Academic literature on the topic 'Лінійні диференціальні рівняння'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Лінійні диференціальні рівняння.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Лінійні диференціальні рівняння"

1

Страх, Олександр, and Тетяна Лукашова. "МІЖДИСЦИПЛІНАРНІ ЗВ’ЯЗКИ ПРИ ВИВЧЕННІ ДЕЯКИХ ТЕМ ДИСКРЕТНОЇ МАТЕМАТИКИ ТА ДИФЕРЕНЦІАЛЬНИХ РІВНЯНЬ." Physical and Mathematical Education 29, no. 3 (June 23, 2021): 112–18. http://dx.doi.org/10.31110/2413-1571-2021-029-3-017.

Full text
Abstract:
Анотація. Найважливішим завданням підготовки майбутніх фахівців у галузі математики є розширення й поглиблення математичних знань з метою їх комплексного застосування на практиці, в майбутній науковій та професійній діяльності. Одним зі шляхів реалізації такого завдання є використання міждисциплінарних зв’язків, які передбачають перенесення методів дослідження і моделей з однієї наукової дисципліни в іншу. Формулювання проблеми. У даній статті розглядається можливість реалізації міждисциплінарних зв’язків дискретної математики та диференціальних рівнянь на прикладі вивчення тем «Лінійні рекурентні співвідношення зі сталими коефіцієнтами» та «Лінійні диференціальні рівняння зі сталими коефіцієнтами». Матеріали і методи. Авторами використовувались наступні методи досліджень: системний аналіз наукової, навчальної та методичної літератури; порівняння та синтез теоретичних положень, розкритих в науковій та навчальній літературі; узагальнення власного педагогічного досвіду та досвіду колег з інших закладів вищої освіти. Окрім того, були використані деякі загально математичні та спеціальні методи теорії диференціальних рівнянь, дискретної математики та різницевого числення. Результати. Одним зі способів розв’язування лінійних однорідних рекурентних співвідношень зі сталими коефіцієнтами є складання характеристичного рівняння і запис загального розв’язку вихідного співвідношення залежно від значень знайдених характеристичних коренів. Аналогічний алгоритм використовується й для знаходження загального розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. У статті встановлено зв’язок між розв’язками рекурентних співвідношень та диференціальних рівнянь, які відповідають одному різницевому рівнянню. Висновки. Встановлення зв’язків між моделями і методами дослідження, які використовуються при вивченні різних математичних дисциплін, що входять у програму підготовки майбутніх фахівців-математиків, дозволяє сформувати у студентів цілісне уявлення про математичні об’єкти, алгоритми і теорії, і як наслідок, робить їх знання системними і практично більш значущими. Це сприяє інтелектуальному розвитку студентів, формуванню в них системних математичних знань, підвищенню рівня математичної грамотності та інтересу до предмету.
APA, Harvard, Vancouver, ISO, and other styles
2

Ільченко, Ю. "Лінійні диференціальні рівняння в банаховому просторі з сильно P-позитивним операторним коефіцієнтом." Вісник Київського національного університету імені Тараса Шевченка. Математика. Механіка, Вип. 23 (2010): 11–16.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ільченко, Ю. "Лінійні диференціальні рівняння в банаховому просторі з сильно P-позитивним операторним коефіцієнтом." Вісник Київського національного університету імені Тараса Шевченка. Математика. Механіка, Вип. 23 (2010): 11–16.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Вакал, Л. П., Є. С. Вакал, and Б. П. Довгий. "РОЗВ’ЯЗАННЯ ІНТЕГРАЛЬНИХ РІВНЯНЬ ФРЕДГОЛЬМА ІІ РОДУ З ВИКОРИСТАННЯМ ДИФЕРЕНЦІАЛЬНОЇ ЕВОЛЮЦІЇ." Visnyk of Zaporizhzhya National University Physical and Mathematical Sciences, no. 1 (September 6, 2021): 15–21. http://dx.doi.org/10.26661/2413-6549-2021-1-02.

Full text
Abstract:
У статті розглядається лінійне інтегральне рівняння Фредгольма ІІ роду з невиродженим ядром. Наводиться огляд методів знаходження його наближених розв’язків. Вивчається випадок, коли за наближений розв’язок рівняння вибирається функція, що лінійно залежить від низки вільних параметрів. Оптимальні значення цих параметрів пропонується визначати з умови мінімуму відповідної норми інтегральної нев’язки, яка утворюється після підстановки вказаної функції в рівняння. У свою чергу, задача мінімізації норми нев’язки розглядається як оптимізаційна задача, і для її розв’язання використовується алгоритм диференціальної еволюції, призначений для пошуку глобального мінімуму (максимуму) функцій багатьох змінних. У цьому алгоритмі для популяції векторів, які представляють собою можливі розв’язки задачі мінімізації, моделюються базові процеси біологічної еволюції: схрещування, мутація та селекція, щоб сформувати наступну популяцію векторів, значення цільової функції (критерію мінімізації) яких будуть меншими, ніж у векторів попередньої популяції. Умовою закінчення алгоритму є досягнення заданого максимального числа популяцій. Координати вектора останньої популяції, який має найменше значення цільової функції, є оптимальними значеннями параметрів наближеного розв’язку. Алгоритм простий у програмній реалізації та застосуванні (містить мало параметрів налаштування), дозволяє використовувати різні норми інтегральної нев’язки (квадратичну, рівномірну, суму модулів значень нев’язки). Схема запропонованого алгоритму модифікована порівняно зі стандартною і не містить операції схрещування. Це дозволило спростити алгоритм без шкоди для точності отриманих результатів. Як показав обчислювальний експеримент, для знаходження оптимальних значень параметрів цілком достатньо операцій мутації та селекції. Алгоритм імплементований у системі Matlab. Розглядаються приклади знаходження наближених розв’язків з використанням розробленого алгоритму, який можна розглядати як додатковий інструмент до відомих проекційних методів розв’язання рівнянь Фредгольма.
APA, Harvard, Vancouver, ISO, and other styles
5

Щоголев, С. А., and В. В. Карапетров. "Критичний випадок в теорії матричних диференціальних рівнянь." Науковий вісник Ужгородського університету. Серія: Математика і інформатика 39, no. 2 (November 16, 2021): 100–115. http://dx.doi.org/10.24144/2616-7700.2021.39(2).100-115.

Full text
Abstract:
При математичному описанні різноманітних явищ і процесів, що виникають в математичній фізиці, електротехніці, економіці, доводиться мати справу з матричними диференціальними рівняннями. Тому такі рівняння є актуальними как для математиків, так і для фахівців в інших галузях природознавства. В даній статті розглядається квазілінійне матричне диференціальне рівняння з коефіцієнтами, зображуваними у вигляді абсолютно та рівномірно збіжних рядів Фур'є з повільно змінними в певному сенсі коефіцієнтами та частотою (клас F). Різниці діагональних елементів матриць лінійної частини є суто уявними, тобто ми маємо справу з критичним випадком. Але між цими діагональними елементами припускаються певні співвідношення, що вказують на відсутність резонансу між власними частотами системи і частотою зовнішньої збуджуючої сили. Розглядається задача встановлення ознак існування у такого рівняння розв'язків класу F. За допомогою низки перетворень рівняння зводиться до рівняння некритичного випадку, і розв'язок класу F цього рівняння шукається методом послідовних наближень за допомогою принципа стискуючих відображень. Потім на підставі властивостей розв'язків перетвореного рівняння робляться висновки щодо властивостей початкового рівняння.
APA, Harvard, Vancouver, ISO, and other styles
6

Havrysh, V. I., and Yu I. Hrytsiuk. "Аналіз температурних режимів у термочутливих шаруватих елементах цифрових пристроїв, спричинених внутрішнім нагріванням." Scientific Bulletin of UNFU 31, no. 5 (November 25, 2021): 108–12. http://dx.doi.org/10.36930/10.36930/40310517.

Full text
Abstract:
Розроблено нелінійну математичну модель для визначення температурного поля, а в подальшому і аналізу температурних режимів у термочутливій ізотропній багатошаровій пластині, яка піддається внутрішнім тепловим навантаженням. Для цього коефіцієнт теплопровідності для шаруватої системи описано єдиним цілим за допомогою асиметричних одиничних функцій, що дає змогу розглядати крайову задачу теплопровідності з одним неоднорідним нелінійним звичайним диференціальним рівнянням теплопровідності з розривними коефіцієнтами та нелінійними крайовими умовами на межових поверхнях пластини. Введено лінеаризуючу функцію, за допомогою якої лінеаризовано вихідне нелінійне рівняння теплопровідності та нелінійні крайові умови і внаслідок отримано неоднорідне звичайне диференціальне рівняння другого порядку зі сталими коефіцієнтами відносно лінеаризуючої функції з лінійними крайовими умовами. Для розв'язування отриманої крайової задачі використано метод варіації сталих і отримано аналітичний розв'язок, який визначає запроваджену лінеаризуючу функцію. Розглянуто двошарову термочутливу пластину і, як приклад, вибрано лінійну залежність коефіцієнта теплопровідності від температури, яку часто використовують у багатьох практичних задачах. Внаслідок цього отримано аналітичні співвідношення у вигляді квадратних рівнянь для визначення розподілу температури у шарах пластини та на їх поверхні спряження. Отримано числові значення температури з певною точністю для заданих значень товщини пластини та її шарів, просторових координат, питомої потужності внутрішніх джерел тепла, опорного та температурного коефіцієнтів теплопровідності конструкційних матеріалів пластини. Матеріалом шарів пластини виступають кремній та германій. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообмінних процесів в середині шаруватої пластини, зумовлених внутрішніми тепловими навантаженнями, розроблено програмні засоби, із використанням яких виконано геометричне зображення розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу теплообмінних процесів у термочутливій шаруватій пластині з внутрішнім нагріванням, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду середовища, які піддаються внутрішнім тепловим навантаженням, щодо їх термостійкості. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
APA, Harvard, Vancouver, ISO, and other styles
7

Бак, С. М. "Стоячі хвилі в дискретних рівняннях типу Клейна-Ґордона зі степеневими нелінійностями." Науковий вісник Ужгородського університету. Серія: Математика і інформатика 39, no. 2 (November 16, 2021): 7–21. http://dx.doi.org/10.24144/2616-7700.2021.39(2).7-21.

Full text
Abstract:
Дана стаття присвячена вивченню дискретних рівнянь типу Клейна-Ґордона, які описують динаміку нескінченного ланцюга лінійно зв’язаних нелінійних осциляторів. Ці рівняння представляють собою зчисленну систему звичайних диференціальних рівнянь. Такі системи є нескінченновимірними гамільтоновими системами. Розглядаються рівняння типу Клейна-Ґордона зі степеневими нелінійностями непарного степеня. При підстановці анзаца у вигляді стоячої хвилі одержується система алгебраїчних рівнянь для амплітуди стоячої хвилі. Далі розглядається система з більш загальним оператором L лінійної взаємодії осциляторів, який є обмеженим і самоспряженим у гільбертовому просторі дійсних двохсторонніх послідовностей l2. Розглядається задача про існування періодичних і локалізованих (збігаються до нуля на нескінченності) розв’язків для таких систем. Основними умовами існування цих розв’язків є просторова періодичність коефіцієнтів оператора лінійної взаємодії осциляторів та належність частоти стоячої хвилі спектральному проміжку оператора L. Якщо правий кінець спектрального проміжка скінченний, то система має нетривіальні розв’язки. У цій статті показано, що періодичні і локалізовані розв’язки цієї системи можна побудувати як критичні точки відповідних функціоналів Jk та J. Існування періодичних розв’язків встановлено за допомогою теореми про зачеплення. Зокрема, показано, що функціонал Jk задовольняє так звану умову Пале-Смейла та геометрію зачеплення, а отже, має нетривіальні критичні точки. Останні і є періодичними розв’язками системи. У випадку локалізованих розв’язків використати теорему про зачеплення не можна, оскільки для функціоналу J не виконується умова Пале-Смейла. Тому у цьому випадку використано метод періодичних апроксимацій, тобто критичні точки функціоналу J будуються за допомогою граничного переходу при k→∞ в критичних точках функціоналу Jk. В силу відомих властивостей дискретного оператора Лапласа одержано наслідок, в якому встановлено умови існування локалізованих розв’язків для вихідної системи.
APA, Harvard, Vancouver, ISO, and other styles
8

Komleva, T. O., A. B. Plotnikov, L. I. Plotnikova, and N. V. Skripnik. "Умови iснування базових розв’язкiв лiнiйних множиннозначних диференцiальних рiвнянь." Ukrains’kyi Matematychnyi Zhurnal 73, no. 5 (May 24, 2021): 651–73. http://dx.doi.org/10.37863/umzh.v73i5.6356.

Full text
Abstract:
УДК 517.9 Розглянуто різні означення похідної множиннозначного відображеннята їхні властивості. Вивчається лінійне множиннозначне диференціальне рівняння та досліджується існування розв'язків цього рівняння з похідною Хукухари, PS-похідноюта BG-похідною. Отримані результати проілюстровано на модельних прикладах.
APA, Harvard, Vancouver, ISO, and other styles
9

Казанко, Олександр, and Ольга Пєнкіна. "АНАЛІЗ СКЛАДОВИХ ЧЛЕНІВ ДИСПЕРСІЙНОГО РІВНЯННЯ У ЗАДАЧІ ПРО ДИФРАКЦІЮ ПЛОСКОГО МОНОХРОМАТИЧНОГО КОЛИВАННЯ УДВОВИМІРНОМУ НЕОБМЕЖЕНОМУ ДВОШАРОВОМУ СЕРЕДОВИЩІ З МЕТАМАТЕРІАЛОМ." ГРААЛЬ НАУКИ, no. 6 (July 4, 2021): 210–16. http://dx.doi.org/10.36074/grail-of-science.25.06.2021.035.

Full text
Abstract:
У роботі розглядається двовимірна необмежена двошарова структура, для якої записується хвильове рівняння (що розв’язується методом розділення змінних). від цього хвильового рівняння виконується перехід до спектральної задачі Штурма-Ліувілля й, врешті, робиться вихід на дисперсійне рівняння. У роботі здійснюються спроби подивитися під іншим кутом на деякі властивості розв’язків (власних функцій) спектральної задачі як залежностей спектрального параметру. Зокрема, були побудовані модельні приклади в котрих записуються лінійне диференціальне рівняння 2-го порядку для власних функції (як функції аргументом якої є спектрального параметр).
APA, Harvard, Vancouver, ISO, and other styles
10

Ковтун, Ірина Іванівна. "Про організацію дистанційної форми навчання в інститутах Національного аграрного університету." New computer technology 5 (November 6, 2013): 48. http://dx.doi.org/10.55056/nocote.v5i1.72.

Full text
Abstract:
Нова система освіти, яка впроваджується згідно з Болонською конвенцією, орієнтована на посилення самостійної роботи студентів і використання новітніх технологій [1]. Зокрема, студент має користуватися комп’ютером, Інтернетом тощо.Дистанційне навчання саме й передбачає самостійне оволодіння курсом вищої математики. Цей курс для студентів економічних спеціальностей складає 136 годин, що відповідає 4 кредитам. Для дистанційної форми навчання студентів навчально-наукового інституту бізнесу, який охоплює різноманітні спеціальності економічного профілю, на кафедрі вищої та прикладної математики НАУ складено методичні вказівки. В методичній розробці наведено необхідний теоретичний матеріал, приклади розв’язання типових задач, тести для контролю засвоєння матеріалу, зразки екзаменаційних білетів. Тести містять як практичні задачі, так і теоретичні положення.Рейтинг дисципліни “Вища математика” складає 100 балів, 70 із яких студент може набрати, виконуючи завдання по трьох модулях:– лінійна. векторна алгебра, аналітична геометрія;– диференціальне та інтегральне числення;– диференціальні рівняння, ряди.Студент може здавати матеріал кожного модуля чи його частин окремо.Для засвоєння теоретичного матеріалу можна використовувати, електронні посібники, розміщені на сайті НАУ [2], [3].
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Лінійні диференціальні рівняння"

1

Бєломитцев, Андрій Сергійович, Євген Іванович Дружинін, and Д. Р. Матюшенко. "Розрахунок крутильних коливань силових передач з карданним валом." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/45404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Тютюнник, Ю. С. "Дослідження моделі Кейнса з малим параметром." Thesis, ХНУРЕ, 2020. http://openarchive.nure.ua/handle/document/12135.

Full text
Abstract:
Об'єктом дослідження є модель економічного союзу двох країн, які взаємно пов'язані торгівлею. Досліджується асимптотична збіжність рішень для бізнес-циклу моделей Кейнса, описаних системою лінійних диференціальних рівнянь з невеликим параметром. Методи дослідження - це методи встановлення малих, швидких чи повільних змінних для асимптотичних розширень розв’язків для диференціальних рівнянь.
APA, Harvard, Vancouver, ISO, and other styles
3

Ключник, І. Г. "Лінійні системи диференціальних рівнянь та рівнянь із запізненням з точкою звороту." Diss. of Candidate of Physical and Mathematical Sciences, КНУТШ, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Кушнір, В. П. "Абсолютна стійкість розв"язків лінійних параболічних диференціально-різницевих рівнянь." Diss. of Candidate of Physical and Mathematical Sciences, Нац. ун-т водного господарства та природокористування, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Кондакова, С. В. "Про асимптотичні розвинення розв"язків сингулярно збурених систем лінійних диференціальних рівнянь." Diss. of Candidate of Physical and Mathematical Sciences, МОНУ. Нац. пед. ун-тет ім. М.П.Драгоманова, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Чайковський, Андрій Володимирович. "Класичні розв"язки лінійних диференціальних рівнянь першого порядку з операторними коефіцієнтами." Diss. of Doctor of Physical and Mathematical Sciences, М-во освіти і науки, молоді та спорту України, Київ. нац. ун-т ім. Тараса Шевченка, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ревіна, Т. В. "Позиційний синтез для робастних лінійних систем." Thesis, 2016. http://dspace.univer.kharkov.ua/handle/123456789/14445.

Full text
Abstract:
Дисертаційна робота присвячена дослідженню задачі синтезу для одного класу лінійних систем, тобто побудові керування у вигляді функції від фазових координат, і такого, що воно задовольняє наперед заданим обмеженням, і траєкторія системи з цим керуванням, яка починається у довільній початковій точці деякого околу початку координат, закінчується у початку координат у скінченний момент часу. На основі підходу, запропонованого В. І. Коробовим та розвиненого В. І. Коробовим та Г. М. Скляром, в дисертаційній роботі запропоновано розв’язок задачі синтезу для лінійної робастної системи з неперервними обмеженими невідомими збуреннями. Розглядаються випадки як одновимірного, так і багатовимірного керування. Знайдено межі невідомих збурень, при яких керування, яке розв’язує задачу синтезу для лінійної системи без збурень, розв’язує також задачу синтезу і для збуреної системи. Пропонуються різні підходи до визначення границь зміни збурень. Отримані оцінки зверху і знизу на час руху з довільної початкової точки у початок координат. Наведені механічні приклади застосування одержаних результатів: керування рухом матеріальної точки з урахуванням невідомого тертя; задача синтезу для робастної коливальної системи; задача синтезу для зв’язаного осцилятора; зупинка коливань керованого руху системи двох зв'язаних маятників.
APA, Harvard, Vancouver, ISO, and other styles
8

Калашніков, Дмитро Миколайович. "Розв'язність нетерових крайових задач з керуванням у диференціальній системі у скінченновимірному просторі." Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/2570.

Full text
Abstract:
Калашніков Д. М. Розв'язність нетерових крайових задач з керуванням у диференціальній системі у скінченновимірному просторі : кваліфікаційна робота магістра спеціальності 111 "Математика" / наук. керівник Є. В. Панасенко. Запоріжжя : ЗНУ, 2020. 45 с.
UA : Робота викладена на 45 сторінках друкованого тексту, містить 26 джерел. Об’єкт дослідження: нетерові крайові задачі для звичайних диференціальних рівнянь з керуванням в системі. Мета роботи: дослідження на керованість лінійних нетерових крайових задач у скінченновимірному просторі. Метод дослідження: аналітичний. У кваліфікаційній роботі приведені основні означення, теореми, умови існування розв’язку крайових задач для звичайних диференціальних рівнянь, в яких кількість невідомих у системі не співпадає з кількістю крайових умов. Застосовуючи апарат псевдообернених матриць, було розв’язано нетерову крайову задачу та досліджено її на керованість в скінченновимірному просторі
EN : The work is presented on 45 pages of printed text, 26 references. The object of the study is the noetherian boundary-value problems for ordinary system-controlled differential equations. The aim of the study is studying on the controllability of linear boundaryvalue problems in finite-dimensional space. The method of research is analytical. In the qualification paper, we give the basic definitions, theorems, conditions for the existence of a solution of boundary-value problems for ordinary differential equations in which the number of unknowns in the system doesn’t coincide with the number of boundary conditions. Applying the apparatus of pseudoinverse matrices, the Noether boundary-value problem was solved and investigated on controllability in finite-dimensional space.
APA, Harvard, Vancouver, ISO, and other styles
9

Дємічева, Лілія Сергіївна. "Застосування методу матричної експоненти до розв’язання лінійних фредгольмових крайових задач." Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/3302.

Full text
Abstract:
Дємічева Л. С. Тема роботи українською мовою за наказом : кваліфікаційна робота магістра спеціальності 111 "Математика" / наук. керівник Є. В. Панасенко. Запоріжжя : ЗНУ, 2020. 64 с.
UA : Робота викладена на 64 сторінках друкованого тексту, містить 1 рисунок, 1 таблиця, 21 джерело. Об’єкт дослідження: фредгольмові крайові задачі для звичайних диференціальних рівнянь. Мета роботи: знаходження розв’язку лінійних фредгольмових крайових задач у скінченновимірному просторі. Метод дослідження: аналітичний. У кваліфікаційній роботі приведені основні означення, теореми та леми, умови існування розв’язку крайових задач для звичайних диференціальних рівнянь. Застосовуючи метод матричної експоненти, було знайдено нормальну фундаментальну матрицю задачі Коші, за допомогою якої побудовано розв’язок лінійної фредгольмової крайової задачі у скінчено вимірному просторі.
EN : The work is presented on 64 pages of printed text, 1 picture, 1 table, 21 references. The object of the study is the Fredholm boundary-value problems for ordinary differential equations. The aim of the study is finding solutions of linear Fredholm boundary-value problems in finite-dimensional space. The methods of research is analytical. In the qualification paper, we give the basic definitions, theorems and lemmas, conditions for the existence of a solution of boundary-value problems for ordinary differential equations. Applying the matrix exponent method, we found a normal fundamental matrix of the Cauchy problem, which was used to construct the solution of the linear Fredholm boundary-value problem in a finite-dimensional space.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Лінійні диференціальні рівняння"

1

Самойленко, А. М. Лінійні системи диференціальних рівнянь з виродженнями. Київ: Вища школа, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Самойленко, А. М. Лінійні системи диференціальних рівнянь з виродженнями. Київ: Вища школа, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Євтухов, В. М. Стійкість за Ляпуновим лінійних диференціальних рівнянь. Одеса: Астропринт, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Шепель, О. А. Асимптотичне інтегрування вироджених лінійних систем диференціальних рівнянь з іррегулярною особливою точкою. Ніжин, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Шепель, О. А. Асимптотичне інтегрування вироджених лінійних систем диференціальних рівнянь з іррегулярною особливою точкою. Ніжин, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography