рух мікрочастинки в товщині металу можливий тільки при попаданні мікрочастинки у фронт ударних хвиль і при дотриманні масштабного фактора мікрочастинок. В обмеженому обсязі відбувається розпад кристалічного стану і перехід його в стан холодної плазми, яка подібна до рідкого стану. Цей стан спостерігається протягом процесів розпаду та утворення хімічних зв'язків. Експериментально встановлені умови надглибокого проникання мікрочастинок та показано, що агрегатний стан під час надглибокого проникання може змінюватися від плазмового до аморфного або кристалічного стану.
APA, Harvard, Vancouver, ISO, and other styles
42

КАЙДАЛОВ, Руслан, Василь ОМЕЛЬЧЕНКО, and Михайло ПОДРИГАЛО. "Аналіз існуючих конструкцій автопоїздів з активними причіпними ланками." СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 2, no. 17 (November 14, 2021): 11–16. http://dx.doi.org/10.36910/automash.v2i17.629.

Full text
Abstract:
Визначена роль автомобільного транспорту з виконання логістичних перевезень та показана їх особливість при здійсненні військовими формуваннями, а саме, більш широкий діапазон змін умов експлуатації. Звернуто увагу на те, що здебільшого для автомобільних перевезень залучаються як одиночні вантажні автомобілі так і автомобільні поїзди. Зазначено переваги використання автопоїздів у порівнянні з одиночними автомобілями при виконанні перевезень. Показано, що у сучасному автомобілебудуванні активно розвивається напрямок, пов'язаний із застосуванням багатовісних великовантажних автопоїздів та зчленованих самохідних платформ. Широке поширення і подальше вдосконалення зазначених транспортних засобів обумовлено великою кількістю об'єктивних чинників. Встановлено протиріччя між існуючими конструкціями автопоїздів та вимогами щодо ефективності автомобільних перевезень, особливо військових. Вказано на один із напрямків підвищення ефективності автомобільних перевезень за рахунок використання автопоїздів з активними причіпними ланками. Проаналізовано існуючі конструкції автопоїздів з активними причіпними ланками. Визначено особливості конструкції, переваги та недоліки активних ланок автопоїздів різних типів передачі енергії. Виявлено, ефективність різних трансмісій системи приводу активних осей причіпних ланок, а саме: механічних, гідрооб'ємних та електричних для досягнення максимальної прохідності та динамічності у широкому діапазоні умов експлуатації автопоїздів. Обґрунтовано, що найбільш перспективним є використання електричного (чи електромеханічного) приводу на колеса причіпних ланок автопоїзда, що дозволить спростити конструкцію трансмісії, а в перспективі підвищити прохідність та динамічність автопоїзда за рахунок роздільного керування окремими колесами. Ключові слова: автопоїзд, активний причіп, трансмісія, причіпна ланка, прохідність.
APA, Harvard, Vancouver, ISO, and other styles
43

Войтюк, Д., Л. Анискевич, Ю. Гуменюк, and И. Сивак. "Розвиток наукових ідей Академіка П.М. Василенка діяльності кафедри що носить його ім'я." Науковий журнал «Інженерія природокористування», no. 3(17) (December 28, 2020): 58–64. http://dx.doi.org/10.37700/enm.2020.3(17).58-64.

Full text
Abstract:
Стаття присвячується 120-й річниці від дня народження Петра Мефодійовича Василенка - видатного вченого в галузі агроінженерної науки, корифея землеробської механіки, академіка ВАСГНІЛ, академіка НААНУ, академіка РАСГН, члена-кореспондента НАНУ, доктора технічних наук, професора, лауреата найвищої нагороди у галузі механізації та електрифікації сільського господарства - Золотої медалі імені академіка В.П. Горячкіна. Дане дослідження висвітлює внесок академіка П.М. Василенка у формування та розвиток наукової дисципліни «Землеробська механіка», як технічної науки, що розвивається у тісному зв'язку із потребами сільськогосподарського виробництва і вивчає механіку сільськогосподарських середовищ і матеріалів, технологічних процесів і операцій, машин і механізмів, машинних агрегатів, поточних ліній і систем машин, динаміку системи людинамашина у сільському господарстві, а також технологічні процеси, засновані на використанні немеханічних (теплових, електричних і інших) видів енергії, і розробляє методи інженерного розрахунку і проектування для механізації і автоматизації сільського господарства”. Близько 70 років плідної науково-педагогічної діяльності академіка П.М. Василенка пов'язано з кафедрою сільськогосподарських машин. Розглянуто основні напрямки діяльності наукової школи академіка П.М. Василенка та сучасні напрямки розвитку нових технологічних систем і техніки, над реалізацією яких успішно працюють науковці кафедри, що носить ім'я академіка П.М. Василенка В статті також наведені основні результати науково-технічної та інноваційної діяльності, кафедри сільськогосподарських машин та системотехніки ім. акад. П.М. Василенка за останні роки її функціонування.
APA, Harvard, Vancouver, ISO, and other styles
44

Войтюк, Д., Л. Анискевич, Ю. Гуменюк, and И. Сивак. "Розвиток наукових ідей Академіка П.М. Василенка діяльності кафедри що носить його ім'я." Науковий журнал «Інженерія природокористування», no. 3(17) (December 28, 2020): 58–64. http://dx.doi.org/10.37700/enm.2020.3(17).58-64.

Full text
Abstract:
Стаття присвячується 120-й річниці від дня народження Петра Мефодійовича Василенка - видатного вченого в галузі агроінженерної науки, корифея землеробської механіки, академіка ВАСГНІЛ, академіка НААНУ, академіка РАСГН, члена-кореспондента НАНУ, доктора технічних наук, професора, лауреата найвищої нагороди у галузі механізації та електрифікації сільського господарства - Золотої медалі імені академіка В.П. Горячкіна. Дане дослідження висвітлює внесок академіка П.М. Василенка у формування та розвиток наукової дисципліни «Землеробська механіка», як технічної науки, що розвивається у тісному зв'язку із потребами сільськогосподарського виробництва і вивчає механіку сільськогосподарських середовищ і матеріалів, технологічних процесів і операцій, машин і механізмів, машинних агрегатів, поточних ліній і систем машин, динаміку системи людинамашина у сільському господарстві, а також технологічні процеси, засновані на використанні немеханічних (теплових, електричних і інших) видів енергії, і розробляє методи інженерного розрахунку і проектування для механізації і автоматизації сільського господарства”. Близько 70 років плідної науково-педагогічної діяльності академіка П.М. Василенка пов'язано з кафедрою сільськогосподарських машин. Розглянуто основні напрямки діяльності наукової школи академіка П.М. Василенка та сучасні напрямки розвитку нових технологічних систем і техніки, над реалізацією яких успішно працюють науковці кафедри, що носить ім'я академіка П.М. Василенка В статті також наведені основні результати науково-технічної та інноваційної діяльності, кафедри сільськогосподарських машин та системотехніки ім. акад. П.М. Василенка за останні роки її функціонування.
APA, Harvard, Vancouver, ISO, and other styles
45

Matiukhin, A., and S. Dolia. "Розробка технології автоматизованого виготовлення мітчиків." Обробка матеріалів тиском, no. 2(49) (December 22, 2019): 195–201. http://dx.doi.org/10.37142/2076-2151/2019-2(49)195.

Full text
Abstract:
Матюхін А. Ю., Доля С. П. Розробка технології автоматизованого виготовлення мітчиків // Обробка матеріалів тиском. – 2019. – № 2 (49). - C. 195-201. В роботі розглянута можливість застосування технології автоматизованого виготовлення мітчиків, що базується на застосуванні пластичного формування стружкових канавок на радіально-штампувальному прес-автоматі. До складу автоматизованого виробничого комплексу, окрім радіально-штампувального прес-автомату, будуть також входити правильно-розмотувальна машина, пресові ножиці для чистового розрізання дроту, різьбошліфувальний верстат та допоміжне обладнання для переміщення, орієнтації та фіксації заготовок у просторі. Очікувані результати виконаної наукової роботи по розробці технології та обладнання для автоматизованого виготовлення мітчиків мають бути використані у машинобудівній промисловості для створення передових технологій масового виготовлення мітчиків. Технологія виготовлення мітчиків при застосуванні автоматизованих виробничих ліній має ряд суттєвих переваг порівняно з традиційними, зокрема: підвищена продуктивність праці та коефіцієнту використання металу, знижена метало- та верстатоємність; збільшені показники енерго- та ресурсоефективності. Перелічені переваги, в кінцевому рахунку, зменшать собівартість виготовлення мітчика, не знижуючи його механічних та технологічних властивостей, що дасть змогу гідно конкурувати національному виробнику як на внутрішньому, так і на зовнішньому ринках.
APA, Harvard, Vancouver, ISO, and other styles
46

Oshchypok, I. M. "Дослідження зміни енергозатрат при рубанні харчової сировини від кута загострення клина." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 20, no. 85 (March 2, 2018): 123–27. http://dx.doi.org/10.15421/nvlvet8523.

Full text
Abstract:
У статті обґрунтована необхідність проведення комплексу теоретичних і експериментальних досліджень з енерго- і ресурсозбереження в технологічних процесах переробки харчових продуктів, спрямованих на підвищення ефективності подрібнення. При цьому варто зазначити, що шляхи підвищення ефективності технології переробки харчових продуктів вивчені до теперішнього часу явно недостатньо. Механічні властивості в найзагальнішому вигляді визначаються деформаціями, які відбуваються під впливом сили. Деформації полімерів взагалі і тканин м’яса і харчових продуктів зокрема як біополімерів подано у вигляді суми трьох складових: пружної деформації – зворотної в фазі з напруженням, залишкової – повністю незворотної і високоеластичної – зворотної, але не в фазі з напруженням. Пружна деформація зв'язується з зміною міжмолекулярних відстаней, залишкова – з незворотними переміщеннями молекул на відстані більші, ніж молекулярні розміри, і високоеластичні зв’язані з змінами конформації полімерних ланцюжків. В роботі реологічна модель харчових продуктів, як пружнов’язких тіл, представлена як конгломерат, що складається з твердого (пружного) скелета і рідкої речовини, що заповнює проміжки між твердими елементами. Будучи деформованими, тверді елементи скелета харчових продуктів тиснуть на рідке середовище, що оточує їх, примушуючи переміщатися в менш напружені зони. Відповідно до законів гідродинаміки опір середовища при такому переміщенні залежить від швидкості її переміщення. Досліджені питання розрахунку зусиль рубання сировини від глибини вкорінювання клина з різними кутами загострення для харчової промисловості, зокрема м’яса. Проведені експериментальні дослідження з перевірки теоретично виведеної залежності. зусилля розрубування добре збігаються з експериментальними даними і можуть використовуватись для практичного використання.
APA, Harvard, Vancouver, ISO, and other styles
47

Nevlyudov, I., B. Malik, O. Tokareva, and V. Nevlyudova. "ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ОПТОВОЛОКОННИХ КАНАЛІВ ЗВ’ЯЗКУ." Системи управління, навігації та зв’язку. Збірник наукових праць 1, no. 59 (February 26, 2020): 151–54. http://dx.doi.org/10.26906/sunz.2020.1.151.

Full text
Abstract:
Волоконно-оптичні системи є одним з найбільш перспективних напрямків при розробці фізичної основи інформаційного простору. При реалізації оптоволоконних ліній зв'язку часто виникає необхідність узгодження оптоелектронних компонентів з різними поперечними перетинами випромінюючих і приймаючих областей і різними числовими апертурами. Варіантом такого завдання може бути з'єднання одномодового і багатомодового волокон або випромінювачів і фотоприймачів з волокнами різних типів. Одним з методів такого узгодження є створення каскадних волокон, в яких лінзове волокно і кілька ділянок градієнтних волокон інтегровано в одномодове волокно. Предметом дослідження є технології елементів волоконно-оптичних систем передачі. Метою даної роботи є створення компонентів волоконно-оптичних ліній зв’язку, що дозволяють підвищувати ефективність вводу випромінювання від джерела в оптичних світловод, зокрема одномодовий. Для досягнення поставленої мети необхідно вирішення наступних завдань: розглянути фактори, що впливають на втрати енергії при генерації і вводу випромінювання джерела в оптичне волокно, а також розробити і впровадити систему узгоджуючих елементів і дати послідовність дій для ефективного вводу випромінювання джерела в одномодове волокно. Висновки. Запропонована технічна і технологічна реалізація процесу робить можливим вводити більшу потужність в оптоелектронні лінії передачі інформації, що підвищує ефективність вводу випромінювання до 20 дБ. Визначення точності розташування сполучної площини в пристроях узгодження та взаємного розміщення випромінювачів та оптичного волокна дає можливість знизити втрати в з'єднанні до 0,1 дБ, передавати інформацію з більшою надійністю на більші відстані без регенерації і зберегти працездатність волоконно-оптичної системи в умовах впливу механічних, кліматичних і радіаційних факторів
APA, Harvard, Vancouver, ISO, and other styles
48

Pilipenko, Oleg. "РЕСУРСООЩАДНІ ПОЛІМЕРНІ ДЕТАЛІ ПРИВОДІВ МАШИН. ЗДОБУТКИ І ПЕРСПЕКТИВИ." TECHNICAL SCIENCES AND TECHNOLOGIES, no. 3(21) (2020): 37–59. http://dx.doi.org/10.25140/2411-5363-2020-3(21)-37-59.

Full text
Abstract:
Актуальність теми дослідження. Основним джерелом зростання національного доходу повинно стати ресурсоощадження, тобто обсяг продукції повинен вироблятись без приросту матеріальних ресурсів. А це означає, що майже 80 % приросту продукції повинно бути забезпечено за рахунок економії ресурсів. З цією метою необхідно збільшити застосування прогресивних ресурсоощадних технологій, які вимагають менших витрат праці, енергії та сировини. Постановка проблеми. Застосування нових безвідходних і маловідходних екологічно чистих технологій. Аналіз останніх досліджень і публікацій. З аналізу літературних джерел можна зробити висновок, що вищим класом технологічного процесу є малоопераційність, маловідходність, ресурсоощадливість, коли інструмент або середовище одразу діють на всю поверхню або на весь об’єм деталі; тривалість дії інструменту або середовища на деталь у декілька десятків разів скорочується і в стільки ж разів підвищується продуктивність обладнання. Виділення недосліджених частин загальної проблеми. Представити основні деталі приводів машин, виготовлені за сучасними технологіями з полімерних композитів, їх застосування та перспективи розвитку. Мета статті. Розглянути приклади деталей приводів машин, виготовлених із полімерних композитів за сучасними й перспективними технологіями.Виклад основного матеріалу.Представлені полімерні та металополімерні зірочки, ланцюги й зубчасті колеса приводів машин, зокрема інтегрованих конструкцій, особливості їх виробництва та застосування. Показана техніко-економічна ефективність застосування деталей машин і механічних передач із полімерних композитів. Розглянуті перспективи і недоліки тривимірного друку деталей машин із полімерних композитів. Висновки відповідно до статті. Дедалі більш численні приклади практичного застосування деталей машин, виготовлених за сучасними технологіями з полімерних композитів, свідчать про те, що при правильному виборі та визначенні розмірів деталей полімерні композити часто перевершують метали. А зниження споживання металів веде до скорочення видобування рудних копалин і металургійного виробництва, що, у свою чергу, сприяє вирішенню багатьох економічних, енергетичних та екологічних проблем. Застосування полімерних деталей приводів машин дає можливість отримувати переваги конструктивного, технічного, технологічного та економічного характеру.
APA, Harvard, Vancouver, ISO, and other styles
49

Паращук, Д. Л., В. М. Зіркевич, and М. Г. Грубель. "Моделювання динаміки гасника коливань із керованою частотою." Scientific Bulletin of UNFU 31, no. 1 (February 4, 2021): 105–9. http://dx.doi.org/10.36930/40310118.

Full text
Abstract:
Розроблено методику описання амплітудно-частотної характеристики динамічного гасника коливань, який є пружною консольною балкою із системою зосереджених мас. Математичною моделлю коливань такої системи є крайова задача із дискретною правою частиною. Використовуючи властивості системи власних функцій, які описують форми власних коливань вказаного тіла без зосереджених мас, методом регуляризації отримано аналітичні співвідношення, які описують амплітудо-частотну характеристику такого гасника коливань. Встановлено, зокрема, що його частота власних коливань приймає менші значення для: більших величин зосереджених мас, ближчого їх розміщення до кінця пружного тіла та більшої його довжини. Отримані співвідношення можуть бути базовими для налаштування вказаного типу гасників коливань з метою максимального виконання ними функціональних завдань. Ефективність застосування динамічних гасників коливань (ДГК) для гасіння коливань встановленого у транспортному засобі чутливого елемента залежить від багатьох чинників: способів і місця кріплення до підресореної частини транспортного засобу, його розмірів та ваги, матеріалу та його компоновки та ін. Сукупно зазначені чинники впливають на основні характеристики власних і вимушених його коливань, а відтак – на частину енергії, яку отримує ДГК від чутливого елемента, зумовлену рухом транспортного засобу вздовж пересіченої місцевості. Із фізичних міркувань остання значною мірою залежить від співвідношення між частотами власних коливань ДГК, чутливого елемента та підресореної частини. Отримано математичну модель ДГК, яка відповідає консольно закріпленій балці. Способом регуляризації дискретних зовнішніх сил отримано спектр власних частот ДГК, який враховує всі основні його характеристики: пружні властивості балки, її довжину, величину зосередженої маси. З використанням зазначеного вище отримано системи диференціальних рівнянь кутових коливань механічної системи підресореної частини транспортного засобу – чутливий елемент – ДГК. Програмна реалізація її дає змогу: визначити місце закріплення динамічних гасників коливань на турелі; визначити оптимальну масу динамічних гасників коливань; розрахувати оптимальні частоти власних коливань динамічних гасників коливань, закріплених на чутливому елементі, під час дії сили при навантаженні в русі транспортного засобу по пересіченій місцевості. Здійснено дослідження взаємодії турелі з динамічними гасниками коливань та обґрунтовано спосіб їх оптимального налаштування для уникнення явищ, близьких до резонансних.
APA, Harvard, Vancouver, ISO, and other styles
50

Булат, А. Ф., В. І. Єлісєєв, Є. В. Семененко, М. М. Стадничук, and Б. О. Блюсс. "Особливості використання малов’язкого ньютонівського середовища в екструзійному апараті для тривимірного друку." Reports of the National Academy of Sciences of Ukraine, no. 6 (December 23, 2021): 23–31. http://dx.doi.org/10.15407/dopovidi2021.06.023.

Full text
Abstract:
Розглядається задача про рух високов’язкої рідини у вузькому каналі з підігрівом, який моделює процес екструдування полімерів для тривимірного друку. Важливим елементом для цього класу задач є підбір параметрів руху полімерної маси та теплообміну з метою сталого формування виробу. Він полягає в тому, щоб трохи перегріту масу подати до відповідного місця, де вона швидко застигне, в результаті чого буде стійко зберігатися форма друкованого виробу. Як робоче середовище використовуються відповідні полімери, які мають необхідні властивості. У задачі, що розглядається, для розкриття фізичних особливостей процесу використовується ньютонівська рідина, яка за своїми властивостями є близькою до поліетилентерефталату (ПЕТФ), який також застосовується в технології тривимірного друку. Задачу про рух і теплообмін сформульовано в рамках теорії моделі вузького каналу з урахуванням дисипації механічної енергії. Для високов’язких рідин, навіть незважаючи на малі швидкості, урахування дисипативних членів є необхідним, оскільки великі градієнти швидкостей можуть призводити до великої величини дисипації і, відповідно, до значного зростання температури. Ця особливість виявилася надзвичайно важливою саме для такого класу задач. Для більш яскравого подання розв’язку крім однієї рідини, близької до ПЕТФ, розглянуто рух і нагрів рідини, в’язкість якої у 10 разів менша за в’язкість полімеру. Розв’язання було проведено методом смуг, в яких температура і, відповідно, в’язкість, що залежить від неї, приймалися незалежними від поперечної координати. Це дозволило використовувати аналітичну залежність для швидкостей у кожній смузі, що зробило метод напіваналітичним та полегшило розв’язання задачі. Результати, отримані чисельно, вказують на те, що в робочому інтервалі формування (приблизно 0,1 м/с та 0,5 м/с), дисипація дійсно значно впливає на процес. Так, для умовно малов’язкої рідини перегрів її в кінці апарату виявляється істотним, але може бути знятий за допомогою додаткового обдування. Для високов’язкої рідини це зробити практично неможливо, тобто така рідина не може використовуватися в апараті з розглянутими геометричними розмірами. Отже, математичне моделювання досліджуваного процесу дає можливість проводити розрахунки параметрів течії та визначати необхідні умови і, відповідно, властивості рідини для стійкого тривимірного друкування.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography