Academic literature on the topic 'Металографічне дослідження'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Металографічне дослідження.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Металографічне дослідження"

1

Zhuravel, I. M., and V. M. Maksymovych. "Кількісний аналіз орієнтації та видовженості зерен на металографічних зображеннях за допомогою перетворень Хафа." Scientific Bulletin of UNFU 28, no. 5 (May 31, 2018): 135–39. http://dx.doi.org/10.15421/40280528.

Full text
Abstract:
Однією з форм представлення результатів неруйнівного контролю різноманітних металоконструкцій є металографічні зображення. Це зображення мікроструктури металу, які формуються за допомогою мікроскопа і фотофіксувального пристрою. З погляду матеріалознавства, мікроструктура відображає внутрішню будову металу та складається із різноманітних об'єктів – зерен, меж зерен, карбідів, різноманітних включень тощо, які характеризуються розміром, формою, орієнтацією. Мікроструктура матеріалу є віддзеркаленням його фізико-механічних характеристик. Отже, актуальною є задача аналізу мікроструктури матеріалів, яка надасть нові можливості щодо кількісного оцінювання їх фізико-механічних властивостей. Візуальний аналіз не забезпечує потрібної швидкодії та точності опрацювання, тому для вирішення задачі аналізу мікроструктури найдоцільніше використовувати методи оброблення цифрових зображень. Залежно від поставленої мети, задача аналізу мікроструктури полягатиме у пошуку та обчисленні метричних розмірів складників мікроструктури, оцінюванні їх форми, формуванні певної статистики тощо. У цій роботі розроблено метод кількісного аналізу орієнтації та видовженості зерен на металографічних зображеннях за допомогою перетворення Хафа. Результати цього аналізу є основою для досліджень залишкових напружень та пластичних деформацій металів.
APA, Harvard, Vancouver, ISO, and other styles
2

Opryshko, Liudmyla, Tetiana Holovniak, Рavlo Herasymenko, and Iryna Poltava. "ЖАРОМІЦНІСТЬ МЕТАЛУ КОТЕЛЬНИХ ТРУБ З БЕЗПЕРЕВНОЛИТОЇ ЗАГОТОВКИ ВИРОБНИЦТВА ТОВ «МЗ «ДНІПРОСТАЛЬ»." Metallurgicheskaya i gornorudnaya promyshlennost, no. 5-6 (December 27, 2019): 67–75. http://dx.doi.org/10.34185/0543-5749.2019-5-6-67-75.

Full text
Abstract:
Мета. Дослідження спроможності нової технології виробництва (засобом гарячої прокатки на ТПА 30-102 ТОВ «ІНТЕРПАЙП НІКО ТЬЮБ» безпосередньо із недеформованої безперервнолитої заготовки виробництва ТОВ «МЗ «ДНІПРОСТАЛЬ») забезпечувати отримання котельних труб високої експлуатаційної надійності широкого сортаменту зі сталі 20.Методика. Дослідження макроструктури (наявність залишків литої структури) та мікроструктури металу труб, випробування на тривалу міцність, фрактографічні та металографічні дослідження характеру руйнування зразків труб після жароміцних випробувань. Результати. Досліджені характеристики жароміцності (тривала міцність і тривала пластичність) металу котельних труб у різних станах (після гарячої прокатки і після нормалізації з окремого нагріву), які були виготовлені з різними коефіцієнтами витягу на трубопрокатному агрегаті з безперервним станом (ТПА 30-102) ТОВ «ІНТЕРПАЙП НІКО ТЬЮБ» із недеформованої безперервнолитої заготовки сталі 20 виробництва ТОВ «МЗ «ДНІПРОСТАЛЬ». Досліджені процеси, які відбуваються в структурі металу цих труб за високої температури впродовж тривалого навантаження, та характер руйнування зразків труб при жароміцних випробуваннях. Встановлено вплив структурних характеристик та технологічних факторів виробництва трубної заготовки і труб на рівень жароміцності і поведінку металу дослідних труб в умовах тривалого навантаження за високих температур. Показана необхідність вдосконалення технології виробництва котельної безперервнолитої заготовки на ТОВ «МЗ «ДНІПРОСТАЛЬ» з метою отримання необхідної макрокристалічної будови (з розвиненою зоною дрібних рівноосних розорієнтованих кристалів та пригніченою зоною стовпчастих кристалів) і нормування цього показника металу котельної недеформованої безперервнолитої заготовки в ТУ У 24.1-05757883-216 «Заготовка сталева безперервнолита кругла для виготовлення котельних труб». Встановлена можливість постачання на об'єкти енергетики України котельних труб зі сталі 20, що виготовлені із заготовки ТОВ «МЗ «ДНІПРОСТАЛЬ» з коефіцієнтом витягу не менш ніж 17,0 на ТПА 30-102, без обов’язкової, згідно вимогам нормативної документації для таких труб, нормалізації з окремого нагріву.Наукова новизна. Вперше для котельних труб, що виготовлені з різними коефіцієнтами витягу на ТПА 30-102 ТОВ «ІНТЕРПАЙП НІКО ТЬЮБ» із недеформованої безперервнолитої заготовки сталі 20 виробництва ТОВ «МЗ «ДНІПРОСТАЛЬ», визначена границя тривалої міцності за температурою експлуатації 450 °С за 100 тис. годин, що нормована ТУ 14-3-460:2009/ТУ У 27.2-05757883-207, і є основною характеристикою за розрахунками на міцність енергетичного обладнання. Досліджена поведінка металу цих труб в різних станах (після гарячої прокатки та нормалізації з окремого нагріву) в умовах тривалого навантаження за високої температури. Практична цінність. Отримані результати досліджень слугуватимуть основою для удосконалення технології виробництва котельних недеформованих безперервнолитих заготовок на ТОВ «МЗ «ДНІПРОСТАЛЬ» і виготовлених із них труб на ТОВ «ІНТЕРПАЙП НІКО ТЬЮБ», що забезпечить отримання за новою технологією котельні труби високої експлуатаційної надійності. Використання заготовки власного виробництва дозволить корпорації ІНТЕРПАЙП УКРАЇНА знизити собівартість котельних труб та бути конкурентоспроможною трубною компанією серед виробників котельних труб, в тому числі закордонних, за ТУ 14-3-460/ТУ У 27.2-05757883-207.
APA, Harvard, Vancouver, ISO, and other styles
3

Донець, С. Є., В. В. Литвиненко, Ю. Ф. Лонін, and А. Г. Пономарьов. "ЕЛЕКТРОННО-ПУЧКОВИЙ МЕТОД ФОРМУВАННЯ З’ЄДНАННЯ АЛЮМІНІЙ-МІДЬ." Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes, no. 2 (44) (May 5, 2022): 3–7. http://dx.doi.org/10.32845/msnau.2021.2.1.

Full text
Abstract:
Запропоновано спосіб одержання з’єднання алюміній мідь, який полягає у одночасному опроміненні пластин алюмінію та міді імпульсом високопотужного електронного пучка. В результаті розпорошений пучком матеріал алюмінію осаджується на поверхню мідної підкладки, яка також активується електронним пучком. Покриття має ділянки більшого та меншого проникнення алюмінію в мідь. Зроблена чисельна оцінка розподілу температури та поля зміщень матеріалу мідної підкладинки. Проведені металографічні дослідження, енергодисперсійний аналіз та фрактографічні дослідження. Зроблено висновок про доцільність розвинення такого підходу для практичних застосувань.
APA, Harvard, Vancouver, ISO, and other styles
4

О.П. Гапонова. "АНАЛІЗ ЯКОСТІ КОМПЛЕКСНИХ СУЛЬФОЦЕМЕНТОВАНИХ ПОКРИТТІВ, ОТРИМАНИХ МЕТОДОМ ЕЛЕКТРОІСКРОВОГО ЛЕГУВАННЯ." Наукові нотатки, no. 67 (January 31, 2020): 24–28. http://dx.doi.org/10.36910/6775.24153966.2019.67.4.

Full text
Abstract:
Проведений аналіз якості поверхневих шарів після сульфоцементації методом електроіскрового легування. Металографічні дослідження показали, що характерний для електроіскрових покриттів білий шар не виражений. Поверхневий шар складається з дифузійної зони, товщина якої збільшується зі зростанням енергії розряду, і основного металу. Дюрометричні дослідження сульфоцементованих покриттів свідчать про те, що в поверхневому шарі утворюються дві зони: зона зниженої мікротвердості та зміцнений шар. За даними мікрорентгеноспектрального аналізу, приповерхневий шар насичений сіркою. Сірка накопичується в поверхні металу на глибині до 30 мкм, її концентрація на цій відстані становить близько 0,4%. Зі збільшенням енергії розряду твердість, глибина шару зниженої мікротвердості і зміцненого шару, а також шорсткість поверхні збільшуються.
APA, Harvard, Vancouver, ISO, and other styles
5

Golubets, V. M., I. M. Honchar, and Yu S. Shpulyar. "ПІДВИЩЕННЯ СТІЙКОСТІ МЕТАЛО- І ДЕРЕВОРІЗАЛЬНОГО ІНСТРУМЕНТУ НАНЕСЕННЯМ ЕЛЕКТРОІСКРОВИХ ПОКРИТЬ." Scientific Bulletin of UNFU 28, no. 2 (March 29, 2018): 111–14. http://dx.doi.org/10.15421/40280220.

Full text
Abstract:
Проаналізовано характеристики матеріалів, що використовують для виготовлення різального інструменту. Встановлено, що важливою характеристикою для інструментальних сталей є їх прогартовуваність. Але якщо робоча температура в зоні контакту інструмент-деталь перевищує температуру відпуску, то твердість інструменту понижується через розпад мартенситу та укрупнення частинок карбідної фази, і інструмент буде затуплюватись. Тому важливою прикладною задачею підвищення стійкості різального інструменту є поверхневе зміцнення леза. Проведено дослідження щодо поверхневого зміцнення метало- і дереворізального інструменту з використанням нових комбінованих електродів для нанесення елeктроіскрового покриття (ЕІП) методом електроіскрового легування (ЕІЛ). У розроблених комбінованих електродах використано відомі тверді сплави ТК, ВК, порошковий дріт ПД 80Х20Р3Т з додаванням до них компоненту "К". Виконано експериментальні дослідження процесу свердління зразків із сталі 40Х, загартованої до твердості HRC 38–40. За інструмент взято свердла марки HSS (аналог швидкорізальна легована сталь Р6М5) швейцарської фірми IRWIN. Свердління здійснено цими свердлами незміцненими, зміцненими твердими сплавами ТК і ВК, порошковим дротом ПД 80Х20Р3Т, а також порошковим дротом ПД 80Х20Р3Т з додаванням до них компоненту "К". Встановлено, що стійкість свердел, зміцнених порошковим дротом ПД80Х20Р3Т+"К", порівняно зі серійним незміцненим збільшилась майже у 7 разів. Проведено також поверхневе зміцнення ЕІЛ зубців стрічкової пилки із сталі D6A (аналог 50ХГФМА) для пиляння деревинних матеріалів, з використанням електроду Т15К6+"К". Порівняльні дослідження проведено під час розпилювання деревини ясеня. За результатами досліджень встановлено, що ресурс роботи стрічкової пилки, зміцненої ЕІЛ, збільшився у 2 рази порівняно з незміцненими пилками. На підставі отриманих результатів можна стверджувати, що внаслідок зміни структури поверхневого шару металу підвищується його твердість, а завдяки високій іонізації міжелектродного простору – виникають сприятливі умови для перебігу реакцій, які зумовлюють зміну його хімічного складу. Однак для пояснення механізму процесу зміцнення наведені твердження потребують детальних металографічних досліджень.
APA, Harvard, Vancouver, ISO, and other styles
6

Руденький, Сергій, Микола Карцев, Олександр Корнєєв, Олексій Кунченко, Юрій Кунченко, Володимир Маринін, Володимир Коваленко, et al. "ПРОЦЕС ВАКУУМНОГО АКТИВОВАНОГО ДИФУЗІЙНОГО ХРОМУВАННЯ СТАЛЕЙ 15Х12ВНМФ і 20Х1М1Ф1ТР." Science and Innovation 18, no. 2 (April 30, 2022): 66–72. http://dx.doi.org/10.15407/scine18.02.066.

Full text
Abstract:
Вступ. Сталі 15Х12ВНМФ і 20Х1М1Ф1ТР використовують в машинобудуванні як матеріал деталей турбін, для підвищення робочих температур яких необхідно поліпшити жаростійкість їхньої поверхні.Проблематика. Підвищення корозійної стійкості поверхні сталей можливо через нанесення захисного шару. Однозначно сказати, яке покриття й метод його формування на конкретній сталі забезпечить достатнє підвищення жаростійкості поверхні цього матеріалу, практично неможливо. Раніше сталі 15Х12ВНМФ і 20Х1М1Ф1ТР не захищали методом вакуумного хромування в парах хлористого натрію.Мета. Дослідити процес вакуумного активованого хромування сталей 15Х12ВНМФ і 20Х1М1Ф1ТР і його вплив на характеристики зразків з них.Матеріали й методи. Зразки для досліджень виготовляли зі сталей 15Х12ВНМФ і 20Х1М1Ф1ТР. Випробування на кавітаційне й абразивне зношування провадили на стендах, а на жаростійкість — в муфельній печі на повітрі. Для досліджень поверхні зразків використовували металографічні методи й рентгенофлуоресцентний аналіз (РФА).Результати. Зразки зі сталей15Х12ВНМФ і 20Х1М1Ф1ТР хромували методом вакуумного насичення в парах хлористого натрію при температурах 1070 і 1100 °С та тривалості процесу 4 і 10 год. Встановлено, що після хромування при кавітаційному і абразивному діянні зразки із цих сталей за зносостійкістю дещо поступаються вихідним зразкам. З’ясовано, що при хромуванні зразків на їхній поверхні утворюється дифузійний шар товщиною 50—130 мкм залежно від умов обробки. Вміст хрому в поверхневому шарі досліджуваних сталей змінюється, відповідно, в межах 56—82 ваг. % і 81—93 ваг. %, залежно від параметрів процесу насичення. Проведено порівняльні випробування цих зразків на жаростійкість на повітрі при температурі 900 °С. Встановлено, що жаростійкість хромованих зразків значно перевершує стійкість вихідних.Висновки. Дослідження процесу вакуумного активованого хромування зразків зі сталей 15Х12ВНМФ і 20Х1М1Ф1ТР показали, що така обробка значно підвищує жаростійкість цих матеріалів порівняно з вихідними.
APA, Harvard, Vancouver, ISO, and other styles
7

Гапонова, О. "Дослідження якості сульфоалітованих покриттів на стальних поверхнях, отриманих методом електроіскрового легування." Науковий журнал «Інженерія природокористування», no. 3(17) (December 28, 2020): 86–93. http://dx.doi.org/10.37700/enm.2020.3(17).86-93.

Full text
Abstract:
Запропонований спосіб сульфоалітування робочих поверхонь екологічно безпечним методом електроіскрового легування, що полягає у нанесенні сірчаної мазі на оброблювану поверхню і подальшого ЕІЛ алюмінієвим електродом. В якості матеріалу підкладки використовували сталь 20 і 40. Після оброблення визначали шорсткість поверхневого шару. Аналіз профілів поверхонь зразків після сульфоалітування методом ЕІЛ і параметрів шорсткості досліджуваних поверхонь показав, що зі збільшенням енергії розряду, а також вмісту вуглецю в сталі параметри Ra, Rz, Rmax зростають. Проведений микроструктурній, дюрометричний та локальний енергодисперсійний аналізи. Металографічний та дюрометричний аналізи отриманих покриттів показали, що на мікроструктурах можна виділити зони: приповерхневий, не суцільний пухкий шар товщиною 20-40 мкм, зміцнений шар (20-80 мкм), дифузійна зона та основний метал з ферито-перлітною структурою. При заміні матеріалу підкладки зі сталі 20 на сталь 40 збільшується як твердість верхнього шару (1670 і 2240 МПа при енергіях розряду 0,13 і 3,4 Дж відповідно), так і зміцненого шару (5147 і 10380 МПа при енергіях розряду 0,13 і 3,4 Дж відповідно). Зі зростанням енергії розряду збільшуються параметри покриття: товщина, мікротвердість верхнього і зміцненого шару, а також їх суцільність. Локальний енергодисперсійний аналіз показав, що найбільша кількість сірки знаходиться у поверхневому шарі, що характеризує шар зниженої мікротвердості і розподіляється по глибині до 15 мкм. Дифузійна зона алюмінію складає 30-80 мкм, залежно від енергетичних параметрів процесу ЕІЛ. Найбільший вміст алюмінію характерний для ділянок покриття, що знаходяться на відстані 7-15 мкм від поверхні. Приповерхневий пухкий шар збагачений сіркою, зміцнений – алюмінієм.
APA, Harvard, Vancouver, ISO, and other styles
8

Гапонова, О. "Дослідження якості сульфоалітованих покриттів на стальних поверхнях, отриманих методом електроіскрового легування." Науковий журнал «Інженерія природокористування», no. 3(17) (December 28, 2020): 86–93. http://dx.doi.org/10.37700/enm.2020.3(17).86-93.

Full text
Abstract:
Запропонований спосіб сульфоалітування робочих поверхонь екологічно безпечним методом електроіскрового легування, що полягає у нанесенні сірчаної мазі на оброблювану поверхню і подальшого ЕІЛ алюмінієвим електродом. В якості матеріалу підкладки використовували сталь 20 і 40. Після оброблення визначали шорсткість поверхневого шару. Аналіз профілів поверхонь зразків після сульфоалітування методом ЕІЛ і параметрів шорсткості досліджуваних поверхонь показав, що зі збільшенням енергії розряду, а також вмісту вуглецю в сталі параметри Ra, Rz, Rmax зростають. Проведений микроструктурній, дюрометричний та локальний енергодисперсійний аналізи. Металографічний та дюрометричний аналізи отриманих покриттів показали, що на мікроструктурах можна виділити зони: приповерхневий, не суцільний пухкий шар товщиною 20-40 мкм, зміцнений шар (20-80 мкм), дифузійна зона та основний метал з ферито-перлітною структурою. При заміні матеріалу підкладки зі сталі 20 на сталь 40 збільшується як твердість верхнього шару (1670 і 2240 МПа при енергіях розряду 0,13 і 3,4 Дж відповідно), так і зміцненого шару (5147 і 10380 МПа при енергіях розряду 0,13 і 3,4 Дж відповідно). Зі зростанням енергії розряду збільшуються параметри покриття: товщина, мікротвердість верхнього і зміцненого шару, а також їх суцільність. Локальний енергодисперсійний аналіз показав, що найбільша кількість сірки знаходиться у поверхневому шарі, що характеризує шар зниженої мікротвердості і розподіляється по глибині до 15 мкм. Дифузійна зона алюмінію складає 30-80 мкм, залежно від енергетичних параметрів процесу ЕІЛ. Найбільший вміст алюмінію характерний для ділянок покриття, що знаходяться на відстані 7-15 мкм від поверхні. Приповерхневий пухкий шар збагачений сіркою, зміцнений – алюмінієм.
APA, Harvard, Vancouver, ISO, and other styles
9

Хома, Мирослав, Олексій Нарівський, Василь Винар, Надія Рацька, Роман Мардаревич, Сергій Корній, Христина Василів, and Мар'ян Чучман. "РОЗРОБЛЕННЯ НОВИХ КОНСТРУКТИВНИХ ЕЛЕМЕНТІВ ГАЗООХОЛОДЖУВАЧІВ АТОМНИХ І ТЕПЛОВИХ ЕЛЕКТРОСТАНЦІЙ З ПІДВИЩЕНОЮ ОПІРНІСТЮ КОРОЗІЙНО-МЕХАНІЧНОМУ РУЙНУВАННЮ." Science and Innovation 17, no. 6 (December 18, 2021): 50–60. http://dx.doi.org/10.15407/scine17.06.050.

Full text
Abstract:
Вступ. Необхідність підвищення експлуатаційних характеристик газоохолоджувачів, які контактують з вибухонебезпечним середовищем, виникає в енергетичній промисловості для забезпечення надійної роботи турбогенераторів.Проблематика. Під час експлуатації теплообмінного обладнання важливими проблемами, що вимагають постійного вдосконалення устаткування, є локальна корозія, наводнювання та ін., зокрема, стикових з'єднань трубок з трубними дошками, яке характеризується зародженням і розвитком тріщин під впливом одночасної дії механічних напружень та корозивного середовища. Виникнення тріщин сприяє розгерметизації цих з'єднань, що призводить доаварійної зупинки турбогенератора.Мета. Розробка нової конструкції ущільнювальних з'єднань теплообмінних трубок та трубної дошки газоохолоджувачів для атомних та теплових електростанцій з підвищеною корозійною тривкістю, опірністю корозійно-механічному та водневому руйнуванню.Матеріали й методи. Випробовували зразки із сталі 09Г2С, міді М2, сталі 09Г2С з плакованим шаром міді М2, мельхіору МНЖМЦ 30-1-1, латуні Л68 методом вакуумної екстракції водню за підвищених температур, корозійновтомним, металографічним, рентгеноспектральним та ін.Результати. Розроблено новий конструктивний елемент газоохолоджувачів із підвищеними характеристиками, основою якого є зварно-вальцьоване з’єднання мідної трубки із плакованою міддю трубною дошкою, що не викликає деформації конструкції та щілиноутворення. Дослідження впливу різних режимів розвальцювання таких з'єднань наїх опірність руйнуванню за одночасного впливу циклічних навантажень і середовища показали, що із збільшенням ступеня розвальцювання мідних трубок Ø19 × 1,5 і Ø19 × 1 мм зростає період зародження тріщин і довговічність комбінованих з’єднань підвищується приблизно у ~1,5 рази.Висновки. Розроблений новий конструктивний елемент забезпечує зниження ймовірності корозійно-механічного руйнування деталей теплообмінного обладнання та сприяє подовженню терміну його безаварійної експлуатації.
APA, Harvard, Vancouver, ISO, and other styles
10

Бабаченко, Олександр, Ганна Кононенко, and Ростислав Подольський. "РОЗРОБКА РОЗРАХУНКОВОЇ МОДЕЛІ ЗМІНИ ТЕМПЕРАТУРИ РЕЙКОВОЇ СТАЛІ К76Ф ДЛЯ ВИЗНАЧЕННЯ ПАРАМЕТРІВ ТЕРМІЧНОЇ ОБРОБКИ." Science and Innovation 17, no. 4 (August 9, 2021): 25–32. http://dx.doi.org/10.15407/scine17.04.025.

Full text
Abstract:
Вступ. Умови експлуатації залізниць України, перспектива входження їх до міжнародної системи транспортних коридорів, вимагають розвитку та модернізації залізничної колії, зокрема й рейок.Проблематика. З огляду забезпечення основної експлуатаційної характеристики рейок — зносостійкості, нормативно-технічна документація регламентує твердість. Найпрогресивніший Європейський стандарт EN 13674-1-2011 визначає рівень твердості головки рейки на глибині 20 мм не менше 321 НВ, а ДСТУ 4344:2004 — мінімум 321 НВ наглибині 11. При цьому, згідно з EN 13674-1-2011, на поверхні рейки твердість має бути не менше 405 НВ без утворення структур гарту.Мета. Визначити можливості досягнення твердості без структур гартування в головці рейки зі сталі 0,80 % C, 0,25 % Si, 0,97 % Mn, 0,055 % V (далі К76Ф) рівня світових вимог на підставі експерименту на прожарюваність (за Джоміні, ГОСТ5657) та розрахунків за допомогою моделі; визначення раціональної швидкості охолодження сталі К76Ф при термічній обробці.Матеріали й методи. Матеріал: рейкова сталь К76Ф з 0,80 % C, 0,25 % Si, 0,97 % Mn, 0,055 % V. Методики: металографічні дослідження, вимірювання твердості, визначення прожарюваності методом торцевого загартування, моделювання за допомогою математичного розрахунку в середовищі програмного комплексу термообробки QForm.Результати. Змодельовано зміну температури, формування структури та твердості по перерізу зразка для випробувань на прожарюваність за ГОСТ5657 зі сталі К76Ф. Експериментально встановлено зміну твердості та мікроструктури залежно від відстані до поверхні тепловідводу, визначено швидкість охолодження у точках, твердість у яких відповідає вимогам EN 13674-1-2011 до рейок.Висновки. Аналіз адекватності моделі показав її високу точність та збіжність експериментальних результатів з розрахунковими. Встановлено можливість досягнення вимог EN 13674-1-2011 до рівня твердості 405 НВ без утворення голчастих структур на сталі, яка відповідає за хімічним складом К76Ф згідно ДСТУ 4344: 2004.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Металографічне дослідження"

1

Колупаєв, Ігор Миколайович. "Вивчення динаміки зростання острівців графена на мідній підкладці." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/45374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Князєв, Сергій Анатолійович. "Металографічні дослідження археологічних об’єктів металургійного і ковальського генезису." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography