Journal articles on the topic 'Мережеві машини'

To see the other types of publications on this topic, follow the link: Мережеві машини.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 35 journal articles for your research on the topic 'Мережеві машини.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Шевченко, І. С., Д. І. Морозов, and Г. С. Бєлоха. "«Пряме» векторне управління асинхронною машиною подвійного живлення." ВІСНИК СХІДНОУКРАЇНСЬКОГО НАЦІОНАЛЬНОГО УНІВЕРСИТЕТУ імені Володимира Даля, no. 8(264) (January 12, 2021): 62–65. http://dx.doi.org/10.33216/1998-7927-2020-264-8-62-65.

Full text
Abstract:
Побудова регульованого електропривода на базі асинхронної машини подвійного живлення є досить актуальною задачею, оскільки дозволяє управляти великими потоками електроенергії при високих енергетичних показниках. У таких відомих системах електропривода є досить складна система управління ними, оскільки передбачає використовування перетворювачів координат (прямі-зворотні) та наявність нелінійних зв’язків між каналами управління, це погіршує надійність таких систем. У роботі пропонується«пряме» векторне керування асинхронною машиною подвійного живлення без використання перетворювачів координат. Струми ротора запропоновано примусово формувати повністю керованим перетворювачем частоти, щоб зробити його активним та синфазним фазній е.р.с ротора. Перетворювач включається у роторне коло. Для схемної реалізації у якості перетворювачаобраний перетворювач частоти з ланкою постійної напруги з релейним керуванням. Вхідний випрямляч якого є активний випрямляч. Крім того перетворювач забезпечує електромагнітну сумісність з мережею живлення, та задовольняє вимогам, які зазначені в стандартах, на якість струму мережі. Представлена модель асинхронної машини подвійного живлення з традиційною системою керуванням з використанням перетворювачів координат «прямі-зворотні».Проведено порівняння математичної моделі при традиційному векторному керуванні та моделі з «прямим» векторним керуванням за допомогою Matlab. Отримані осцилограми роботи з запропонованим керуванням, вони демонструють наростання швидкості в машині подвійного живлення, при цьому струми з мережі синусоїдальні та співпадають за фазою зі своїми напругами, а пуск електропривода супроводжується віддачою енергії ротора через перетворювач до мережі.Результати показують, що електропривод формує раціональну динаміку без перерегулювання координат.
APA, Harvard, Vancouver, ISO, and other styles
2

Мельник, В., К. Мельник, O. Кузьмич, Н. Багнюк, and O. Кравець. "Дослідження покращення внутрішніх та зовнішніх параметрів швидкодії зв’язку на кластері комунікуючих віртуальних машин." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 39 (May 21, 2020): 162–74. http://dx.doi.org/10.36910/6775-2524-0560-2020-39-28.

Full text
Abstract:
На кластері віртуальних машин для високопродуктивної обробки даних, який є бінарно сумісним для додатків зі стандартним сокетним інтерфейсом, виявлено покращення внутрішніх та зовнішніх параметрів мережевої швидкодії за допомогою введеного в систему механізму спрощеної комунікації, реалізованого на базі Xen 3.2 та ядра Linux, який демонструє взаємодію віртуальних машин, подібно до організації зв’язку на основі UNIX DOMAIN сокетів. Встановлено, що пропускна здатність між комунікуючими машинами з використанням спрощеного зв’язку зростає приблизно на 2,11 %, ніж для традиційного TCP/IP протоколу, а швидкодія передачі повідомлень – на 7,8–7,9 %.
APA, Harvard, Vancouver, ISO, and other styles
3

Ванькевич, Дмитро Євгенійович. "Навчальний полігон на базі дистрибутиву Proxmox VE для проведення лабораторних робіт з курсу «Системне адміністрування ОС Linux»." Theory and methods of e-learning 4 (February 13, 2014): 25–29. http://dx.doi.org/10.55056/e-learn.v4i1.365.

Full text
Abstract:
Виконання лабораторних робіт в рамках курсу «Системне адміністрування ОС Linux» вимагає наявності більше ніж одного комп’ютера на одного студента. Наприклад, проведення лабораторних робіт із встановлення та налагодження маршрутизатора передбачає, як мінімум, наявності двох комп’ютерів: маршрутизатора і робочої станції.Одним з варіантів є використання у якості маршрутизаторів старих комп’ютерів, звісно, за їх наявності. Але такі комп’ютери мають вже відпрацьований ресурс і, як наслідок, невелику надійність. Тому в ході виконання лабораторної роботи важко визначити причину, через яку виникла помилка – внаслідок неправильного конфігурування програмного забезпечення чи через апаратну несправність. До того ж апаратне забезпечення застарілої ПЕОМ може не відповідати вимогам сучасного програмного забезпечення.Також можливий варіант, коли студенти об’єднуються у групи для вивільнення необхідної кількості комп’ютерів. Лабораторні роботи з встановлення маршрутизатора передбачають наявність в ПЕОМ двох мережевих контролерів, для чого потрібно встановити в системному блоці ще один мережевий контролер, а також замінити жорсткий диск з робочою операційною системою на інший. На жаль, така можливість є не завжди через відсутність додаткових жорстких дисків та мережевих контролерів або через умови гарантійного обслуговування комп’ютерної техніки, які не дозволяють відкривати опломбовані системні блоки.Оптимальним варіантом, на думку автора, є використання технологій віртуалізації [1; 2]. В якості системи віртуалізації було використано дистрибутив з вільним вихідним кодом Proxmox Virtual Environment (Proxmox VE), який дозволяє використовувати у якості гіпервізорів KVM (Kernel-based Virtual Machine) та OpenVZ [3].Для виконання лабораторних робіт був створений полігон, схема якого зображена на рис. 1.Для кожної групи студентів були створені користувачі в системі Proxmox VE (grp00..grp5). Кожному з користувачів було надано доступ до двох віртуальних машин і до сховища, де зберігаються ISO-образи з операційними системами. Причому, з міркувань безпеки, доступ до параметрів конфігурації віртуальних машин був примусово обмежений. Користувач мав право змінювати тільки один параметр – назву файла з образом операційної системи. На рис. 2 зображено інтерфейс керування віртуальними машинами, які доступні користувачу grp00. Комп’ютерна лабораторія під’єднана до загальноуніверситетської мережі через маршрутизатор комп’ютерної лабораторії. Це дає змогу уникнути небажаних наслідків у разі неправильного конфігурування ПЕОМ в лабораторії. Мережа лабораторії розділена на підмережі (рис. 1). У підмережу 192.168.30.X увімкнені фізичні ПЕОМ, маршрутизатор та фізичний комутатор а також сервер віртуальних машин з системою віртуалізації Proxmox VE. На сервері віртуальних машин створено декілька віртуальних підмереж з віртуальними маршрутизаторами та комутаторами. Підмережа 192.168.34.X створена з метою унеможливити втрату непрацездатності комп’ютерної лабораторії через некоректне конфігурування студентами віртуальних маршрутизаторів grp00 – grp05. Підмережі 192.168.1.X – 192.168.6.X створені, відповідно, для користувачів grp00 – grp05. Інтерфейс керування для створення віртуальних комутаторів зображено на рис. 3, де vmbr0 – віртуальний комутатор підмережі 192.168.30.X, за допомогою якого здійснюється під’єднання до ПЕОМ та маршрутизатора і комутатора навчальної лабораторії, vmbr34 – віртуальний комутатор підмережі 192.168.34.X, vmbr9000 – vmbr9005 – віртуальні комутатори підмереж 192.168.1.X – 192.168.6.X.Студенти з ПЕОМ навчальної лабораторії за допомогою Інтернет-переглядача мають доступ до екранів своїх віртуальних машин (рис. 4). У разі втрати працездатності підмереж 192.168.30.X та 192.168.1.X – 192.168.6.X доступ до екранів віртуальних машин збережеться завдяки тому, що ПЕОМ навчальної лабораторії та сервер віртуальних машин знаходяться в підмережі 192.168.30.X, доступ до якої студентам заборонено. Наведену схему навчального полігону можна використовувати у комп’ютерних класах загального використання, тому що вона не потребує зміни критичних параметрів операційної системи на ПЕОМ класу і зводить ризик втрати працездатності комп’ютерного класу до мінімуму.У разі виникнення потреби збільшення обчислювальної потужності можна використати декілька серверів віртуальних машин, об’єднавши їх у кластер [4].
APA, Harvard, Vancouver, ISO, and other styles
4

Жигайло, О. М., В. В. Нечепуренко, and В. В. Добровольський. "Автоматизації замісу тіста з використанням нейронної мережі." Automation of technological and business processes 11, no. 4 (February 13, 2020): 41–48. http://dx.doi.org/10.15673/atbp.v11i4.1598.

Full text
Abstract:
На сучасних хлібопекарських підприємствах продовжує існувати проблема отримання якісного хліба. Вона виникає внаслідок постійної зміни властивостей як основної сировини (борошна) так і допоміжних рецептурних компонентів (дріжджів, концентрату молочно-кислої закваски, цукрових та соляних розчинів). Тому технологи-хлібопекарі, з метою підвищення якості результатів процесу замісу тіста, використовують різноманітні програми управління тістомісильними машинами. Вибір цих програм не обходиться без втручання “людського фактору”, а це може негативно вплинути на кінцевий результат. Якщо реалізовувати більш ефективне реагування на ці зміни під час замісу, то можна добитися підвищення рівня стабільності якісних показників готового тіста на всіх подальших етапах його обробки. Для пошуку можливостей вирішення цієї задачі пропонується проведення аналізу кластерної структури партій борошна, що відрізняються по показникам якості (число падіння, кількість клейковини та якість клейковини), а також дослідження результатів замісу тіста при різних програмах та з різними партіями борошна. Було підтверджено вплив хлібопекарних властивостей борошна на взаємозв’язок тривалості та інтенсивності замісу з якістю тіста, що виготовлюється. Це обумовило доцільність формування програм для тістомісильної машини на основі результатів кластерного аналізу, який надає можливість отримати додаткову, корисну інформацію для автоматизації процесу управління. Тому запропонована реалізація алгоритму автоматичного вибору програми замісу тіста для тістомісильної машини та її корегування під час замісу за допомогою штучних нейронних мереж. Корегування залежить від реологічних властивостей тіста на які, в першу чергу, впливає сила борошна. Саме вона забезпечує процес його формування з необхідними структурно-механічними властивостями (пружність, пластичність, еластичність, в’язкість), які поєднуються і постійно змінюються в ході технологічного процесу. Оцінка цих властивостей тіста, має більш інтегральні ознаки, більш об’єктивна. Для цього можуть використовуватися два варіанти: 1) експериментальний заміс на фаринографі з реєстрацією фаринограми в електронному вигляді; 2) вимірювання та реєстрація активної потужності споживаної електроприводом місильного органу під час замісу тіста. Далі, по зареєстрованим даним, проводиться автоматичний розрахунок необхідних показників властивостей тіста і здійснюється корегування параметрів програми замісу.
APA, Harvard, Vancouver, ISO, and other styles
5

Сіваковська, O., A. Ящук, І. Андрущак, Н. Ліщина, and В. Ліщина. "Моніторинг та дослідження мережі на базі Linux-машин." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 42 (April 1, 2021): 198–204. http://dx.doi.org/10.36910/6775-2524-0560-2021-42-29.

Full text
Abstract:
Здійснено аналіз проблематики моніторингу мереж. Обґрунтовано переваги та недоліки наявних UNIX-подібних операційних систем. Означено етапи створення мережі на базі Linux-машин. Розглянуто основні компоненти для побудови системи моніторингу та мережі на базі Linux-машин
APA, Harvard, Vancouver, ISO, and other styles
6

Козак, Є. Б. "ЩОДО ФОРМУВАННЯ МАСИВУ ДАНИХ НА БАЗІ НЕЙРОННОЇ МЕРЕЖІ У СФЕРІ ІНТЕРНЕТУ РЕЧЕЙ." Таврійський науковий вісник. Серія: Технічні науки, no. 4 (November 26, 2021): 14–23. http://dx.doi.org/10.32851/tnv-tech.2021.4.2.

Full text
Abstract:
У статті досліджено принципи формування масиву даних на базі нейронної мережі у сфері Інтернету речей. Зазначається, що Інтернет речей генерує величезну кількість неструктурованих даних, і аналітика великих даних є ключовим аспектом. Концепція Інтернет речей являє особливу цінність для розвитку бізнесу завдяки даним, які можуть бути отримані від підключених елементів. Сформовано дві теореми, які сприяють роз- криттю принципу обміну знаннями, які можна взяти із взаємодії людина–комп’ютер. Наголошено, що присвоєння імені суб’єкту господарювання повинне включати у себе слова мовою людини, а не абревіатури, коди або двійкове відображення, що можуть інтерпре- тувати лише машини, незважаючи на те, що останні технічно ефективніші з точки зору простору для зберігання даних або пропускної здатності мережі. Розкрито принципи теорії верифікаціонізму та описано шляхи адаптації структури масиву даних. Схема- тично запропоновано структуру машинних знань, яку представлено щодо формування масиву даних на базі нейронної мережі у сфері Інтернету речей. Описана структура має три бази знань: гіпотезу, онтологію та параметри. Підкреслено, що запропонована інтелектуальна база масиву даних може бути застосована до різних галузей Інтернету речей щодо автономного обміну та накопичення знань, а платформа, своєю чергою, може використовувати онтології для інтеграції пристроїв IoT з інтелектуальними системами. Описано переваги та недоліки моделі. Так, зазначено, що перевагою цієї моделі є те, що датчики Інтернету речей у хмарі можуть навчатися у віддалених датчиків у фоновому режимі, незалежно від затримки мережі, що підключається до віддаленої програми, а недоліком є те, що затримка мережі може стати вузьким місцем, коли потреба у при- йнятті рішень у режимі реального часу зростає. Наголошено, що реалізація описаного алгоритму формування масиву даних, а також відповідної інтелектуальної середи доз- волить зменшити поріг входження розробників у сферу рішення задач за допомогою ней- ронної мережі.
APA, Harvard, Vancouver, ISO, and other styles
7

Козак, Є. Б. "ПРИНЦИПИ ВПРОВАДЖЕННЯ МОДЕЛЕЙ МАШИННОГО НАВЧАННЯ У СФЕРІ ІНТЕЛЕКТУАЛЬНОГО ОБСЛУГОВУВАННЯ ПРОМИСЛОВОГО ОБЛАДНАННЯ." Таврійський науковий вісник. Серія: Технічні науки, no. 3 (November 2, 2021): 19–28. http://dx.doi.org/10.32851/tnv-tech.2021.3.3.

Full text
Abstract:
У статті досліджено принципи впровадження моделей машинного навчання у сферу інтелектуального обслуговування промислового обладнання. Зазначено, що розумне вироб- ництво використовує передову аналітику даних для доповнення фізичних законів щодо підвищення ефективності роботи виробничих систем. Наголошується, що за широкого поширення датчиків та Інтернету речей (IoT) зростає потреба в обробці великих вироб- ничих даних, що характеризуються високим об’ємом, високою швидкістю і високою різ- номанітністю. Наведено схему промислової машини, яка використовується для перемо- тування та різання пакувальної плівки на виробництві. Детально розкрито виробничий процес та складено структурну схему налаштування системи, сформовано модель клас- теризації параметрів для виявлення збоїв у роботі промислової машини. Підкреслено, що дані, отримані від датчиків, фактично є дискретними даними часу, що відбираються за секунду часу, а декомпозиція даних часових рядів виявила тенденцію до зростання залиш- ків. Отримані часові ряди стаціонарувались за допомогою диференціації, а логарифмічне перетворення у свою чергу використовувалось для зменшення дисперсії даних часових рядів. При цьому наголошується, що диференціація усуває зміни рівня динамічного ряду, а отже, усуває тенденції та сезонність, причому середнє ковзне та стандартне відхи- лення знайдено незалежно від часу, на основі чого побудовано діаграму стаціонарності. Визначено етапи прогнозування та запропоновано модель інтегрованої ковзної середньої. У роботі запропоновано три моделі: метод опорних векторів, глибока нейронна мережа та наївний баєсів класифікатор, здійснено порівняння всіх трьох моделей та доведено, що модель глибокої нейронної мережі була більш ефективною в разі моделювання даних. Про- гнозна модель побудована для зменшення низькоякісних виробничих циклів та планування технічного обслуговування. Таким чином, наголошено, що машинне навчання на основі IoT допоможе подолати суттєві обмеження продуктивності та пов’язані з цим витрати на обслуговування, що в загальному випадку значно підвищить продуктивність виробничого обладнання.
APA, Harvard, Vancouver, ISO, and other styles
8

Франчук, Наталія Петрівна. "Стан та перспективи технологій машинного перекладу тексту." Theory and methods of e-learning 3 (February 13, 2014): 319–25. http://dx.doi.org/10.55056/e-learn.v3i1.356.

Full text
Abstract:
На сьогоднішній день існує багато компаній у всьому світі, що займаються розробкою систем машинного перекладу (СМП), за допомогою яких здійснюється переклад на різні мови світу. Серед них можна виділити такі: SYSTRAN (США, systransoft.com), Langenscheidt (Німеччина, langenscheidt.de), Transparent Language (США, transparent.com), LANGUAGE ENGINEERING CORPORATION (США, lec.com), Translation Experts (США, tranexp.com), Linguatec (Німеччина, linguatec.net), SDL (Великобританія, sdl.com), STAR (Швейцарія, star-group.net), ATRIL (США, atril.com), Alis Technologies (Канада, alis.com).Вивчення джерел щодо комп’ютерних технологій перекладу й опрацювання текстів свідчить, що проблеми перекладу і розпізнавання образів за допомогою машини тісно пов’язані із проблемами штучного інтелекту і кібернетикою. Проблеми створення штучної подібності людського розуму для вирішення складних завдань і моделювання розумової діяльності вивчаються досить давно. Вперше ідею штучного інтелекту висловив Р. Луллій у XIV столітті, коли він намагався створити машину для вирішення різноманітних задач з основ загальної класифікації понять. А у XVIII столітті Г. Лейбніц і Р. Декарт розвили ці ідеї, запропонувавши універсальні мови класифікації всіх наук [1].Ці ідеї лягли в основу теоретичних розробок у галузі створення штучного інтелекту. Проте розвиток штучного інтелекту як наукового напряму став можливим лише після створення електронних обчислювальних машин (ЕОМ). Це сталося у 40-ві роки ХХ століття.Термін «штучний інтелект» був запропонований в 1956 р. на семінарі, присвяченому розробці логічних завдань з аналогічною назвою у Стенфордському університеті. Штучний інтелект – розділ комп’ютерної лінгвістики та інформатики, де розглядаються формалізація проблем та завдань, які нагадують завдання, виконувані людиною. При цьому у більшості випадків алгоритм розв’язування завдання невідомий наперед. Точного визначення цієї науки немає, оскільки у філософії не вирішене питання про природу і статус людського інтелекту. Немає і точного критерію досягнення комп’ютером «розумності», хоча стосовно штучного інтелекту було запропоновано низку гіпотез, наприклад, тест Тьюринга або гіпотеза Ньюела-Саймона [2].Після визначення штучного інтелекту як самостійного розділу науки відбувся його поділ за двома основними напрямками: нейрокібернетика і кібернетика «чорного ящика». Розпізнавання образів – традиційний напрямок штучного інтелекту, близький до машинного навчання і пов’язаний з нейрокібернетикою. Кожному об’єкту відповідає матриця ознак, за якою відбувається його розпізнавання. Машинний переклад належить до кібернетики «чорного ящика», головним принципом якого є принцип, протилежний нейрокібернетиці, а саме: немає значення, як побудований «розумовий» пристрій – головне, щоб на задані вхідні дії він реагував, як людський мозок.Слід зазначити, що сьогодні науковці розглядають штучний інтелект як один з напрямків інформатики, метою якого є розробка апаратно-програмних засобів, за допомогою яких можна користувачу-непрограмісту ставити і вирішувати завдання, що традиційно вважаються інтелектуальними [2].З другої половини 1960-х рр., коли людство вступило в епоху комп’ютерних технологій, використання комп’ютерів звільнило людей від багатьох видів рутинної роботи, будь то трудомісткі обчислення чи пошук необхідних елементів в різних базах даних. При цьому слід мати на увазі, що принципова відмінність комп’ютерних технологій від будь-яких виробничих технологій полягає саме в тому, що в одному випадку технології не можуть бути безупинні, тому що вони поєднують роботу рутинного типу (скажімо, оперативний облік) і роботу творчу, яка не піддається поки що формалізації (прийняття рішень), а в іншому випадку функція виробництва безупинна і відображає строгу послідовність всіх операцій для випуску продукції (конвеєризація процесу).Переклади текстів з однієї мови на іншу можна віднести до рутинної роботи, але тільки частково. Дійсно, з одного боку, в роботі будь-якого перекладача є досить велика кількість елементів формалізму, хоча, з іншого боку, у даний час жоден серйозний переклад не може бути виконаний зовсім формально.Усі переклади можна розділити на технічні і літературні. Межа між ними є дуже «розмитою» (проміжне положення займають, наприклад, переклади ділових листів). Особливістю технічних перекладів є необхідність у першу чергу знати стандарти фахових понять. Специфіка ж літературного перекладу полягає в тому, що потрібно одержати текст, за художньою цінністю максимально близький до оригіналу. Якість виконання з використанням комп’ютера технічних і літературних перекладів у теперішній час зовсім різна: технічні переклади є якісніші, ніж літературні. Останній факт особливо відчутний при перекладі віршованих форм  тут використання комп’ютера практично неможливе: його використання поступається поетам-перекладачам.Переклад текстів  одна з перших функцій, яку людина спробувала виконати за допомогою комп’ютера. Всього через кілька років після створення перших ЕОМ з’явилися і програми машинного перекладу. Датою народження машинного перекладу як галузі досліджень прийнято вважати 1947 р. Саме тоді У. Уівер [3] (який написав трохи пізніше, у 1949 р., разом із К. Шенноном книгу з основ теорії інформації), написав лист Н. Вінеру, «батькові кібернетики», порівнявши в цьому листі завдання перекладу із завданням дешифрування текстів.Завдання дешифрування до цього часу вже вирішувалися (і небезуспішно) на електромеханічних пристроях. Більше того, перша діюча ЕОМ за назвою Colossus-1, сконструйована в Англії в 1942-43 рр. знаменитим математиком і логіком А. Тьюрінгом, автором теоретичного автомата «машина Тьюрінга», разом з Х. А. Ньюменом, використовувалася під час війни для розшифровування секретних німецьких кодів. Оскільки ЕОМ Colossus-1, як і всі перші обчислювальні машини, конструювалася і використовувалася головним чином для військових цілей, відомості про неї стали відомі набагато пізніше її введення в експлуатацію. У 1944 р. Г. Айкен сконструював обчислювальну машину МАРК-1 на електромеханічних елементах і установив її в Гарвардському університеті. Ця машина також використовувалася для виконання завдань дешифрування. Відзначимо також, що завдання дешифрування доводилося і доводиться нерідко вирішувати не тільки військовим, але також археологам і історикам при спробах прочитати рукописи давніми, забутими мовами [4].Після листа У. Уівера Н. Вінерові відбувся ряд гострих наукових дискусій, потім були виділені гроші на дослідження. Сам Н. Вінер, що вільно розмовляв 13-тьма мовами, довгий час оцінював можливості комп’ютерного перекладу дуже скептично. Він, зокрема, писав: «...що стосується проблеми механічного перекладу, то, відверто кажучи, я боюся, що межі слів у різних мовах занадто розпливчасті, а емоційні й інтернаціональні слова займають занадто велике місце в мові, щоб який-небудь напівмеханічний спосіб перекладу був багатообіцяючим... В даний час механізація мови... уявляється мені передчасною» [5, 152]. Однак, всупереч скепсису Вінера і ряду інших вчених зі світовими іменами, у 1952 р. відбулася перша міжнародна конференція з машинного перекладу. Організатором цієї конференції був відомий ізраїльський математик І. Бар-Хіллел. Він прославився в першу чергу застосуванням ідей і методів математичної логіки в різних напрямках досліджень з теорії множин і основ математики, але видав також ряд робіт із загальної теорії мови, математичної лінгвістики, автоматичного перекладу і теорії визначень (у СРСР була дуже популярна монографія «Основи теорії множин», написана І. Бар-Хіллелом разом з А. А. Френкелом) [3].Незабаром після конференції 1952 р. був досягнутий ряд успіхів у академічних дослідженнях, які, у свою чергу, стимулювали комерційний інтерес до проблеми машинного перекладу. Вже в 1954 р. знаменита фірма IBM разом із Джорджтаунським університетом (США) зуміла показати першу систему, що базується на словнику з 250-ти слів і 6-ти синтаксичних правилах. За допомогою цієї системи забезпечувався переклад 49-ти заздалегідь відібраних речень. Вже до 1958 р. у світі існували програмні системи для машинного перекладу технічних текстів, найдосконаліша з яких була розроблена в СРСР і мала запас 952 слова.В період з 1954 р. по 1964 р. уряд і різні військові відомства США витратили на дослідження в галузі машинного перекладу близько 40 млн. доларів. Однак незабаром «запаморочення від успіхів» змінилося повною зневірою, що доходила практично до повного заперечення здійсненності машинного перекладу. До подібного висновку прийшли на основі звіту, виконаного спеціальним комітетом із прикладної лінгвістики (ALPAC) Національної Академії наук США. У звіті констатувалося, що використання систем автоматичного перекладу не зможе забезпечити прийнятну якість у найближчому майбутньому. Песимізм ALPAC був обумовлений, головним чином, невисоким рівнем розвитку комп’ютер­ної техніки того часу. Справді, труднощі роботи з перфокартами і величезними комп’ютерами I-го і II-го поколінь (на електронних лампах чи транзисторах) були чималими. Саме з цих причин перші проекти не дали істотних практичних результатів. Однак були виявлені основні проблеми перекладу текстів природною мовою: багатозначність слів і синтаксичних конструкцій, практична неможливість опису семантичної структури світу навіть в обмеженій предметній галузі, відсутність ефективних формальних методів опису лінгвістичних закономірностей [6].До поширення персональних комп’ютерів машинний переклад міг бути швидше цікавим об’єктом наукових досліджень, ніж важливою сферою застосування обчислювальної техніки. Причинами цього були:висока вартість часу роботи ЕОМ (з огляду на той факт, що кожну обчислювальну машину обслуговувала велика група системних програмістів, інженерів, техніків і операторів, для кожної машини було потрібне окреме, спеціально обладнане приміщення і т.п., «комп’ютерний час» був дуже і дуже дорогим);колективне використання ресурсів комп’ютера. Це часто не дозволяло негайно звернутися до електронного помічника, зводячи нанівець найважливішу перевагу машинного перекладу перед звичайним  його оперативність.За результатами звіту ALPAC дослідження з комп’ютерного перекладу припинилися на півтора десятка років через відсутність фінансування. Однак у цей же час відбувся якісний стрибок у розвитку обчислювальної техніки за рахунок переходу до технологій інтегральних схем. ЕОМ III-го покоління на інтегральних схемах, що використовувалися у 1960-ті роки, до кінця 1960-х  початку 1970-х років стали витіснятися машинами IV-го покоління на великих інтегральних схемах. Нарешті, у 1970 р. М. Е. Хофф (Intel) створив перший мікропроцесор, тобто інтегральну схему, придатну для виконання функції великої ЕОМ. До середини 1970-х років з’явилися перші комерційно розповсюджувані персональні комп’ютери (ПК) на базі 8-розрядних мікропроцесорів фірми Intel. Це була на той час комп’ютерна революція.Саме поява ПК стала сильним додатковим стимулом для вдосконалювання комп’ютерного перекладу (особливо після створення комп’ю­терів Apple II у 1977 р. і IBM PC у 1981 р.). Поновленню досліджень з комп’ютерного перекладу сприяло також підвищення рівня розвитку техніки і науки взагалі. Так, у 1970-ті рр. одержала поширення система автоматизованого перекладу SYSTRAN. Протягом 1974-75 рр. система була використана аерокосмічною асоціацією NASA для перекладу документів проекту «Союз-Аполлон». До кінця 1980-х років за допомогою цієї системи перекладали з кількох мов вже близько 100 000 сторінок щорічно. Розвитку комп’ютерного перекладу сприяло ще і зростання інтересу дослідників і проектувальників до проблеми штучного інтелекту (тут явно переважали лінгвістичні аспекти) і комп’ютерного пошуку даних [7].Починаючи з 1980-х рр., коли вартість машинного часу помітно знизилась, а доступ до них можна було одержати в будь-який час, машинний переклад став економічно вигідним. У ці і наступні роки удосконалювання програм дозволило досить точно перекладати багато видів текстів. 1990-ті рр. можна вважати справжньою «епохою Відродження» у розвитку комп’ютерного перекладу, що пов’язано не тільки з широкими можливостями використання ПК і появою нових технічних засобів (у першу чергу сканерів), але і з появою комп’ютерних мереж, зокрема глобальної мережі Internet.Наприклад, створення Європейської Інформаційної Мережі (EURONET DIANA) стимулювало роботи зі створення систем автоматизованого перекладу. У 1982 р. було оголошено про створення європейської програми EUROTRA, метою реалізації якої була розробка системи комп’ютерного перекладу для всіх європейських мов. Спочатку проект оцінювався в 12 млн. доларів США, але вже в 1987 р. фахівці визначили сумарні витрати по цьому проекту більш ніж у 160 млн. доларів [4].Використання глобальної мережі Internet об’єднало мільйони людей, що говорять різними мовами, у єдиний інформаційний простір. Домінує, природно, англійська мова, але: є користувачі, які нею зовсім не володіють чи володіють дуже слабко; існує безліч Web-сторінок, написаних не англійською мовою.Для полегшення перегляду Web-сторінок, описаних незнайомою користувачеві мовою, з’явилися додатки до браузерів, за допомогою яких здійснюється переклад обраних користувачем фрагментів Web-сторінки або всієї Web-сторінки, що переглядається. Для цього досить лише скопіювати частину тексту та вставити його у відповідне поле або «натиснути» на спеціальну кнопку меню. Прикладом такого комп’ютерного перекладача є програмний засіб WebTransSite фірми «Промт», створений на базі програмного засобу Stylus, який можна використовувати в різних браузерах (Netscape Navigator, Internet Explorer, Mozilla Firefox, Opera та ін.) або, наприклад, Google Translate – це сервіс компанії Google, за допомогою якого можна автоматично перекладати слова, фрази та Web-сторінки з однієї мови на іншу. В системі Google використовується власне програмне забезпечення для перекладу на основі статистичного машинного перекладу. З вересня 2008 р. підтримуються й переклади українською мовою. Користувач уводить текст, поданий мовою оригіналу, та вказує мову, якою цей текст потрібно подати.Проблемами машинного перекладу в теперішній час займається ряд відомих компаній, таких як SYSTRAN Software Inc., Logos Corp., Globalink Inc., Alis Technologies Inc., Toshiba Corp., Compu Serve, Fujitsu Corp., TRADOS Inc., Промт та інші. З’явилися також компанії, що спеціалізуються на машинному перекладі, зокрема компанія SAP AG, яка є європейським лідером у розробці програмного забезпечення і протягом багатьох років використовує системи машинного перекладу різних виробників при локалізації своїх програмних продуктів. Існує і служба машинного перекладу при комісії Європейського Союзу (обсяг перекладу в комісії перевищує 2,5 млн. сторінок щорічно; переклади всіх документів виконуються оперативно 11-тьма офіційними мовами, забезпечують їх 1100 перекладачів, 100 лінгвістів, 100 менеджерів і 500 секретарів) [8].Проблемам комп’ютерного перекладу значна увага науковців приділяється в галузі лінгвістики, зокрема в Україні у Київському державному університеті лінгвістики, дуже міцною є лінгвістична школа Санкт-Петербурга та Москви. Не можна не згадати такі праці, як фундаментальна монографія Ф. Джорджа «Основи кібернетики» [5], Дж. Вудера «Science without properties», О. К. Жолковського «О правилах семантического анализа», Ю. М. Марчука «Проблемы машинного перевода», Г. С. Цейтіна, М. І. Откупщикової та ін. «Система анализа текста с процедурным представлением словарной информации» [6] та інші, в яких сформульовані основні принципи і проблеми практичної реалізації машинного перекладу. Ці монографії містять цікавий фактичний матеріал і можуть бути корисні педагогу в побудові курсу лекцій з комп’ютерних технологій перекладу й опрацювання текстів.Протягом багатьох років науковці в галузях лінгвістики, кібернетики, інформатики вели інтенсивні пошуки моделей і алгоритмів людського мислення і розробок програм, але так сталося, що жодна з наук – філософія, психологія, лінгвістика – не в змозі запропонувати такого алгоритму. Таким чином, штучний інтелект як «генератор знань» [9, 139] ще не створений, машинний переклад є частково структурованим завданням, а тому втручання людини в створення досконалих перекладів буде потрібне завжди і її треба, як слід, цього навчати.
APA, Harvard, Vancouver, ISO, and other styles
9

Юдін, Михайло, and Дмитро Міночкін. "СПРОЩЕНА МОДЕЛЬ ВИКОРИСТАННЯ ТЕХНОЛОГІЇ БЛОКЧЕЙН ДЛЯ КОНТРОЛЮ ПРОЦЕСУ ОНОВЛЕННЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ ПРИСТРОЇВ МЕРЕЖІ ІНТЕРНЕТУ РЕЧЕЙ." Молодий вчений, no. 10 (98) (October 31, 2021): 115–18. http://dx.doi.org/10.32839/2304-5809/2021-10-98-27.

Full text
Abstract:
У статті було представлено модель застосування технології блокчейн в процесі оновлення програмного забезпечення (ПЗ) пристроїв мережі Інтернету Речей (ІоТ) для забезпечення достовірності отриманих файлів ПЗ підконтролерами мережі ІоТ, та алгоритм роботи моделі. Представлена модель має деревоподібну структуру та складається з: контролеру — комп'ютер з операційною системою Windows або Linux, підконтролеру — одноплатний комп'ютер Raspberry Pi або віртуальна машина Linux, пристрій ІоТ — мікроконтролер Arduino Uno або його аналог. Також було представлено варіант модифікації алгоритму моделі, що дозволяє виявляти факти модифікацій ПЗ пристроїв мережі ІоТ та автоматично встановлювати оригінальну версію ПЗ. Складові представленої моделі передбачають дешевизну та простоту процесу прототипування на базі моделі для подальших досліджень доцільності використання блокчейн в процесі оновлення ПЗ пристроїв мережі ІоТ.
APA, Harvard, Vancouver, ISO, and other styles
10

Штонда, Роман, Володимир Куцаєв, Олена Сівоха, and Михайло Артемчук. "МЕТОДИ ПРОТИДІЇ ВІРУСУ ШИФРУВАЛЬНИК В ІНФОРМАЦІЙНИХ СИСТЕМАХ." Сучасні інформаційні технології у сфері безпеки та оборони 40, no. 1 (June 9, 2021): 27–36. http://dx.doi.org/10.33099/2311-7249/2021-40-1-27-36.

Full text
Abstract:
У цій статті пропонується алгоритм, яким керуються системні адміністратори для протидії несанкціонованим спробам шифрування інформації в інформаційних системах. Факти вказують, що терміновість вжитих заходів полягає в тому, що кількість атак програм шифрування досягла 30% від загальної кількості глобальних кібератак та кіберінцидентів. Масштабні кібератаки відбуваються приблизно кожних шість місяців, а методи проникнення та алгоритми шифрування постійно вдосконалюються. Відповідно до моделі Cyber-Kill Chain, зловмисники успішно досягають поставленої мети на цільовому комп’ютері. Метою заходів щодо усунення несанкціонованого шифрування інформації в системі є запобігання її дії на початку роботи. Автори рекомендують заздалегідь розміщувати зразки програмного забезпечення в інформаційній системі, це дозволить своєчасно виявляти ознаки несанкціонованого шифрування інформації в системі. Заходи включають розміщення зразка спеціального програмного забезпечення в системі якомога раніше. Зразок може реалізувати “постійний програмний моніторинг” процесу в системі, щоб зупинити процесор, коли є ознаки шифрування, тобто: коли процесор перевантажений, коли виявляються підозрілі процеси, при виявленні ознак дії алгоритму шифрування, у разі синхронізації і коли важливі файли зникають, у разі спроби перезапустити систему та інших ознак. Автори порівнюють систему мережевої безпеки із ситуацією, коли рекомендовані заходи не застосовуються. Автори вважають, що, виходячи з ефективності відповідних заходів, система захисту мережі зросте до 0,99. Висновок цієї статті полягає в тому, що розміщення спеціального програмного забезпечення в системі дозволить протидіяти якомога швидше вірусу шифрувальнику та покращить безпеку системи. Подальші дослідження дозволять розповсюдити рекомендовані заходи щодо усунення поведінки різних типів кібератак, які досягли цільової машини, а також виникнення кіберінцидентів відповідно до моделі Cyber-Kill Chain.
APA, Harvard, Vancouver, ISO, and other styles
11

Niemyj, S. V., and V. M. Brytkowskyi. "Проблеми оптимізації напруги у бортовій мережі електрообладнання автотранспортних засобів." Scientific Bulletin of UNFU 29, no. 8 (October 31, 2019): 106–9. http://dx.doi.org/10.36930/40290819.

Full text
Abstract:
Проаналізовано вплив рівня напруги у бортовій мережі автотранспортних засобів на ефективність системи електрообладнання, зокрема на енергетичні витрати і безпеку експлуатації та технічного обслуговування. Доведено, що підвищення напруги у бортовій мережі автотранспортних засобів є вигідним в аспекті покращення енергетичних характеристик електричних машин, однак у класичних системах електрообладнання цього досягнути практично неможливо через необхідність збільшення ваги акумуляторних батарей. Однією із важливих проблем, яка пов'язана із підвищенням напруги у системах електрообладнання автотранспортних засобів, є безпека через ймовірність ураження водіїв і обслуговуючого персоналу електричним струмом високої напруги. Встановлено, що допустиме, за умовою безпеки, значення номінальної напруги у бортовій мережі системи електрообладнання автотранспортних засобів практично не повинна перевищувати 60 В. Підвищення рівня напруги у бортовій мережі сучасних автотранспортних засобів із традиційними системами електростартерного пуску двигунів зі свинцево-кислотними акумуляторними батареями практично вичерпується значенням 24 В, оскільки надалі вага акумуляторних батарей стає неприпустимо великою. Проблема збільшення величини бортової напруги автотранспортних засобів можна радикально вирішити лише під час переходу на електричні джерела стартерного пуску двигунів інших типів, наприклад ємнісні нагромаджувачі.
APA, Harvard, Vancouver, ISO, and other styles
12

Чернікова, Наталія. "ОСЕРЕДКИ СІЛЬСЬКОГОСПОДАРСЬКОГО МАШИНОБУДУВАННЯ НА ПІВДНІ УКРАЇНИ (1860-ТІ РР. – 1914 Р.)." Litopys Volyni, no. 24 (July 9, 2021): 132–42. http://dx.doi.org/10.32782/2305-9389/2021.24.22.

Full text
Abstract:
Стаття присвячена дослідженню специфіки становлення та розвитку сільськогосподарського машино- будування як самостійної підприємницької галузі в південноукраїнському регіоні в умовах капіталістичних трансформацій аграрного виробництва. З’ясовано, що інтенсивний розвиток та посилена механізація зерно- вого виробництва в степових губерніях сприяли формуванню усталеного споживчого ринку. Здійснено умовну локалізацію та характеристику регіональних осередків сільськогосподарського машинобудування з виділенням «олександрівського», «єлисаветградського», «бердянського» тощо. Акцентовано на діяльності тих підприємств, що означили стратегічні напрями розвитку галузі певного регіону. Подальшого обґрунтування набула теза про вагому роль німців-колоністів у розвитку галузі сільськогосподарського машинобудування в Катеринославській, Таврійській губерніях. Власним прикладом вони сприяли становленню мережі заводів у прилеглих колоніях і хуторах та популяризації модернізованої техніки колоністського типу серед місцевого населення. Просте- жено динаміку розвитку та визначено специфіку підприємницької діяльності братів Ельворті та Дж. Грієвза як флагманів «єлисаветградського» та «бердянського» осередків. Окреслено основні маркетингові заходи підприємців щодо збереження конкурентоспроможності: розширення кола споживачів шляхом помірних цін, використання системи кредитування, створення мережі представництв, популяризація продукції шляхом участі у виставках, реклами в періодичних виданнях тощо. Обґрунтовано тезу, що асортимент продукції та спеціалізація заводів сільськогосподарської техніки півдня України були орієнтовані насамперед на задоволен- ня запитів внутрішнього (суто регіонального) споживчого ринку. Вказано на тенденцію до розширення обсягів виробництва та монополізації галузі сільськогосподарського машинобудування з початку ХХ ст., що знайшла прояв у реструктуризації великих підприємств в акціонерні товариства, синдикати тощо. Увагу сфокусовано на формуванні економічної залежності між розвитком зернового виробництва та сільськогосподарським машино- будуванням у південноукраїнському регіоні.
APA, Harvard, Vancouver, ISO, and other styles
13

Глоба, Назар, and Ірина Дмитрієва. "РОЗРОБКА АЛГОРИТМУ ДЛЯ ПОБУДОВИ ПРОТОТИПУ ЕКСПЕРТНОЇ СИСТЕМИ ДІАГНОСТИКИ АВАРІЙНИХ СИТУАЦІЙ МЕРЕЖІ." System technologies 2, no. 133 (March 1, 2021): 128–34. http://dx.doi.org/10.34185/1562-9945-2-133-2021-14.

Full text
Abstract:
Сучасні електроенергетичні системи відносяться до класу великих людино-машинних систем кібернетичного типу, тому розробка експертної системи діагностики аварійних ситуацій є актуальною. В роботі було розроблено модифікований алгоритм Дейкстри. Мета модифікації поля-гає в підвищенні ефективності запропонованого рішення, можливість роботи в зва-женому графі і виключення помилок під час пошуку альтернативного шляху.
APA, Harvard, Vancouver, ISO, and other styles
14

Movchan, S. "IMPROVEMENT OF THE SYSTEM OF AUTOMATICFILLING OF THE PRESSURE NETWORK OF RAIN-MAKING MACHINES." Праці Таврійського державного агротехнологічного університету 18, no. 2 (2018): 198–205. http://dx.doi.org/10.31388/2078-0877-18-2-198-205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Артеменко, С. В., and В. О. Мазур. "EN Машинне навчання для властивостей холодоагентів." Refrigeration Engineering and Technology 57, no. 3 (October 15, 2021): 138–46. http://dx.doi.org/10.15673/ret.v57i3.2164.

Full text
Abstract:
Міждисциплінарний характер нових цілей, спрямованих на розробку робочих матеріалів для екологічно чистих технологій вимагає більш динамічного використання інформаційних технологій (ІТ) для забезпечення правильних компромісних рішень у конкурентному середовищі. Машинне навчання (ML) — це частина методологій штучного інтелекту (AI), яка використовує алгоритми, які не є прямим рішенням проблеми, а навчаються за допомогою рішень незліченної кількості подібних проблем. Машинне навчання відкрило новий шлях у дослідженні термодинамічної поведінки нових речовин. Різні обчислювальні інструменти були застосовані для вирішення актуальної проблеми - прогнозування фазової поведінки soft речовин під значними екзогенними впливами. Метою цього дослідження є розробка нової точки зору щодо прогнозування термодинамічних властивостей м'яких речовин за допомогою методології, яка передбачає штучні нейронні мережі (ANN) та глобальну фазову діаграму для забезпечення кореляції між структурою та властивостями. В роботі представлено застосування машинного навчання в інженерній термодинаміці для прогнозування азеотропної поведінки бінарних холодоагентів і визначення коефіцієнта продуктивності (COP) для роботи органічного циклу Ренкіна (ORC). За даними про кипіння та критичні точки. Запропоновано новий підхід до прогнозування утворення азеотропного стану в суміші, який розроблено та представлено. Цей підхід використовує синергію нейронних мереж та методології глобальної фазової діаграми для кореляції азеотропних даних для бінарних сумішей на основі лише критичних властивостей та ацентричного коефіцієнта окремих компонентів у сумішах холодоагентів. Це не вимагає інтенсивних розрахунків. Побудова кореляцій ANN між інформаційними атрибутами робочих рідин та критеріями ефективності циклу Ренкіна звужує область компромісів у просторі конкурентних економічних, екологічних та технологічних критеріїв
APA, Harvard, Vancouver, ISO, and other styles
16

Міщенко, Ярослав, Володимир Собченко, and Олександр Марченко. "ТЕОРЕТИЧНІ ДОСЛІДЖЕННЯ ВПЛИВУ ФІЗИКО-ГЕОГРАФІЧНИХ УМОВ УКРАЇНИ НА ПРОХІДНІСТЬ БОЙОВИХ БРОНЬОВАНИХ МАШИН." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 85, no. 2-3 (April 11, 2022): 300–319. http://dx.doi.org/10.32453/3.v85i2-3.889.

Full text
Abstract:
За результатами теоретичних досліджень проаналізовано фізико-географічне районування України, фізико-механічні властивості різних типів ґрунтів, попередні дослідження методів визначення несівної властивості ґрунтів та встановлено, що рівень маневреності бойових броньованих машин (ББМ) та прохідності місцевості визначається ступенем розвитку дорожньої мережі та впливом зовнішнього середовища. Вплив зовнішнього середовища на вибір типу рушія ББМ обумовлений фізико-географічними умовами конкретного району, які визначаються його кліматом та характерними типами ґрунтів. Кліматичні умови суттєво впливаютьна зміну фізико-механічних властивостей ґрунту. Тому в одну пору року в різних географічних регіонах характеристики однакових типів ґрунтів будуть різні. Зважаючи на це, з метою раціонального вибору типу рушія ББМ для конкретного району необхідно враховувати характеристику ґрунту, погодні умови, які поділяються на: сніговий період, період весняної відлиги, а також літнього та осіннього бездоріжжя із середніми календарними термінами початку і кінця кожного з цих періодів. Однак проведення інженерної розвідки місцевості прохідності ґрунтів і дотепер визначається приблизно, за допомогою найпростіших пристроїв-пенетрометрів. Eраховуючиособливості зміни властивостей ґрунтових поверхонь та складність процесу террамеханіки, конструктори часів СРСР основну увагу приділяли значенням питомого тиску ББМ на ґрунт з урахуванням значень несівної здатності ґрунтів, намагаючись компенсувати постійно зростаючі значення бойової маси ББМ, нехтуючи динамічними змінами фізико-механічних властивостей ґрунтів. У результаті перевага надавалася ББМ з гусеничним типом рушія у різних компоновках, проте такий підхід не завжди був раціональнимз точки зору бойового застосування зразка. Отже, постійна зміна властивостей ґрунтів та експериментальний спосіб пошуку компромісних рішень для раціонального визначення типу рушія з урахуванням ваги ББМ вимагає проведення подальших досліджень та розробки науково-методичного підходу, який дозволить враховувати зміну механічних властивостей ґрунту залежно від його вологості, а не обмежуватися значеннями несівної здатності, значення яких є справедливими тільки для географічних районів, в яких вони визначалися експериментально в конкретний період року.
APA, Harvard, Vancouver, ISO, and other styles
17

Островий, Олексій. "АНАЛІЗ УМОВ ФОРМУВАННЯ ДЕРЖАВНОЇ ПОЛІТИКИ ЗАБЕЗПЕЧЕННЯ КІБЕРНЕТИЧНОЇ БЕЗПЕКИ В УКРАЇНІ." Public management 17, no. 2 (February 27, 2019): 300–310. http://dx.doi.org/10.32689/2617-2224-2019-17-2-300-310.

Full text
Abstract:
Узагальнюються основні тенденції, особливості та проблеми, які безпосередньо впливають на формування державної політики забез- печення кібернетичної безпеки. Проаналізовано сучасний стан кіберзло- чинності у світі та доведено її глобальний характер розповсюдження. До- сліджено потенціал кібератак в Україні та виявлено, що його підвищення обумовлено такими тенденціями у діяльності підприємств та бізнесу, як зростання кількості комп’ютерної техніки, підвищення доступу до мережі Інтернет, а також збільшення рівня використання інформаційно-комуніка- ційних технологій у своїй діяльності. Виявлено постійно зростаючу тенден- цію до збільшення кількості злочинів у сфері використання електронно-об- числювальних машин (комп’ютерів), систем та комп’ютерних мереж і мереж електрозв’язку в Україні, а також збільшення їх питомої ваги у загальній кількості злочинів в Україні. Узагальнено основні фактори, які сприяли зростанню кількості кіберзлочинів в Україні, серед яких як технічна і структурна неготовність існуючої системи управління правоохоронних органів, так і недосконалість державної політики. На підставі аналізу злочинів у сфері використання електронно-обчислювальних машин (комп’ютерів) (за закінченими розслідуваннями у кримінальних провадженнях) сфор- мовано “портрет” кіберзлочинця та доведено, що основною його рисою є високий кваліфікаційний рівень. Виявлено, що серед позитивних тенденцій у сфері боротьби з кіберзлочинністю в Україні на сьогодні можна спостері- гати впровадження у практичну діяльність сучасних методик виявлення, фіксації і дослідження цифрових доказів; підписання договорів про взає- модію у сфері боротьби з кіберзлочинністю з організаціями різних країн світу; налагодження ефективної взаємодії зі світовими соціальними мере- жами.
APA, Harvard, Vancouver, ISO, and other styles
18

Vitynskyi, P. B., and R. O. Tkachenko. "Нейроподібна структура для задач прогнозування в умовах коротких вибірок даних." Scientific Bulletin of UNFU 29, no. 5 (May 30, 2019): 147–50. http://dx.doi.org/10.15421/40290529.

Full text
Abstract:
Задача прогнозування є однією із пріоритетних задач бізнесу. З ростом інструментарію прогнозування, а також із бурхливим розвитком потужностей комп'ютерної техніки цій задачі приділяють дедалі більше уваги. На сьогодні більшість менеджерів провідних компаній мають змогу застосовувати інформаційні системи на основі складного математичного апарату для аналізу даних. Проте проблема розуміння алгоритмів, закладених в основі таких інформаційних систем, а також правильний підбір моделі прогнозування є важливою проблемою, оскільки некоректні прогнози можуть призвести до прийняття неправильного рішення. Проблема поглиблюється у разі опрацювання недостатньої кількості даних, що характерно для розв'язання низки задач. Зокрема, для розв'язання задач прогнозування попиту на новий товар чи нову послугу організації, зокрема в системах електронної комерції, необхідна достатня кількість даних для реалізації процедур навчання. Проте їх невелика кількість, під час застосування наявних методів, призводить до неточних, некоректних прогнозів. Саме тому виникає потребу удосконалення наявних та пошуку нових рішень розв'язання задачі прогнозування в умовах коротких вибірок даних. У роботі запропоновано новий, розроблений авторами, інструмент обчислювального інтелекту для ефективного розв'язання цієї задачі. Описано нейроподібну структуру для підвищення точності розв'язання задач прогнозування в умовах коротких вибірок даних. ЇЇ побудовано з використанням штучної нейронної мережі узагальненої регресії та гібридної нейроподібної структури Моделі Послідовних Геометричних Перетворень з RBF ядром. Подано алгоритмічну реалізацію побудови методу подвоєння входів, що знаходиться в основі роботи системи. Проаналізовано процедури підбору оптимальних параметрів для її роботи. Проведено експериментальне моделювання роботи нейроподібної структури для розв'язання задачі прогнозування. Отримані результати показали високу точність її роботи. Ефективність використання розробленої структури підтверджено порівнянням її роботи з наявними – багатошаровим перцептроном, штучною нейронною мережею узагальненої регресії та машиною опорних векторів. Розроблена нейроподібна структура демонструє точність на основі MAPE відповідно у більше ніж 3, 6 та 10 разів вищу порівняно із відомими методами. Розроблену структуру можна використовувати у багатьох сферах, зокрема електронній комерції, бізнес-аналітиці, тощо.
APA, Harvard, Vancouver, ISO, and other styles
19

Butkevych, O. F., O. I. Chyzhenko, O. M. Popovych, and I. V. Trach. "AN INFLUENCE OF THE FACTS UPON AN ELECTRICAL NETWORK'S MODE DURING DIRECT START-UP OF AN ASYNCHRONOUS MACHINE IN THE COMPLEX LOAD'S COMPOSITION." Tekhnichna Elektrodynamika 2018, no. 6 (October 25, 2018): 62–68. http://dx.doi.org/10.15407/techned2018.06.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Рижков, Вадим Генієвич, Карина Володимирівна Бєлоконь, Євгенія Анатоліївна Манідіна, Євгенія Анатоліївна Манідіна, and Надія Валеріївна Фоміна. "ЕЛЕКТРОБЕЗПЕКА У ЧОРНІЙ МЕТАЛУРГІЇ: ОСОБЛИВОСТІ, ЕРГОНОМІКА РОБОЧОГО МІСЦЯ, ПРИЛАДИ КОНТРОЛЮ,ТЕНДЕНЦІЇ РОЗВИТКУ." Scientific Journal "Metallurgy", no. 2 (February 22, 2022): 116–23. http://dx.doi.org/10.26661/2071-3789-2021-2-14.

Full text
Abstract:
Електротравми на виробництві відрізняються високою летальністю, що вимагає ретельного виконання правил і норм електробезпеки, застосування захисних засобів. Будь-яке металургійне підприємство має розгалужені електричні мережі, значну кількість електроспоживачів з лінійною напругою 380, 660 і 6000 В. Окрім того сюди додаються несприятливі умови праці та наявність факторів підвищеної та особливої небезпеки ураження струмом. Все перелічене пред’являє підвищені вимоги до електробезпеки. Для електродвигунів, що працюють у приміщеннях гарячих цехів або в інших приміщеннях з високою температурою повітря, потрібно вживати заходів із запобігання можливості їх нагрівання вище припустимого рівня, яке здійснюється шляхом застосування відповідного виконання двигунів. Використовують два види виконання електродвигуни, що продуваються (охолоджувальне повітря надходить всередину від власного або спеціально встановленого вентилятора), закриті електродвигуни, яких обдувають (повітря подають від вентилятора, розташованого зовні машини). Правильна організація робочого місця з точки зору електробезпеки має особливе значення для приміщень металургійних цехів. Перш за все потрібно витримувати нормативну відстань до струмовідних частин і дотримуватися правил виконання робіт на електроустановках. Важливе значення для безпеки має стан ізоляції. Сучасні прилади контролю ізоляції вимірюють як опір ізоляції, так і ступінь її старіння, а також зволоженість). Як матеріал для електроізоляції за умови високої температури зараз використовують лакотканини, кремнійорганічні матеріали, склотканини. Як електрозахисний засіб все ширше застосовують підставки зі склопластику. Для запобігання аварійного режиму роботи електродвигунів фахівці рекомендують встановлювати апарати захисту типу РТТ, РТЛ і УВТЗ.
APA, Harvard, Vancouver, ISO, and other styles
21

Мельник, B., К. Мельник, and Б. Шульга. "Дослідження моделювання ідентифікатора емоцій людини за допомогою згорткової нейронної мережі з використанням KERAS." КОМП’ЮТЕРНО-ІНТЕГРОВАНІ ТЕХНОЛОГІЇ: ОСВІТА, НАУКА, ВИРОБНИЦТВО, no. 36 (November 26, 2019): 109–22. http://dx.doi.org/10.36910/6775-2524-0560-2019-36-11.

Full text
Abstract:
В даній статті наведено результати досліджень визначення емоцій людини за допомогою нейронних мереж. Розробка моделі для аналізу зображень проводилась за допомогою TensorFlow, а тренування реалізовувалось з використанням Keras. Вхідні дані використано з архіву kaggle.com - FER2013. Для аналізу зображеннь використано бібліотеку OpenCV. Мова програмування – Python 3. Даний набір інструментів вважається найпопулярнішим і найзручнішим для побудови нейронних мереж, а також систем глибинного навчання. Нейронні мережі і машинне навчання - найпопулярніші технології на даний момент. Особливо великих результатів можна досягнути поєднуючи цю технологію з іншими відомими – наприклад, з технологією об’єктно-орієнтованого програмування. Це поєднання технологій має широкий спектр застосування в різних областях, починаючи від звичайних фотосвітлин викладених в соціальних мережах, і закінчуючи контролем поведінки громадян держави або навіть планети. Аналіз емоцій дає можливість продуктовим і рекламним компаніям значно збільшити об’єм продаж, що в свою чергу збільшить прибутки [12]. Бути геніальним співбесідником, маючи можливість маніпулювати людьми знаючи що вони думають, проводити стрес-тести співробітників та оцінювати їхню реакцію, визначати реакцію людини на рекламу, оголошення, промову збирати обробляти і робити висновки. Список сфер використання обмежений лише фантазією і очікуємим результатом, тому тема цієї наукової роботи є актуальною.
APA, Harvard, Vancouver, ISO, and other styles
22

ГОРОДИСЬКИЙ, Роман, and Олександр БАСАРАБ. "АНАЛІЗ ОЦІНКИ ЗАГРОЗ ТА ВРАЗЛИВОСТЕЙ МОБІЛЬНИХ АВТОМАТИЗОВАНИХ РОБОЧИХ МІСЦЬ." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: військові та технічні науки 83, no. 2 (February 21, 2021): 276–90. http://dx.doi.org/10.32453/3.v83i2.573.

Full text
Abstract:
В Державній прикордонній службі широко застосовуються автоматизовані робочі місця у складі Інтегрованої інформаційно-телекомунікаційної системи «Гарт». Високошвидкісні телекомунікаційні мережі забезпечують оперативний обмін інформацією між ними, що є як перевагою для користувача, так і джерелом небезпеки в аспекті вразливості, що несе за собою небезпеку для інформації, яка зберігається та передається з використанням мобільних пристроїв. В роботі проведено аналіз вразливостей сучасних мобільних пристроїв з використанням високошвидкісних мобільних мереж. Технологія мобільних пристроїв є повноцінним обчислювальним пристроєм, що підтримує більшу частину функціоналу традиційних електронно-обчислювальної машини(ЕОМ) за значно менших розмірів, що дозволяє обробляти інформацію віддалено й оперативно, скоротивши на цьому час і зусилля. Враховуючи що інформація, яка передається або зберігається при використанні мобільних автоматизованих робочих місць може містити інформацію різних рівнів конфіденціальності, а втрата може привести до негативних наслідків, проведено аналіз існуючих загроз інформаційній безпеці при використанні мобільних автоматизованих робочих місць та здійснено оцінку вразливостей та загроз інформації. Питання безпеки інформації останніми роками вивчали вітчизняні вчені такі як Платоненко А., Жованик М., Войтович О., Війтюк В. та інші. Платоненко А. у своїх дослідженнях доводить що використовуючи спеціалізоване програмно-апаратне забезпечення є можливість підвищити рівень захисту мереж від зловмисних дій, а правильне налаштування та відповідальне використання особистої техніки допоможе ефективно та безпечно використовувати можливості сучасних мобільних пристроїв. Необізнаність користувачів та адміністраторів мереж, що призводить до великої ймовірності перехоплення інформації вирішується навчанням правилам інформаційної безпеки. Ймовірність перехоплення інформації можна зменшити шляхом використання засобів захисту в повному обсязі, але проблема відсутності коректного налаштування може залишатись, через використання нестійких паролів [1]. В свою чергу Жованик М. стверджує що принципи побудови політики захис¬ту мобільних пристроїв «Bring Your Own Device» та «Mobile Device Management» (MDM) - «управлін¬ня мобільними пристроями» це прості та ефективні рішення, що стосуються питань безпеки інформаційних ресурсів в корпоративній мережі які орієнтова¬ні на специфіку управління пристроями співробіт¬ників в корпоративному середовищі та надають широкий набір можливостей по управлінню мобільними пристроя¬ми, що використовуються у корпоративній діяльнос¬ті [2].
APA, Harvard, Vancouver, ISO, and other styles
23

Гогонянц, Спартак, Олег Заболотний, Алла Клочко, and Євген Руденко. "МОДЕЛІ ПРОЄКТУВАННЯ ЗНАНЬ ЕКСПЕРТНО-НАВЧАЛЬНОЇ СИСТЕМИ ПІДГОТОВКИ ВІЙСЬКОВИХ ФАХІВЦІВ." Сучасні інформаційні технології у сфері безпеки та оборони 40, no. 1 (June 9, 2021): 137–42. http://dx.doi.org/10.33099/2311-7249/2021-40-1-137-142.

Full text
Abstract:
Сучасною тенденцією в підготовці майбутніх військових фахівців є використання нового класу інформаційних технологій навчання, а саме, експертно-навчальних систем, основним призначенням яких є рішення поставлених завдань. Виділено основні компоненти експертно-навчальної системи (ЕНС): база знань; модуль навчання; модуль вилучення знань; модуль тестування; машина виведення; пояснення. ЕНС побудована на трьох групах базових принципах: кібернетичних - відображають досвід попередніх досліджень систем штучного інтелекту, ЕНС; педагогічних - визначають принципи, на яких будується педагогічне проектування і застосування ЕНС; психологічних - визначають вихідні положення і розуміння психіки слухача, на яких ґрунтуються процеси проектування і використання ЕНС в професійній підготовці майбутніх військових фахівців. Представлена структура ЕНС, яка складається з інтерпретатора (забезпечує послідовність реалізації правил для вирішення конкретного завдання) бази даних і знань (складається з фактів і правил предметної області) підсистем пояснень (дозволяють слухачеві отримати відповідь на питання: «Чому система приймає таке рішення?») ; інтелектуального редактора бази знань (призначений для модифікації наявних правил і додавання нових) інтерфейсу. Проаналізовано існуючі моделі подання знань експертно-навчальної системи підготовки військових фахівців: модель, заснована на використанні фреймів; логічна модель; модель, заснована на використанні правил (продукційна модель); модель семантичної мережі. Показано області ефективного застосування розглянутих моделей. Аналіз показав раціональність застосування семантико-фреймовой моделі подання знань в системі підготовки військових фахівців зі складними логічними зв'язками між їх поняттями і визначеннями. Продемонстровано приклад побудови ЕНС з вибором комбінаційної, а саме семантико-фреймовой моделі подання знань. Виділено особливості семантико-фреймовой моделі подання знань: поняття, категорії, об’єкти представлені у вигляді фреймів, зв’язок між фреймами у вигляді семантичної мережі. Програмна реалізація моделі може бути виконана з використанням системи управління базами даних MS SQL. Використання ЕНС такої моделі набуває особливого значення у процесі розв’язання складних та проблемних ситуацій у процесі підготовки військових фахівців.
APA, Harvard, Vancouver, ISO, and other styles
24

ВАКАЛЮК, Тетяна, Сергій ІЛЮЩЕНКО, Юрій ЄФРЕМОВ, Олег ВЛАСЕНКО, and Дмитро ЛИСОГОР. "ТЕОРЕТИЧНІ АСПЕКТИ РОЗРОБКИ СИСТЕМИ РОЗПІЗНАВАННЯ ЛЮДСЬКОГО ОБЛИЧЧЯ." INFORMATION TECHNOLOGY AND SOCIETY, no. 1 (May 12, 2022): 6–15. http://dx.doi.org/10.32689/maup.it.2022.1.1.

Full text
Abstract:
Анотація. Система розпізнавання облич – це технологія, здатна зіставляти людське обличчя з цифровим зображенням або відеокадром з базою даних осіб, зазвичай використовується для автентифікації користувачів за допомогою служб перевірки особистості, працює шляхом точного визначення і вимірювання рис обличчя по даному зображенню. Системи розпізнавання обличчя використовуються сьогодні в усьому світі урядами та приватними компаніями, їх ефективність різна, і деякі системи раніше були списані через їх неефективність. Отже, створення програми для розпізнавання людського обличчя є актуальною темою. Метою статті є дослідження теоретичних аспектів розробки системи розпізнавання людського обличчя. Процедура розпізнавання обличчя просто вимагає, щоб будь-який пристрій, оснащений цифровою фотографічною технологією, генерував і отримував зображення та дані, необхідні для створення та запису біометричного малюнка обличчя людини, якого необхідно ідентифікувати. Розглянуто основні алгоритми розпізнавання людського обличчя: розпізнавання обличчя з використанням різних поверхонь облич, метод облич Фішера, метод аналізу головних компонентів та машина опорних векторів, метод каскадів Хаара. Наведено їх переваги та недоліки. Наведено застосування згорткової нейронної мережі до розпізнавання облич. Запропоновано реалізацію алгоритму роботи системи розпізнавання обличчя. В даній роботі проаналізовано наявні алгоритми та системи виявлення та розпізнавання обличчя, зважені їх переваги та недоліки. Розглянуто використання згорткової нейронної системи з метою розпізнавання обличчя. Проаналізовано на практиці відсоток точності розпізнавання людського обличчя та продуктивність, враховуючі такі фактори як освітлення, якість зображення, кількість облич на зображенні використовуючи бібліотеку з відкритим вихідним кодом Face recognition із сімейства бібліотек DLib в основі якої лежить згорткова нейронна мережа.
APA, Harvard, Vancouver, ISO, and other styles
25

Кудін, Анатолій. "ОРГАНІЗАЦІЯ САМОСТІЙНОЇ РОБОТИ СТУДЕНТІВ НА БАЗІ СИМУЛЯЦІЙНОГО ЛАБОРАТОРНОГО ПРАКТИКУМУ З ОСНОВ ЦИФРОВОЇ ЕЛЕКТРОНІКИ." Physical and Mathematical Education 30, no. 4 (September 13, 2021): 61–67. http://dx.doi.org/10.31110/2413-1571-2021-030-4-009.

Full text
Abstract:
Формулювання проблеми. «Фізика (вибрані розділи)» є нормативною дисципліною навчальних планів спеціальностей 121, 122 і 126 галузі знань «Інформаційні технології» і вивчає фізичні основи роботи пристроїв цифрової електроніки в комп’ютері. Використання інформаційних технологій в організації і забезпеченні самостійної роботи студентів призвели до появи у ЗВО такого різновиду лабораторного практикуму як симуляційний. Аналіз існуючих в інтернеті симуляційних лабораторних практикумів показав, що вони не відповідають змісту вказаної вище дисципліни. Метою дослідження є розробка віртуального симуляційного лабораторного практикуму «Основи цифрової електроніки» і організація самостійної роботи студентів спеціальностей 121, 122 і 126 на його основі. Методи та інструменти. Компонентами фронтенд розробки були HTML5, CSS, Java Script та С#. Для бекенда – фреймворки Laravel, Node.js і Django, як мова програмування Python. Основною методикою педагогічного дослідження було мережеве тестування. Статистичні дані були отримані із тестуючого модуля LMS MOODLE. Результати. Лабораторний практикум складається з 18 симуляційних лабораторних робіт. В основу проєктування інтерфейсу освітніх симуляцій покладено важливий дидактичний принцип: відповідати за навчальні потреби студентів. Усі симуляції анімовані, інтерактивні, деякі мають ігрові середовища, в яких можна вивчати роботу пристроїв через дослідження. Показано, якими проєктними рішеннями досягається оптимальний людино-машинний інтерфейс освітніх симуляцій в лабораторному практикумі. У статті описано сценарій організації самостійної роботи студентів з дисципліни «Фізика (вибрані розділи)» на базі розробленого лабораторного практикуму з використанням засобів комунікацій LMS MOODLE. Висновки. Використання симуляційного лабораторного практикуму «Основи цифрової електроніки» в організації самостійного навчання сприяє підвищенню мотивації студентів до вивчення курсу «Фізика (вибрані розділи)». Подальшого дослідження потребує питання розробки і використання навчальних ігор для самоосвіти студентів.
APA, Harvard, Vancouver, ISO, and other styles
26

Самойленко, М. "Проблеми безпеки у практиці реалізації технології інтернет речей." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, no. 41 (December 27, 2020): 198–204. http://dx.doi.org/10.36910/6775-2524-0560-2020-41-31.

Full text
Abstract:
Розкрито проблеми безпеки у практиці реалізації технології Інтернету речей. Здійснено аналіз проблем Інтернету речей, головною з яких обрано проблему забезпечення інформаційної безпеки. Зазначається, що численні програми Інтернету речей можна об'єднати в три групи – індустріальну або промислову, навколишнього середовища, громадську. Описано всі технології, що входять до безперервних обчислювальних процесів Інтернету речей, такі як: радіочастотна ідентифікація; обробка великих масивів інформації, Big Data; між машинна взаємодія (Machineto Machine, М2М); кібер-фізичні системи (біологічних, фізичних і ін., операції яких інтегруються, контролюються і управляються комп'ютерним ядром); визначення місця розташування за допомогою ГЛОНАСС і GPS; надання широкосмугового зв'язку, в тому числі глобального стандарту цифрового мобільного стільникового зв'язку з розділенням каналів за часом (TDMA) і частотою (FDMA); бездротових сенсорних мереж та інших сучасних технологій. Підкреслено, що враховуючи всі характеристики Інтернету речей, він має три рівні: рівень сприйнятті, мережевий рівень і прикладний рівень, кожен з яких здійснює завдання та виконує покладені на нього функції. Запропоновано окремо до кожного зазначеного рівня низку проблем інформаційної безпеки. Описано причини програмної вразливості Інтернету речей та визначено складність програмного забезпечення в Інтернеті речей із зазначенням заходів здатних знизити рівень вразливості. Наголошено, що для проектування програмного забезпечення необхідно емулювати поведінку приладів Інтернету речей, тобто створити імітатор зовнішнього середовища для серверів. Унаслідок обмежень в приладах (енергозабезпечення, продуктивність процесора, пам'ять) в Інтернеті речей стоїть складне завдання уникнути сильної розбіжності між емулятором і приладом. Наведено поняття бекдор та описано принципи застосування бекдору
APA, Harvard, Vancouver, ISO, and other styles
27

Литвинчук, Леся. "СОЦІАЛЬНІ ПАТОЛОГІЇ ОСОБИСТОСТІ ЯК ТЕХНОЛОГІЧНІ АДИКТИВНІ ТЕНДЕНЦІЇ СУЧАСНОГО СОЦІОКУЛЬТУРНОГО СЕРЕДОВИЩА." Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: психологічні науки 13, no. 2 (February 20, 2020): 158–69. http://dx.doi.org/10.32453/5.v13i2.172.

Full text
Abstract:
У статті розглянуто проблему соціальної патології особистості як технологічної адиктивної тенденції сучасного соціокультурного середовища, що містить взаємодію “людина – машина”. У розширенні та науковому розкритті симптоматики на сьогодні зацікавлені фахівці з психічного здоров’я і дослідники цього феномену. Аналізуючи наукову літературу з цього феномену, ми дійшли висновку, що Інтернет-залежність – це психічний розлад, нав’язливе бажання вийти в Інтернет і хвороблива нездатність вчасно відключитися від нього. Це явище може спричинити стан, у якому людина фокусуватиметься на віртуальному, а не на реальному світі. Людина в такому стані може ігнорувати потребу в їжі, туалеті, сні, живому спілкуванні, фізичній активності тощо.У 1995 році Айвен Голдберг (Ivan Goldberg) запропонував термін IAD – міжнародна класифікація психічних розладів (англ. Internet Addiction Disorder). Пізніше він розробив набір діагностичних критеріїв Інтернет-залежності. Проблему Інтернет-залежності досліджували: В. Бурова, А. Голдберг, К. Янг, проте вони зосереджували свою увагу більше на характеристиках віртуального середовища або на психологічних особливостях самих адиктів.Дослідники зазначають, що велика частина Інтернет-залежних проводить час у мережі заради спілкування, що в результаті призводить до заміни наявних у реальному житті сім’ї і друзів віртуальними. Симптоми Інтернет-залежності можуть бути як психологічними, так i фізичними (за М. Орзак): розпач та роздратування, готовність брехати друзям і членам родини, небажання сприймати критику такого способу життя з боку близьких чи керівництва, готовність миритися з руйнуванням родини, втратою друзів та кола спілкування через захопленість Інтернетом, поява відчуття емоційного підйому і своєрідної ейфорії, зневага до власного здоров’я, значне скорочення тривалості сну, уникання фізичної активності або прагнення скоротити її, нехтування особистої гігієни, постійне “забування” про їжу, готовність задовольнятися випадковою й одноманітною їжею. Актуальність цього питання є очевидною, адже сьогодні в Україні адиктивні тенденції сучасного соціокультурного середовища набувають неабиякого розповсюдження. Описується усереднений соціально-психологічний портрет залежної особи у сучасному соціокультурному середовищі.
APA, Harvard, Vancouver, ISO, and other styles
28

Lipych. L., Khilukha O., and Kushnir M. "ЕВОЛЮЦІЯ РОЗВИТКУ ІНФОРМАЦІЙНИХ СИСТЕМ УПРАВЛІННЯ ПІДПРИЄМСТВОМ." Economic forum 1, no. 4 (November 24, 2021): 85–94. http://dx.doi.org/10.36910/6775-2308-8559-2021-4-12.

Full text
Abstract:
Актуальність даної теми безпосередньо пов'язана з необхідністю підвищення рівня конкурентоспроможності українських підприємств, який у порівнянні з іноземними все ще залишається низьким. Мета статті - проаналізувати сучасні наукові розробки в області систем підтримки прийняття управлінських рішень на основі аналізу їх еволюційного розвитку. Встановлено, що розвиток ІТ - систем, які підтримують менеджмент, розпочався у 1950-1960-х роках. Найдавніші ІТ - системи називалися трансакційними або системами для обробки даних. Перші системи були простими: використовували лічильні та аналітичні машин. Вони базувалися на масових операціях, які супроводжувалися значними витратами та не високою надійністю. Ці системи використовувалися для розрахунків заробітної плати, управління матеріалами, виставлення рахунків, обліку, контролю за дебіторською та кредиторською заборгованістю, обліку робочого часу та його ефективності, а також обліку витрат виробництва. Злам 20-го та 21-го століть - це період динамічних змін у розвитку ІТ - систем, що підтримують управління, головним чином завдяки мережевим системам, корпоративним інтрамережам та системам управління знаннями. Обґрунтовано, що системи Business In-Intelligence (BI) є кульмінацією еволюції змін у сфері систем підтримки прийняття рішень та системної експертизи. Вони формують рішення що ґрунтуються на: статистиці та економетрії, операційних дослідженнях та штучному інтелекті. Генезис ІТ-систем дозволив визначити етапи розвитку інтегрованих систем управління, що розвивалися паралельно вищезгаданим поколінням систем та направлені на підтримку реалізації функцій управління. Спочатку це були системи планування вимог до матеріалів (ang. Material Requirements Planning, MRP I), створені в 1960 -х роках на основі моделі управління складськими запасами. (для виробничих підприємств), потім модель закритого циклу MRP (ang. Closed-Loop MRP) та системи планування виробничих ресурсів (ang. Manufacturing Resources Planning, MRP II). Іншою версією цих систем є системи планування ресурсів підприємства (ang. Enterprise Resources Planning, ERP), створені в 1990-х роках. Змінені функціональні наповнення цих систем призвели до появи таких версій, як ERP II, EERP (Extended ERP), @ERP, EAS (Enterprise Application Suite), eERP, IERP (Intelligent ERP ERP), ERP +, ERP III і характеризуються як нове покоління інтегрованих систем - ERP IV. Доведено, що поява нових версій систем є результатом зміни умов ведення бізнесу та можливостей, створених розвитком ІКТ.
APA, Harvard, Vancouver, ISO, and other styles
29

Яровой, Тихон. "МОДЕЛЮВАННЯ СИСТЕМ ЗАБЕЗПЕЧЕННЯ ДЕРЖАВНОЇ БЕЗПЕКИ." Public management 20, no. 5 (December 29, 2020): 229–40. http://dx.doi.org/10.32689/2617-2224-2019-5(20)-229-240.

Full text
Abstract:
Запропоновано модель системи забезпечення державної безпеки як дієвого інструменту реалізації інтересів громадян і суспіль- ства з урахуванням внутрішніх та зовнішніх факторів впливу. Досліджено можливості застосування математичних методів для опти- мального вибору засобів захисту від загроз та небезпек в державному управлінні. Вивчено способи застосування штучного інтелекту для встановлення критеріїв безпеки держави. Зокрема, розглянуто оптимізаційно-імітаційні методи, які дають можливість завдяки певній кількості ітерацій, отрима- ти приближене до оптимального значення показників, що досліджуються. Визначено їх практичне значення, з метою подальшого застосування у сферах: аналізу загроз національної безпеки; аналізу ринку засобів захи- сту від таких загроз; оброблення інформації про характеристики загроз (можливості прояву та шкоди); оброблення інформації про можливості запобігання загроз; розроблення алгоритмів оптимального вибору варіантів захисту. Досліджено функціональні залежності рівня безпеки держави від низки факторів впливу, що можуть бути застосовані при моделюванні безпеки дер- жави, що дає можливість визначити рівні безпеки. Досліджено теоретичні аспекти застосування штучних нейронних ме- реж, які можуть використовуватись e процесі моделювання безпеки держа- ви. Особливістю їх використання можна вважати те, що велика кількість вхідних показників, якими характеризується рівень держаної безпеки, може бути проаналізована машинним способом, з використанням алгоритмів машинного навчання. Це дає можливість проводити класифікації різних станів, наприклад, загроз, ризиків та небезпек. І хоча не вирішеним аспектом залишається вибір певної ваги впливу вхідних параметрів нейронної мережі, їх самонавчання у поєднанні з імітаційними методами математичного моде- лювання, в подальшому можуть вирішити питання оптимізації оцінювання рівня безпеки держави.
APA, Harvard, Vancouver, ISO, and other styles
30

Мізюк, Віктория Анатоліївна, and Олександр Вікторович Коваленко. "Комп’ютерна система тестування для підсумкового контролю знань студентів." Theory and methods of e-learning 3 (February 10, 2014): 190–94. http://dx.doi.org/10.55056/e-learn.v3i1.339.

Full text
Abstract:
Сьогодні рейтинг і престиж навчального закладу визначаються не лише загальним рівнем викладання, матеріально-технічним забезпеченням, наявністю в штаті співробітників із вченими званнями, а й ефективністю та якістю системи контролю знань студентів. Поряд із традиційними методами контролю найширше розповсюдження знаходять методи контролю знань шляхом тестування.Спроби ввести тестування в систему освіти проводилися неодноразово. Одним з перших займався конструюванням та впровадженням тестового контролю в американській школі Е. Л. Торндайк. Тестування як об’єктивний контроль рівня освітньо-професійної підготовки фахівця впроваджував французький психолог А. Біне, який розробив тести для вимірювання загальної розумової обдарованості дітей. У радянській школі були спроби працювати за тестовою технологією у 1930-х та 1970-х роках, але на той час поширення цей вид контролю не отримав.Аналіз сучасної науково-педагогічної літератури й освітньої практики показав, що в наш час в Україні йде процес відновлення системи тестування в галузі освіти, а тестові технології розглядаються як один із ефективних засобів контролю якості підготовки й рівня предметних досягнень студентів.На сучасному етапі розвитку комп’ютерних технологій та рівні впровадження їх у різні сфери суспільства, зокрема в освітню галузь, дослідники все частіше звертаються до теми автоматизованого контролю знань, розробки комп’ютерних тестових систем різних навчальних закладах України [1–3]. Застосування комп’ютерів для контролю знань є економічно вигідним і забезпечує підвищення ефективності навчального процесу, об’єктивності оцінки рівня знань і є раціональним доповненням до інших методів перевірки знань.При сучасному розвитку ринку програмного забезпечення та систем комп’ютерного тестування розроблено досить багато програм для комп’ютерного тестування знань студентів. Ці системи являють собою або окремий програмний комплекс, що вимагає установки на комп’ютер кінцевого користувача [4], або Інтернет-сайт, що дозволяє проводити процес тестування й аналіз його результатів за допомогою звичайних веб-браузерів [5].В Ізмаїльському державному гуманітарному університеті з метою підвищення об’єктивності контролю знань студентів у поточному році кафедри інформатики була розроблена і впроваджена у дію комп’ютерна система «Тест_КВ». Область застосування системи на даному етапі – підсумкове тестування студентів денної форми навчання всіх напрямків підготовки. У перспективі розглядається можливість використання системи для проведення контрольних зрізів, кваліфікаційних тестів, заліків і будь-яких інших видів контролю знань студентів всіх форм навчання, у яких головну роль грає максимально об’єктивна оцінка знань.Система «Тест_КВ» дозволяє автоматизувати всі етапи тестування: від ідентифікації користувача, виводу на екран завдань й сприйняття відповіді до автоматичної перевірки їх правильність і генерування відомостей про підсумковий контроль.Архітектура система «Тест_КВ» є клієнт-серверною. Клієнтами системи є деканат, викладачі, студенти. Кожен з вказаною категорії клієнтів працюють з системою після проходження авторизації, використовуючи логін і пароль для доступу. Це дозволяє покласти на клієнтів виконання тільки операцій візуалізації й введення даних, а всі операції і збереженням бази даних та їх керуванням реалізовувати на сервері. Так, викладачі мають можливість внесення нових та корегування існуючих тестових завдань, деканатам надано можливість перегляду результатів тестування окремого студента або групи студентів, отримання електронної версії відомості з тестового контролю, розміщення розкладу семестрової сесії, поновлення списків студентів тощо. Студенти на власній сторінці можуть отримати інформацію про кількість іспитів на даний семестровий період, дату і час проведення тестового контролю, консультації до нього, скористатися методичними матеріалами для підготовки до іспитів.Сам тестовий контроль проводиться на локальному сервері, а тому пройти підсумковий тест студент може тільки з певної дисципліни, до якої за графіком екзаменаційної сесії він отримав доступ, і тільки на комп’ютерах, підключених до локальної мережі університету. За потребою або по запиту деканату у технічному додатку до відомості з тестового контролю відображається прізвище студента, назва тесту, який студент проходив, номер тестового листка, що містить всі видані студентові питання, час початку роботи в системі та ІР-адреса комп’ютера, з якого студент увійшов у систему.Для зручності управління контролюючою системою окремі функції були реалізовані окремим модулями. Це забезпечує легкість розширення функціонування без потреби внеску змін в існуючі модулі. Основними модулями на даний момент є «Управління тестами», «Тестування» та «Адміністрування».Модуль «Управління тестами» призначений для викладачів і максимально оптимізований для зручної роботи по вводу і збереження тестів на головному сервері із використанням повнофункціонального WYSIWYG-редактора. Окрім тестових даних, вбудований текстовий редактор дозволяє просто і зручно додавати в тестові завдання різноманітні мультимедіа-об’єкти (Flash-анімації, відео, аудіо, зображення).Система дозволяє вводити тестові питання наступних видів: 1) закритої форми з однією правильною відповіддю (1 з 4); 2) закритої форми з кількома правильними відповідями (4 з 4); 3) на встановлення істинності або хибності висловлювання (Так/Ні); 4) відкритої форми (коротка числова відповідь або коротка текстова відповідь).В якості додаткових можливостей викладач має можливостіскористатися функцією «Версія для друку», яка дозволяє відкрити й зберегти питання або тест у повній формі у файлі формату PDF у вигляді, оптимізованому для друку;переглянути спосіб відображення тестів в браузері і пройти пробне тестування;додавати перелік питань та методичні матеріали для підготовки студентів до підсумкового контролю.Модуль «Тестування» призначений для студентів. Проходження комп’ютерних тестів з конкретної дисципліни відбувається після авторизації студента та входження в модуль тестування. В системі тестового контролю номер залікової книжки використовується як унікальний номер студента. Після вибору і натискання кнопки «Розпочати тестування» запускається саме тестування. Важливими особливостями даного модуля є: виведення перед тестуванням інформаційного повідомлення, яке прикріплене до тесту; номер поточного питання з загальної кількості; проходження тесту у прямому і зворотному напрямку; таймер залишку часу на тест; продовження тесту після збою з’єднання з сервером.Модуль «Адміністрування» забезпечує централізоване управління всіма сеансами тестування та їхніми параметрами (кількість спроб, час на сеанс тестування, кількість питань у сеансі), а також типом запуску тесту. В системі підтримуються тип запуску тесту за паролем, після вводу якого студент обирає необхідний тест і натискає на посилання «Розпочати тест». Результати тестування опрацьовуються окремим модулем, результатом роботи якого є електронна відомість успішності в якій виводиться відсоток правильних відповідей та відповідна кількість балів підсумкового контролю кожного студента окремої групи.Програмна реалізація системи виконана на найпоширенішій для створення глобальних сайтів зв’язці AMP (Apache, MySQL, PHP), на якій побудовано більше половини всіх провідних ресурсів у мережі Internet (рис. 1). Рис. 1. Схема інтеграції комп’ютерної системи тестування Клієнтським додатком при даній архітектурі є веб-браузер. Виданий на рівні PHP HTML-код оптимізується під базовий стандарт HTMLv4. Це робиться з наступних причин:– використання браузера в якості клієнта дозволяє уникнути інсталяцій спеціалізованого програмного забезпечення на клієнтських місцях;– більшість комп’ютерів оснащені ОС Windows 98/2000/XP/Vista/7, для яких веб-браузер є невід’ємною частиною;– фактично користувач може використовувати будь-яку операційну платформу;– звичність Web-інтерфейсу для користувачів Інтернет.Розроблена система має багато переваг, а саме:кросплатформеність – система не залежить від типу операційної системи, яку встановлено на машині користувача, що дозволяє використовувати як застарілі апаратні платформи під керуванням Windows 95/98, так і сучасні Core 2 Duo або Athlon X2 під керуванням Windows 2000/XP/Vista/7 або X-Window Linux;легкість масштабування – усе, що потрібно для проведення тестування, – це веб-браузер, який присутній у будь-якій операційній системі (ОС), та доступ до сервера за допомогою локальної мережі;зручність у разі оновлення програмного забезпечення - оновлення програмного забезпечення здійснюється лише на сервері, що потребує менше часу та зусиль, а також полегшує супровід системи;у подальшому такі системи з мінімальними затратами часу можуть бути адаптовані для використання у дистанційному навчанні.У цей час комп’ютерна система тестування для підсумкового контролю знань студентів перебуває в експериментальній експлуатації в ІДГУ. Результати проведених тестувань на зимовій екзаменаційній сесії показали ефективність роботи системи (одночасно використовувалось до 134 комп’ютерів у 13 машинних залах). Найбільша кількість студентів, що проходили тестування, за день становила 834 особи.Викладачі й студенти високо оцінили цей метод контролю. Проведене експрес-опитування показало, що переважна більшість студентів (більше 80%) бажають екзаменуватися на комп’ютерах.Порівняння результатів проведення комп’ютерного тестування із традиційним (письмовим, тестово-бланковим) контролем знань виявило значні переваги першого. Комп’ютерний аналог такого контролю краще, тому що дозволяє звільнити викладача від непродуктивних рутинних операцій перевірки й підведення підсумків на основі брошур-тестів. Не викликала сумнівів у викладачів і вірогідність одержуваної оцінки при комп’ютерному контролі знань.Таким чином, розроблена система контролю дозволила ефективно і якісно здійснити перевірку знань студентів з підсумкового контролю і намітила напрямки удосконалення системи з метою покращення системи адміністрування системи, надання деканатам додаткових функцій по обробці результатів, поліпшення інтерфейсу додатків для роботи викладачів і студентів.
APA, Harvard, Vancouver, ISO, and other styles
31

Осадчий, Вячеслав Володимирович, and Катерина Петрівна Осадча. "Теорія і практика створення комп’ютерних програм навчального призначення." Theory and methods of e-learning 3 (February 11, 2014): 250–55. http://dx.doi.org/10.55056/e-learn.v3i1.346.

Full text
Abstract:
Згідно з Національною доктриною, одними із пріоритетних напрямів державної політики щодо розвитку освіти є: запровадження освітніх інновацій, інформаційних технологій і створення індустрії сучасних засобів навчання і виховання, повне забезпечення ними навчальних закладів. Держава зацікавлена у якісній професійній підготовці спеціалістів, і тому має забезпечувати підготовку кваліфікованих кадрів, здатних до творчої праці, професійного розвитку, освоєння та впровадження наукоємних та інформаційних технологій, конкурентоспроможних на ринку праці [1, 2]. Використання комп’ютерних програм навчального призначення дозволяє вдосконалювати методичну систему підготовки спеціалістів як у вищих навчальних закладах. так і у системі професійно-технічної та середньої освіти. Впровадження комп’ютерних програм у навчальний процес доповнює засоби навчання, які традиційно використовуються у процесі викладання дисциплін.У Наказі Міністерства освіти і науки України «Про Правила використання комп’ютерних програм у навчальних закладах» (2005) комп’ютерна програма навчального призначення визначається як «засіб навчання, що зберігається на цифрових або аналогових носіях даних і відтворюється на електронному обладнанні» [2].Теоретичні і практичні засади розробки програмного забезпечення навчального призначення розглядалися такими науковцями, як Д. Д. Аветісян, Л. І. Білоусова, М. І. Жалдак, А.С. Муравка, Н. В. Олефіренко та ін.М. І. Жалдак зазначає, що в основу інформатизації навчального процесу слід покласти створення і широке впровадження в повсякденну педагогічну практику нових комп’ютерно-орієнтованих методичних систем навчання на принципах поступового і неантагоністичного, без руйнівних перебудов і реформ, вбудовування інформаційно-комунікаційних технологій у діючі дидактичні системи, гармонійного поєднання традиційних та комп’ютерно-орієнтованих технологій навчання, не заперечування і відкидання здобутків педагогічної науки минулого, а, навпаки, їх удосконалення і посилення, в тому числі і за рахунок використання досягнень у розвитку комп’ютерної техніки і засобів зв’язку [3, 8].Педагоги-науковці і спеціалісти з інформаційних технологій виділяють певний клас прикладних програм навчального призначення, включаючи їх до різновидів з різними назвами (навчальне електронне видання, педагогічне програмне забезпечення, електронні програми навчального призначення, комп’ютерні програми навчального призначення, комп’ютерно-орієнтовані методичні системи навчання тощо), проте смисл залишається однаковим: це програми, які використовують у сфері освіти у навчальному процесі.Навчальне електронне видання – електронне видання, яке містить систематизований матеріал з відповідної науково-практичної галузі знань. Має відрізнятися високим рівнем виконання і художнього оформлення, повнотою відомостей, якістю методичного інструментарію і технічного виконання, наочністю, логічністю і послідовністю подання матеріалу [5, 34].Педагогічний програмний засіб (ППЗ), тобто засіб, створений для безпосереднього використання у навчальному процесі, в епоху розвитку ринкової економіки Ю. О. Жук, О. М. Соколюк розглядають як товарний продукт, який повинен користуватися попитом серед споживачів (викладачів вищих навчальних закладів, учителів середніх шкіл) [7].Л. І. Білоусова та Н. В. Олефіренко визначають програмне забезпечення навчального призначення як програмні засоби, призначенням яких є підтримка самостійної навчальної, тренувальної, творчо-дослідницької діяльності користувача у певній предметній галузі, а також діяльності самоконтролю. Науковці виділяють такі види програмного забезпечення навчального призначення: електронні підручники, електронні енциклопедії та довідники, середовища підтримки предметної діяльності, комп’ютерні тренажери, системи комп’ютерного тестування [4, 26].М. І. Жалдак, В. В. Лапінський, М. І. Шут пропонують класифікацію педагогічних програмних засобів залежно від переважного виду навчальної діяльності учня при роботі з певним засобом навчання і виокремлюють: 1) демонстраційно-моделюючі програмні засоби; 2) ППЗ діяльнісного предметно-орієнтованого-середовища; 3) ППЗ, призначені для визначення рівня навчальних досягнень, які в свою чергу класифікують за способом організації роботи в мережі; ступенем «гнучкості», можливістю редагування предметного наповнення і критеріїв оцінювання; структурою і повнотою охоплення навчального курсу; способом введення команд і даних та можливою варіативністю формулювання відповіді; можливими способами формулювання та подання учневі навчальних задач; способом формулювання та подання учневі навчальних задач; способом введення даних – командних впливів користувача; 4) ППЗ довідниково-інформаційного призначення [6, 33].В. П. Вембер зазначає, що не існує єдиного підходу як до класифікації електронних засобів навчального призначення, так і до термінології у цій сфері. Взявши за основу класифікаційні цілі та завдання, які можуть бути вирішені за допомогою ЕЗНП, можна виділити наступні типи: ілюструючі, консультуючі, операційне середовище, тренажери, навчальний контроль [6, 33].Потреби сучасного суспільства у розробці програм різноманітного призначення зростають із часу появи перших електронно-обчислювальних машин. Особливими є запити вищого навчального закладу у створенні та впровадженні у навчальний процес навчальних електронних видань, найбільш сучасними й ефективними серед яких відтворюються на комп’ютері.На базі Інформаційно-комп’ютерного центру Мелітопольського державного педагогічного університету імені Богдана Хмельницького за останні кілька років розроблено і продовжують створюватися різні типи комп’ютерних програм навчального призначення: 1) електронні підручники та посібники; 2) програмні тренажери; 3) мультимедійні навчальні програми.Опишемо більш докладно кілька комп’ютерних навчальних програмних засобів. Електронний підручник «Основи Інтернет» призначений для студентів ІІ курсу факультету інформатики і математики денної форми навчання та студентів заочної форми навчання, які навчаються за освітньо-професійною програмою бакалавра галузі знань 0403 «Системні науки та кібернетика». Створення цього електронного підручника, як і інших, проходило у декілька етапів, а саме [8, 94-95]:Добір навчального матеріалу.Формування групи фахівців, відповідальних за створення електронного підручника.Планування структури та дизайну: в основу відображення інформації в електронному підручнику було покладено фреймову структуру web-документу.Вибір апаратних та програмних засобів розробки та реалізації електронного підручника: мова розмітки HTML та мова програмування JavaScript.Реалізація гіпертекстових посилань у тексті.Добір матеріалу для мультимедійного втілення: відбір графічного наповнення навчальних тем, створення відповідного відеоматеріалу.Розробка контрольних запитань.Тестування та доопрацювання електронного підручника: апробація у навчальному процесі, видалення або додавання необхідних текстових, графічних або відеоматеріалів тощо.Впровадження електронного підручника у систему інформаційного забезпечення навчального процесу освітнього закладу.Отримання свідоцтва про реєстрацію авторського права у Державному департаменті інтелектуальної власності.Електронний підручник з урахуванням специфіки навчальної дисциплін має розвинену структуру. Навчальний матеріал охоплює всі питання, необхідні для успішної роботи із різноманітними службами мережі Інтернет. Матеріал електронного підручника охоплює всі змістовні модулі, визначені анотацією для мінімальної кількості годин, передбачених стандартом. Електронний підручник містить лекції, практичні завдання, інформацію до самостійної роботи, відеоматеріали та приклади завдань до модульно-тестового контролю. Розгалужена структура електронного підручника дозволяє вивчати матеріал у зручній для студента послідовності. Відеоматеріали наглядно демонструють можливості роботи в мережі Інтернет і призначені для успішного оволодіння даним курсом.До змісту електронного підручника входить глосарій, який містить перелік термінів та понять, що використовуються у процесі засвоєння навчальної дисципліни. Останній розділ електронного підручника містить перелік джерел, якими студенти можуть додатково користуватися під час засвоєння курсу «Основи Інтернет».Програмні тренажери широко використовуються у практиці предметного навчання й у професійній підготовці. За допомогою них майбутні фахівці відпрацьовують свої уміння і навички діяти в різних ситуаціях. У навчанні програмні тренажери забезпечують: послідовне виведення на екран завдань заданої складності з вибраної теми; контроль за діями користувача з розв’язання запропонованого завдання; миттєву реакцію на неправильні дії; виправлення помилок користувача; демонстрацію правильного розв’язання завдання; виведення підсумкового повідомлення про результати роботи користувача (можливо, з рекомендаціями чи порадами) [4, 30].Для розробки тренажерів використовувався певний набір програмного забезпечення. Основним інструментарієм розробки тренажерів «Пакет 3DSMax», «Microsoft Office Word 2010», «Microsoft Office Excel 2010», «Microsoft Office PowerPoint 2010», «Microsoft Office OneNote 2010» стала технологія Flash з елементами ActionScript і програма Camtasia Studio. Створення кожного уроку тренажеру відбувалося за таким алгоритмом:1. Захоплення скрінкастів під час роботи з відповідним програмним забезпеченням за відповідною темою уроку.2. Редагування відеоряду.3. Запис звуку з мікрофону.4. Вставка субтитрів і виносок, у тому числі з інтерактивними елементами.5. Додавання тесту.6. Експорт відеофайлу у формат flv/swf.Кожен тренажер розділений на теоретичну частину, в якій подається інформація щодо операцій по роботі з відповідним програмним засобом, та власне тренувальну, в якій дається завдання, що має бути виконане студентом, без чого він не зможе продовжити тренування.Мультимедійні комп’ютерні навчальні програми поступово витісняють друкарські матеріали, відео- і аудіокасети, адже вони дозволяють організувати ефективну самостійну пізнавальну діяльність студентів [9, 157].Мультимедійна навчальна програма з установки і налаштування Windows 7 призначена для методичного забезпечення дисципліни «Програмне забезпечення ПЕОМ». створена на основі веб-технологій, а саме: HTML, XML, CSS, Java Script, ActiveX, Silverlight. У форматі HTML створена кожна сторінка курсу. CSS використовується для оформлення стилів сторінок. У html-документ включено код мовою Java Script та елементи ActiveX. На html-сторінках з інтерактивними елементами використовується технологія Silverlight. Як засіб розробки програми використовувалася «Система для створення навчальних матеріалів» (Learning Content Development System(LCDS)) – безкоштовним інструментом, за допомогою якого учасники спільноти Microsoft Learning можуть створювати високоякісні, інтерактивні електронні курси; публікувати електронні курси, лише заповнивши прості форми LCDS, які дозволяють створювати високоспеціалізовані тексти, інтерактивні завдання, конкурси і питання, ігри, тести, анімаційні ефекти, демо-ролики та інші мультимедійні матеріали.Зміст програми поділяється на модулі, уроки і теми. Модуль може містити від одного до кількох уроків, які у свою чергу можуть містити від однієї до кількох тем. У програмі наявні елементи самоперевірки і практичні роботи у вигляді інтерактивних ігор, а також список використаних і додаткових джерел і глосарій.Розроблені нами комп’ютерні програми навчального призначення впроваджені у навчальний процес університету, крім того вони можуть бути використані у процесі професійної перепідготовки кадрів і дистанційному навчанні.Планується подальша робота над удосконаленням і оновленням уже розроблених комп’ютерних програм навчального призначення та створенням нових програм для методичного забезпечення дисциплін вищого навчального закладу.
APA, Harvard, Vancouver, ISO, and other styles
32

Галущак, Мар’ян Олексійович. "Вища освіта в Україні та шляхи її вдосконалення: фундаментальна підготовка в технічному університеті." Theory and methods of learning fundamental disciplines in high school 1 (March 28, 2014): 86–91. http://dx.doi.org/10.55056/fund.v1i1.408.

Full text
Abstract:
Реформа системи вищої освіти завдяки цілеспрямованій праці Міністерства освіти і науки та вузів дала позитивні результати, але ще не вирішила головного завдання – підвищення якості підготовки спеціалістів, які потрібні державі і суспільству для творчої професійної діяльності в період науково-технічного прогресу людства і ринкових відносин.Головною причиною цього, на мій погляд, є те, що розвиток системи освіти тісно пов’язаний з економічними проблемами держави та національними особливостями суспільства, а ми намагаємось розв’язати освітянські проблеми за іноземним зразком, забуваючи що, наприклад, в Америці, звідки взято найбільше запозичень, цивілізована ринкова економіка, в якій визначальними є закони та справа. В них життєвий успіх спеціаліста визначається рівнем його підготовки у вузі, а недоукам не дають роботи на власних фірмах навіть батьки. У нас життєвий успіх спеціаліста у великій мірі залежить від зв’язків, причому ця “хвороба” так укоренилася, що сприймається за нормальні речі. Дане явище потрібно якнайшвидше ліквідувати, бо воно сильно гальмує прогресивний розвиток.В порівнянні з економікою передових капіталістичних держав, економіка України має інші проблеми. Там її основою є новітні технології з використанням сучасної техніки і головним для них є знайти ринки збуту для конкурентноспроможної продукції. В нас же головною проблемою є необхідність технічного переозброєння більшості галузей промисловості і сільського господарства, тому що на одиницю продукції (в більшості низької якості) відносно світових показників набагато вищі витрати енергоносіїв та сировини.Зрозуміло, що ці проблеми можуть успішно вирішувати спеціалісти високої кваліфікації, які підготовлені до творчої професійної діяльності по створенню ефективних технологій та машин для їх реалізації. Рівень кваліфікації спеціаліста будь-якого профілю, а особливо це стосується підготовки сучасних інженерів, залежить від рівня його базової фундаментальної підготовки, яка є наріжним каменем технічної освіти. За всіх часів дана теза була постулатом і ніким не спростовувалась. Тим більш вражаючим є той факт, що роль фундаментальних дисциплін в навчальному процесі постійно знижується. Щоб переконатися в цьому, достатньо порівняти обсяги годин, що відводяться на їх викладання в недалекому минулому з нинішніми. Але ж ми хочемо, щоб наші випускники мали рівень кваліфікації не нижчий за рівень спеціалістів, що випускають кращі закордонні вузи!Проведений порівняльний аналіз навчального навантаження з математики, фізики і хімії для різних напрямків підготовки у нас і в деяких закордонних вузах також засвідчує, що питома вага майже з усіх фундаментальних дисциплін в них приблизно в два рази більша, ніж у нас. Деякі відхилення маємо в Краківській гірничій академії, але в Польщі зовсім інша система середньої освіти. В них дванадцятирічна середня освіта, причому в технічних ліцеях чи гімназіях, наприклад, учні вже вивчили матаналіз, який в нас студенти вивчають протягом першого курсу. Крім цього, в них має місце тісний зв’язок фундаментальних дисциплін з майбутньою професією. В австрійських і німецьких вузах, наприклад, назва дисциплін звучить так: математика для машинобудівників, чи електриків, чи економістів. Точно так само і фізика та хімія читаються відповідно до обраної спеціальності. Тут, на мою думку, йдеться про питання державної ваги і його треба вирішувати на відповідному рівні. Не принижуючи значення інших наук, необхідно все ж наголосити, що саме фундаментальні дисципліни формують основи наукового світогляду кожної людини, саме фізика, хімія і математика складають основу науково-технічного прогресу людства.Також треба визнати, що у справу погіршення фундаментальної освіти значний “внесок” робить і середня школа, в якій рівень знань учнів, наприклад, з фізики і хімії, вже опускається до критичної межі. Одним із каталізаторів такого становища стала відміна вступного іспиту з фізики на переважну більшість факультетів багатьох технічних університетів. Цей сигнал чітко зрозуміли вчителі, учні і їхні батьки. В результаті вузівські викладачі, а пізніше і викладачі інших технічних дисциплін, в розпачі від низького рівня знань фундаментальних дисциплін своїх студентів. Вони за перші семестри намагаються ліквідувати прогалини шкільної освіти, але це, як правило, не вдається. Пізніше такі студенти отримують дипломи інженерів, деякі вступають до аспірантури та стають викладачами, тобто колесо виродження все більше розкручується. Те, що в даний час відбувається із шкільними і вузівськими програмами фундаментальних дисциплін, є копіюванням нашою освітою чужих методик і ідей. Але саме наші спеціалісти, які навчались математики, фізики і хімії за традиційними програмами, є бажаними в різних зарубіжних наукових центрах, які працюють в галузі фізики плазми, твердого тіла, квантової електроніки, тощо. Тому не варто відкидати те позитивне, що напрацьовано десятиріччями і яке давало нам Нобелівських лауреатів та здобутки світового рівня у різних областях знань, технологій і техніки.Треба відзначити, що одне із найгостріших питань, які обговорювались на загальних зборах Відділення фізики і астрономії НАН України – низький рівень освіти з фізики у школах і вузах країни. До Президента України і уряду відповідне звернення підписали сорок дійсних членів та членів-кореспондентів НАН України. Як же покращити фундаментальну підготовку фахівців? Відомо, що тепер вузи мають значні автономні права і варто ними скористатися, не чекаючи рішень “згори”. В нашому національному університеті нафти і газу завдяки правильному розумінню ситуації з боку ректора, відомого у світі вченого в області механіки машин, академіка Української нафтогазової академії, професора Крижанівського Є.І., зроблені відповідні кроки щодо виправлення ситуації та покращення викладання фундаментальних дисциплін, без яких не може бути повноцінного інженера, який би успішно конкурував на міжнародному ринку праці. Два роки тому Вченою Радою університету було створено інститут фундаментальної підготовки, який згідно Положення є навчально-методичним, навчально-організаційним і науково-дослідним підрозділом університету на правах факультету для практичного втілення концепції вищої багатоступеневої інженерно-технічної освіти на базі глибоких фундаментальних знань з вищої математики, фізики і хімії. До складу інституту входять три кафедри фундаментальних наук, на черзі створення іще двох кафедр. Сьогодні можна констатувати, що створення такого інституту було необхідним і корисним, так як кафедри фізики, вищої математики і хімії вирішують спільні питання та об’єднані однією метою – покращити базову фундаментальну підготовку фахівців. Викладачі мають можливість обмінюватись досвідом своєї роботи, бо знаходяться на одному рівні, тоді як раніше були в певній мірі на другорядних ролях, оскільки кафедри відносились до різних факультетів, які більше розв’язують задачі спеціальної підготовки.Дуже важливим моментом у діяльності інституту була участь в організації і проведенні VIII науково-методичної конференції, на якій обговорювались питання фундаментальної підготовки фахівців і на яку були запрошені викладачі з інших вузів та вчителі шкіл і коледжів. При підготовці до конференції виконано значний об’єм роботи по вивченню і порівнянню навчальних планів різних спеціальностей у нашому університеті та багатьох європейських технічних вузах. Цей аналіз було покладено в основу рекомендацій, які затвердила наша Вчена Рада і які стали програмою діяльності інституту. Так, враховуючи неможливість перегляду навчальних планів спеціальностей в сторону збільшення аудиторних годин на вивчення фізики, математики, хімії, інформатики і програмування ми змістили акцент при їх викладанні в сторону профілізації навчального процесу в залежності від потреб профілюючої кафедри, тобто змінили зміст робочих програм дисциплін. Також на кафедрах інституту запроваджено керовану і контрольовану самостійну роботу, тобто йде мова про індивідуалізацію навчального процесу, оскільки світ на початку ХХ1 століття надзвичайно швидко змінюється, – вперше в історії розвитку людства покоління теоретичних ідей і машин змінюються в часі швидше, ніж покоління людей, а тому потрібно навчити студентів, майбутніх фахівців, самостійно знаходити необхідні знання в морі інформації що нас оточує для досягнення певного освітнього рівня. Для реалізації даного напрямку роботи потрібно змінити роль викладача: замість передавача певної суми знань студенту, він повинен стати координатором навчального процесу, консультантом, керівником навчання. Зауважу, що зміна функцій викладача – це довготривалий процес по підвищенню фахового рівня професорсько-викладацького складу.Проведений аналіз показав, що в нас є недостатнє забезпечення студентів навчально-методичною літературою. Тому в інституті сформовано єдиний план підготовки і випуску підручників, навчальних посібників, конспектів лекцій, електронних посібників тощо, а також створені творчі колективи, які повинні якнайшвидше забезпечити всіх студентів необхідними дидактичними матеріалами українською мовою.Дуже важливим напрямком діяльності інституту є налагодження співпраці і зв’язків наших кафедр із спорідненими кафедрами технічних вузів України. До речі, це один із шляхів більш швидкого забезпечення методичною літературою студентів внаслідок обміну, а також підвищення кваліфікації викладачів.Розв’язанню проблеми покращення фундаментальної підготовки майбутніх фахівців сприяє використання нових інформаційних та телекомунікаційних технологій проведення навчального процесу з використанням відповідних технічних засобів (аудіо- і відеоапаратури, комп’ютерів, телебачення, мережі Інтернет та ін.). Для цього потрібно використовувати як мізерні бюджетні кошти, так і залучати кошти різних фондів під проекти навчально-методичного характеру. Адже саме отримання грантів у великій мірі допомагає зміцнювати матеріально-технічну базу кафедр.Також хочу зачепити іще одне болюче питання вищої школи. З метою виживання зараз у вузах ми маємо поряд із студентами, які навчаються за рахунок бюджетних коштів, так званих контрактників. Це добре, але борючись за гроші ми намагаємось зберегти більшість студентів, що веде до зниження якості навчання. У даній ситуації кафедри фундаментальної підготовки в найгіршому становищі, тому що перед ними постає завдання виправлення браку середньої школи і відбору студентів для їх подальшого навчання. В нашому університеті знайдено вихід з даної ситуації: в навчальний процес впроваджено модульну технологію в поєднанні з визначенням рейтингу студентів. Було проведено п’ять науково-методичних конференцій, результати роботи яких дозволили розробити і вдосконалити “Положення про систему поточного, підсумкового контролю і оцінювання знань та визначення рейтингу студентів”. Треба відзначити, що через консерватизм характеру людини, все нове важко приживається. Але завдяки саме волі ректора Крижанівського Є.І. дана система організації і проведення навчального процесу працює, стимулюючи систематичну і самостійну роботу студентів протягом всього семестру. Вона підвищує об’єктивність оцінки знань, активізує навчальну діяльність та розвиває творчі здібності студентів, а результати екзаменаційних сесій та висновки більшості викладачів стверджують, що впровадження даної технології навчання є виправдане і сприяє підвищенню фахового рівня спеціалістів.Аналізуючи етапи і тенденції розвитку фундаментальної підготовки в технічному вузі приходимо до висновку, що зараз, коли створені нові форми і методи управління навчальним процесом, потрібен перехід до нових принципів формування змісту. Тому, створюючи нові інтенсивні технології навчання, треба зберегти глибокі традиції нашої фундаментальної підготовки та поєднати їх із здоровим прагматизмом заходу, тобто додати їй прикладну спрямованість. Це потребує координації зусиль викладачів різних предметів, великих затрат часу, тому що ці технології повинні базуватись на ідеї синтезу усіх дисциплін та принципу фундаментальності освіти, які об’єднують закономірності процесу пізнання і повинні враховувати ментальність нашого народу.
APA, Harvard, Vancouver, ISO, and other styles
33

Bibyk, Yuliya, Olena Belska, and Ivan Rakovych. "УСЕРЕДНЕНІ ПОКАЗНИКИ ВАРТОСТІ ЕКСПЛУАТАЦІЇ ДОРОЖНІХ МАШИН ТА МЕХАНІЗМІВ. ПРОБЛЕМИ ТЕХНІЧНОГО ОСНАЩЕННЯ ДЕРЖАВНИХ ДОРОЖНІХ ПІДПРИЄМСТВ." International Journal of Innovative Technologies in Economy, no. 3(35) (September 23, 2021). http://dx.doi.org/10.31435/rsglobal_ijite/30092021/7681.

Full text
Abstract:
Важко переоцінити значення дорожньо-будівельної галузі для економічного розвитку будь-якої країни. Зокрема, за даними Київської школи економіки (KSE), довгострокові ефекти в результаті реалізації інфрастуктурної програми «Велике будівництво», велика частка якої припадає на проекти в дорожній галузі, призведе до збільшення ВВП у найближчі 5 років на 2,2 % [1].В цих умовах необхідно ефективно використовувати фінансові ресурси, направлені на відновлення транспортно-експлуатаційних характеристик мережі автомобільних доріг України. Для цього надзвичайно важливим є об’єктивне визначення вартості дорожніх робіт на перших етапах інвестиційного процесу, що можливо досягнути за рахунок використання актуальних та достовірних даних щодо вартості всіх складових.Вартість експлуатації дорожньо-будівельної техніки - один з найбільш значущих чинників, що впливають на собівартість робіт та підвищенню рентабельності підприємств. Для достовірного визначення вартості експлуатації дорожньої техніки на етапі складання інвесторської кошторисної документації необхідно застосовувати рекомендовані Укравтодором Усереднені показники вартості експлуатації дорожніх машин і механізмів (далі - УПВЕМ), які відображають усереднену фактичну вартість експлуатації дорожньої техніки, а об’єктивність розрахунків забезпечується актуальною нормативною базою, систематичним оновленням вартості трудових та матеріальних ресурсів та отриманням інформації про фактичні витрати підрядних організацій.При розрахунку інвесторської кошторисної документації вартість машин і механізмів розраховується на підставі Усереднених показників вартості експлуатації машин і механізмів, які в свою чергу розраховуються шляхом усереднення даних по складових вартості, отриманих від учасників дорожнього ринку. Таким чином підприємства, які мають фактичні витрати, що перевищують усереднені, упускатимуть конкуренту перевагу та отримуватимуть погіршення економічної ефективності ведення їх діяльності за рахунок перевитрат на експлуатацію машин.
APA, Harvard, Vancouver, ISO, and other styles
34

Лукащук, Світлана. "ВІРТУАЛІЗАЦІЯ ЯК ФЕНОМЕН ОСВІТНЬОГО ПРОСТОРУ." Psychological Prospects Journal, no. 38 (December 20, 2021). http://dx.doi.org/10.29038/2227-1376-2021-38-163-176.

Full text
Abstract:
Мета. Здійснити теоретичний аналіз віртуалізації як феномену освітнього простору, розкрити поняття віртуалізації в системі навчального середовища, вказати на характерологічні властивості віртуального простору; проаналізувати роль явища віртуалізації в процесі навчання та всебічного розвитку особистості. Методи. Для реалізації мети дослідження було застосовано загальнонаукові теоретичні методи дослідження інформації, такі як: аналіз, синтез, абстрагування, узагальнення, індукція, дедукція, пояснення і класифікація. Результати. Здійснено спробу аналізу феномену як природного компоненту життєтворчості суб’єктів навчального простору, що зумовлюється системою техногенних, соціокультурних та економічних факторів. Вказано на те, що візуалізація навчального процесу дає можливість прояву нового соціального середовища, ставши таким чином відправною точкою фундаментальних трансформацій процесу освіти. Визначено, що сама природа віртуального має різний характер – віртуалізація, опосередкована індивідом або машиною. У першому випадку явище виникає в процесі безпосередньої взаємодії суб'єктів навчально-виховного процесу. Другий випадок збільшення віртуалізації освітнього простору передбачає зменшення міжособистісного спілкування учасників процесу, самостійне освоєння навчального матеріалу, використання особистістю гаджетів як замінників суб’єктів процесу навчання. Вказано на характерологічні властивості віртуального простору за Д. Івановим: не суттєвість впливу (зображення створює ефекти, характерні для реального); обумовленість якостей і характеристик (предмети штучні та мінливі); ефемерність (свобода входу, вона забезпечує можливість переривати і відновити присутність. Проаналізовано роль явища віртуалізації в процесі навчання та всебічного розвитку особистості, яка дає змогу не лише здійснювати безперервну освіту і саморозвиток протягом усього життя, а й успішно орієнтуватися та функціонувати, як професіонал у сучасному інформаційному світі. Висновки. Інформатизація та комп'ютеризація освіти, широке використання глобальної мережі Інтернет призведе до радикальних змін у системі освіти в цілому, оскільки така ситуація передбачає всебічний розвиток особистості.
APA, Harvard, Vancouver, ISO, and other styles
35

Halaur, Svitlana. "Регулятивна організація топонімів у сучасному українському художньому тексті." Лінгвостилістичні студії, December 20, 2019, 18–28. http://dx.doi.org/10.29038/2413-0923-2019-10-18-28.

Full text
Abstract:
У статті проаналізовано функціювання топонімів у сучасній українській художній прозі та встановлено їхню участь в оформленні текстової категорії регулятивності, яка контролює адекватне сприйняття художньої інформації. З’ясовано, що регулятивність топонімів залежить від макро- чи мікропозиціювання їх у текстовому просторі, формування на їхній основі мережі стилістичних прийомів, спеціального впорядкування топонімних сигналів регулятивними способами – повтором, конвергенцією, винесенням топоназви в сильну позицію, контрастуванням, мовною грою. Ключові слова: топонім, категорія регулятивності тексту, регулятивна функція, регулятема, спосіб регулятивності. Покликання Список використаних джерел Андрухович, Софія. Фелікс Австрія. Львів : Видавництво Старого Лева, 2015. Андрухович, Юрій, Дереш, Любко, і Жадан, Сергій. Трициліндровий двигун любові. Харків : Фоліо, 2008. Андрухович, Юрій. Рекреації. Харків : Фабула, 2017. Винничук, Юрій. Цензор снів. Київ : Довженко Букс, 2016. Вдовиченко, Галина. Бора. Харків : Книжковий клуб «Клуб сімейного дозвілля», 2011. Вдовиченко, Галина. Пів’яблука. Інші пів’яблука. Львів : Видавництво Старого Лева, 2019. Гранецька, Вікторія. Абонентська скринька. Львів. Кава. Любов. Харків : Книжковий клуб «Клуб сімейного дозвілля», 2015. Гримич, Марина. Варфоломієва ніч. Львів : Кальварія, 2002. Даниленко, Володимир. Газелі бідного Ремзі: Любовні послання мудрого й правовірного кримського хана Хаджи Селіма Герая І своїм сорока жінкам із країни гяурів. Львів : ЛА «Піраміда», 2008. Дашвар, Люко. Мати все. Харків : Книжковий клуб «Клуб сімейного дозвілля», 2011. Дашвар, Люко. Село не люди. Харків : Книжковий клуб «Клуб сімейного дозвілля», 2014. Денисенко, Лариса. Сарабанда банди Сари. Київ : Нора-Друк, 2014. Забужко, Оксана. Музей покинутих секретів. Київ : Факт, 2009. Карпа, Ірена. З роси, з води і з калабані. Харків : Книжковий клуб «Клуб сімейного дозвілля», 2012. Карпа, Ірена. Піца «Гімалаї». Харків : Книжковий клуб «Клуб сімейного дозвілля», 2013. Кожелянко, Василь. Дефіляда в Москві. Львів : Кальварія, 2000. Курков, Андрій. Остання любов президента. Харків : Фоліо, 2019. Матіос, Марія. Містер і місіс Ю в країні укрів. Mr. & Ms. U in country UA. Львів : Літературна агенція «Піраміда», 2006. Медвідь, Ганна. «Велосипед». Медвідь, Ганна. На струнах душі. Львів : ЛА «Піраміда», 2014, с. 196–201. Мельничук, Богдан. «Брудно ви живете». Літературна Україна, 8 вересня 2016, (№ 34), с. 12. Найдич, Ніна. «Таємниця маленького міста». Найдич, Ніна. Казки та історії для дорослих, які були дітьми. Київ : Гамазин, 2016, с. 169–172. Положій, Євген. Іловайськ: розповіді про справжніх людей. Харків : Фоліо, 2015. Роздобудько, Ірен. Мандрівки без сенсу і моралі. Київ : Нора-Друк, 2011. Санченко, Антон. Нариси бурси. Київ : Темпора, 2011. Шкляр, Василь. Елементал. Харків : Книжковий клуб «Клуб сімейного дозвілля», 2014. Список використаної літератури Бут, Сергій. Листи з того світу. Харків: Книжковий клуб «Клуб сімейного дозвілля», 2015. Вінтонів, Тетяна. Реальна онімія як засіб образності в історичній оповіді. Дис. ...канд. філол. наук: 10.02.15. Донецьк, 2008. Горбач, Олена. Ономастикон українських сатирично-гумористичних текстів кінця ХХ – початку ХХІ століття. Дис. ...канд. філол. наук: 10.02.01. Кам’янець-Подільський, 2017. Калинкин, Валерий. «От литературной ономастики к поэтонимологии». Логос ономастики, № 1, 2006, с. 81–9. Карпенко, Юрій. Літературна ономастика. Одеса: Астропринт, 2008. Максимюк, Марта. «Особливості функціонування топонімів у романі В. Кожелянка «Дефіляда в Москві». Логос ономастики, №1, 2006, с. 97–103. Мельник, Світлана. «Прагматичні функції іншомовних вкраплень в українській прозі кінця ХХ – початку ХХІ століть». Наукові записки Національного університету «Острозька академія». Серія «Філологічна», вип. 52, 2015, с. 177–9. Мороз, Оксана. «Топоніми як компоненти художнього тексту (на матеріалі роману «Сонячна машина» В. Винниченка)». Сучасні проблеми мовознавства та літературознавства, вип. 15, 2011, с. 351–5. Немировская, Т. В. «Некоторые проблемы литературной ономастики». Актуальные вопросы русской ономастики. Киев : УМКВО, 1988, с. 112–22. Серебрякова, Валерія. Концептуалізація поетонімосфери циклу романів С. Мейер «Сутінки». Дис. ...канд. філол. наук: 10.02.04. Одеса, 2016. Хрептулов, А. А. «Топонимическая стратификация художественного произведения». Шоста Республіканська ономастична конференція. Т. 1. Теоретична та історична ономастика. Літературна ономастика. Одеса, 1990, с. 167–8.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography