Academic literature on the topic 'Координати початкових умов'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Координати початкових умов.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Координати початкових умов"

1

Kozyrev, Sergiy. "Керування високовольтним імпульсним розрядом в екзотермічному середовищі." Modeling Control and Information Technologies, no. 5 (November 21, 2021): 127–30. http://dx.doi.org/10.31713/mcit.2021.41.

Full text
Abstract:
Проведено дослідження високовольтного імпульсного розряду в екзотермічному середовищі як об’єкта керування. Запропоновано правила знаходження початкових умов алгоритму керування. Проведено кореляційний аналіз взаємозв'язку електродинамічних і гідродинамічних характеристик і визначено інформаційні координати. Розроблено алгоритм керування високовольтним імпульсним розрядом в екзотермічному середовищі
APA, Harvard, Vancouver, ISO, and other styles
2

Герасимов, С. В., and О. О. Журавльов. "Оцінка коефіцієнта лобового опору снаряда методами поліноміальної апроксимації та інтерполяції координат центра мас на етапі льотно- конструкторських випробувань." Озброєння та військова техніка 15, no. 3 (September 26, 2017): 30–34. http://dx.doi.org/10.34169/2414-0651.2017.3(15).30-34.

Full text
Abstract:
Розроблена процедура оцінки середнього на ділянці балістичної траєкторії значення коефіцієнта лобового опору снаряда методами апроксимації та інтерполяції координат центра мас кубічними поліномами при виконанні потрібних умов збіжності таких поліномів. Коефіцієнти полінома, що апроксимує, розраховуються за параметрами, які визначають початкові умови польоту снаряда, його конструкцію та локальний аерогравітаційний простір. Коефіцієнти полінома, що інтерполює, визначаються методом найменших квадратів за даними зовнішньотраєкторних вимірювань. Проведені оцінка похибок визначення коефіцієнта лобового опору снаряда та оцінки можливості використання деяких станцій зовнішньотраєкторних виміріювань для високоточного визначення вказаного коефіцієнта.
APA, Harvard, Vancouver, ISO, and other styles
3

Бабич, С. Ю., Ю. П. Глухов, and В. Ф. Лазар. "Динамічні процеси в тілах (матеріалах) з початковими напруженнями. Частина 3. Динамічні процеси у пружному двохшаровому півпросторі з початковими напруженнями при дії рухомих навантажень." Науковий вісник Ужгородського університету. Серія: Математика і інформатика 39, no. 2 (November 16, 2021): 116–24. http://dx.doi.org/10.24144/2616-7700.2021.39(2).116-124.

Full text
Abstract:
У статті досліджені динамічні процеси у пружному двошаровому півпросторі з початковими напруженнями при дії рухомого навантаження. Дані задачі розв'язані методом інтегральних перетворень і за допомогою комплексних потенціалів, введених в роботах академіка НАН України Гузя О.М. і одного із авторів цієї статті. Проведено оцінку можливих значень коренів характеристичного рівняння. Отримано необхідні і достатні умови існування кратних коренів характеристичного рівняння. На вільну поверхню пружного шару, що лежить на пружному півпросторі, діє навантаження, що рухається з постійною швидкістю. Вважається, що картина деформацій інваріантна у часі в системі координат, що рухається разом з навантаженням. Для матеріалів з пружними потенціалами гармонічного типу (стисливі тіла) та з пружними потенціалами типу Бартенєва-Хазановича (нестисливі тіла) проведено численні дослідження. Аналіз отриманих результатів свідчить про суттєвий вплив початкових (залишкових) деформацій і швидкості руху поверхневого навантаження на значення коренів характеристичного рівняння. Крім цього, доведено, що для заданих параметрів завжди можна знайти область значень λ1 (коефіцієнтів) подовження, для яких існують критичні швидкості руху навантаження. Зокрема при жорсткому з'єднанні шару з півпростором можливо існування двох критичних швидкостей руху навантаження, у крайньому випадку, одна із яких більша за швидкість поверхневих хвиль Релея. Отримані результати можуть бути використані для дослідження напружено-деформованого стану елементів багатошарового заздалегідь деформованого півпростору при дії рухомого поверхневого навантаження.
APA, Harvard, Vancouver, ISO, and other styles
4

Злобін, Григорій Григорович. "Використання комп’ютерних тестів для оцінювання знань з природничих та технічних дисциплін." Theory and methods of e-learning 2 (February 3, 2014): 281–84. http://dx.doi.org/10.55056/e-learn.v2i1.287.

Full text
Abstract:
Застосування комп’ютерних тестів для поточного та підсумкового оцінювання знань студентів дає змогу якісно і об’єктивно оцінити знання студентів за умови наявності великої та добре перевіреної бази тестових завдань. Дієвість тестування істотно залежить від вибраних автором (або авторами) типів завдань [1]:1) завдання з вибором відповіді (правильної або неправильної);2) завдання з встановленням відповідності;3) завдання з вибором кількох правильних відповідей;4) завдання з вводом відповіді (текстової або числової).Завдання перших трьох типів погано захищені від вгадування відповіді студентом, однак вони найбільш широко використовуються у практиці комп’ютерного тестування. Завдання четвертого типу добре захищені від вгадування відповіді, однак текстові відповіді доведеться перевіряти людині. Для перевірки числової відповіді система тестування повинна мати блок перевірки чисел з цілою і дробовою частиною. На факультеті електроніки Львівського національного університету імені Івана Франка створена база тестових завдань з курсів «Обчислювальна техніка і програмування» (для перевірки знань мов програмування Паскаль та Сі) та «Теорія коливань», в яких майже 90 відсотків завдань складають завдання з вводом числової відповіді. База тестових завдань з мови програмування Паскаль розбита на розділи:1. Лінійна програма (числова відповідь з цілою і дробовою частиною);2. Програма з синтаксичною помилкою (відповідь є цілим числом);3. Програма з розгалуженням (числова відповідь з цілою і дробовою частиною);4. Встановлення відповідності програма-алгоритм (тип 2);5. Програма з циклом for (числова відповідь з цілою і дробовою частиною);6. Програма з циклом while (числова відповідь з цілою і дробовою частиною);7. Програма з циклом repeat-until (числова відповідь з цілою і дробовою частиною);8. Програма з процедурою-функцією (числова відповідь з цілою і дробовою частиною);9. Програма з процедурою (числова відповідь з цілою і дробовою частиною);10. Завдання на написання програми для розв’язання певної задачі (текстова відповідь).Розглянемо приклади тестових завдань деяких розділів.1. Якого числового значення набуде змінна w після виконання цієї програми?Program test1;Varx,q,z,w:real;Beginx:=6;z:=4;w:=x*z;q:=x/z;WriteLn('w=',w);WriteLn('q=',q );end.2. В якому рядку програми є синтаксична помилка?Program test 2;Varx,y,z:real;i,n:integer;Begini:=20;x:=32;y:=34;z:=-9;n:=30*i;WriteLn( ' x=',x );end.6. Якого числового значення набуде змінна s після виконання цієї програми?Program test3;Vars,d,r:real;i:integer;Begins:=100;d:=2;r:=10;i:=0;While s>r doBegins:=s/d;i:=i+1;end;WriteLn('s=',s );WriteLn('i=',i );end.Успішне виконання студентом завдань із перших дев’яти розділів свідчить лише про вміння студента читати чужі програми. Для перевірки здатності студенти писати свої програми введено десятий розділ. Відповіддю студента є текст програми і, за потреби, текстові файли з результатами роботи програми. Очевидно, що під час виконання десятого завдання студент повинен мати можливість скористатись оболонкою для програмування мовою Паскаль (і тільки під час виконання цього завдання!). Якщо на виконання завдань із перших дев’яти розділів можна відводити по кілька хвилин (за умови невеликого обсягу наведених програм), то для написання програми потрібно відвести у кілька раз більше часу (залежить від складності поставленої задачі).База тестових завдань з «Теорії коливань» розбита на розділи:1. Обчислення постійної складової ряду Фур’є (числова відповідь з цілою і дробовою частиною);2. Обчислення косинусної гармоніки Фур’є (числова відповідь з цілою і дробовою частиною);3. Обчислення синусної гармоніки Фур’є (числова відповідь з цілою і дробовою частиною);4. Визначення стійкості стану рівноваги лінійної коливної системи (ручна перевірка – текстова відповідь);5. Вільні коливання лінійних коливних систем (числова відповідь з цілою і дробовою частиною);6. Вимушені коливання лінійних коливних систем (числова відповідь з цілою і дробовою частиною);7. Стани рівноваги нелінійних коливних систем (числова відповідь з цілою і дробовою частиною);8. Особливі точки коливних систем (тип 2);9. Вимушені коливання нелінійних коливних систем (числова відповідь з цілою і дробовою частиною);10. Визначення амплітуди коливань автогенератора (числова відповідь з цілою і дробовою частиною).Для виконання завдань з дев’ятого і десятого розділів студент повинен мати можливість скористатись оболонкою для числового інтегрування алгебро-диференційних рівнянь із простою вхідною мовою.Розглянемо шаблони тестових завдань деяких розділів.1. Для заданого сигналу ... обчислити постійну складову ряду Фур’є a0.4. Для лінійної коливної системи ... складіть характеристичне рівняння та визначить його корені (відповідь вводьте за схемою: дійсна частина, уявна частина, дійсна частина, уявна частина).5. Для початкових умов: x(0)=1, dx(0)/dt=0 знайдіть вільні коливання лінійної коливної системи, заданої диференціальним рівнянням ... та вкажіть значення x(t) в момент часу t=5.7. Для коливної системи, диференціальним рівнянням ... , вкажіть координати стійкого стану рівноваги x=..., dx/dt=...9.Користуючись програмою DS0, визначить амплітуду вимушених коливань нелінійної коливної системи, заданої диференціальним рівнянням ...Завдяки уведенню числової відповіді з цілою і дробовою частиною виключається вгадування відповіді студентом, адже множина можливих відповідей практично нескінченна.Такий підхід легко поширити на природничі і технічні науки, в яких для проведення практичних занять використовують задачі з числовими розв’язками.
APA, Harvard, Vancouver, ISO, and other styles
5

Yahno, O. M., R. M. Hnativ, and I. R. Hnativ. "Математична модель для дослідження нестаціонарних течій нестисливої рідини у трубах." Scientific Bulletin of UNFU 29, no. 10 (December 26, 2019): 71–74. http://dx.doi.org/10.36930/40291013.

Full text
Abstract:
Проаналізовано наукові роботи з розв'язку задач про нестаціонарний рух рідини в циліндричних трубах. Встановлено, що під час розв'язування задач неусталених рухів рідини у трубах виникає потреба визначення швидкостей рідини у перерізах трубопроводу, як в осьовому, так і радіальному напрямках. Класичні методи вирішення цієї задачі не дають задовільних результатів. Удосконалено методику розрахунку нестаціонарних потоків рідини на основі дисипативної моделі. У дослідженнях використано модель із врахуванням дисипативних процесів течії в'язкої рідини, яку вивчали варіаційним методом, враховуючи початкові і граничні умови. Об'єктом дослідження є гідравлічні процеси в неусталених потоках в'язкої рідини у циліндричному трубопроводі. Запропоновано удосконалену методику розрахунку неусталених потоків для нестисливої рідини на основі дисипативної моделі. З'ясовано, що в цьому випадку припущення про нехтування компонентою радіальної швидкості є асимптотично обґрунтованим. Наведено низькочастотні розв'язки рівнянь Нав'є-Стокса для спрощеної моделі нестисливої рідини. Дисипативна модель ґрунтується на двох припущеннях про порядки розв'язків рівнянь Нав'є-Стокса стосовно часу та осьової координати. При цьому ніякі припущення щодо порядку величини компонентів швидкості не виводяться.
APA, Harvard, Vancouver, ISO, and other styles
6

Лупіна, Т. О., Є. Т. Горалік, and М. М. Крюков. "РУХ РЯТУВАЛЬНОЇ ШЛЮПКИ ВІЛЬНОГО ПАДІННЯ ПРИ СХОДЖЕННІ З ПОХИЛОЇ РАМПИ." Vodnij transport, no. 2(33) (December 14, 2021): 23–35. http://dx.doi.org/10.33298/2226-8553.2022.2.33.03.

Full text
Abstract:
В статті наведено короткий огляд історії створення та розробок рятувальних шлюпок вільного падіння (РШВП), призначених для термінової безпечної евакуації людей з морських суден та морських нафтодобувних платформ у випадку аварій за екстремальних погодних умов. Розглядається задача про рух РШВП, яка моделюється однорідним стрижнем, при сходженні з похилої рампи протягом першої фази падіння з наростаючим кутом нахилу (тангажу -tangage)–з моменту, коли центр мас шлюпки опиняється над краєм опори (крайнім роликом рампи) , до моменту сходу з рампи кінця опорних поверхонь шлюпки.Диференціальні рівняння руху в полярних координатах складені за допомогою рівнянь Лагранжа другого роду. Отриманорозв’язувальну систему звичайних диференціальних рівнянь і сформульовано відповідну задачу Коші, яка розв’язується чисельно за допомогою методу Рунге-Кутта четвертого порядку точності. На основі запропонованого підходу проведеночисельні експерименти длявизначення часу скочування РШВП, швидкості її центру мас, кутів повороту та кутової швидкості шлюпки в момент відриву від рампи при значенні кута нахилу рампи та різних значеннях початкової швидкості центру мас в діапазоні від 1 до 10 м/с і довжини шлюпки в діапазоні від 5 до 15 м.За результатами чисельних експериментівздійснено аналіз впливу початкової швидкості і довжини РШВП на параметри її руху при сходженні з похилої рампи. Розрахункові значення часу першої фази падіння, кута тангажу, кутової швидкості тангажу та модуля швидкості центру мас РШВП в ході виконаних чисельних експериментів змінювались в діапазоні 1,424 -0,234 с,, та м/свідповідно. При цьому зі збільшенням довжини шлюпки час першої фази падіння зростає, а зі збільшенням початкової швидкості зменшується. Кути тангажу зі збільшенням швидкості зменшуються, а зі збільшенням довжини шлюпки зростають, в той час як кутові швидкості тангажу зі збільшенням початкової швидкості так само, які зі збільшенням довжини шлюпки спадають. За результатами роботи зроблено висновок про можливість використання запропонованогопідходу і чисельних експериментів для раціонального вибору параметрів руху РШВП та напрямів подальших досліджень.Ключові слова:рятувальна шлюпка вільного падіння, плоско-паралельний рух, стрижень, похила рампа, рівняння Лагранжа другого роду, звичайні диференціальні рівняння, задача Коші, чисельне моделювання, метод Рунге-Кутта.
APA, Harvard, Vancouver, ISO, and other styles
7

Kornienko, L., V. Karlov, and A. Artemenko. "ЗОНИ ВИЯВЛЕННЯ РЛС МЕТРОВОГО ДІАПАЗОНУ З ВРАХУВАННЯМ ОСОБЛИВОСТЕЙ ПОБУДОВИ І ВИКОРИСТАННЯ АНТЕННОЇ СИСТЕМИ." Системи управління, навігації та зв’язку. Збірник наукових праць 5, no. 51 (October 30, 2018): 50–54. http://dx.doi.org/10.26906/sunz.2018.5.050.

Full text
Abstract:
Предметом дослідження є методика розрахунку зон виявлення РЛС метрового діапазону, на формування якої істотно впливає Земля. Метою роботи є розробка та аналіз математичної моделі зони виявлення, яка узагальнює відому модель на випадок, коли антена РЛС не має фазового центру або він не збігається з початком обраної системи координат для розрахунку діаграми спрямованості антени. Модель базується на методі відбиттєвої трактовки і враховує особливості побудови антени. Випромінюючі елементи антени у вигляді хвильових каналів розташовані на двох поверхах, що дозволяє підбором висот поверхів і їх збудження сигналами з визначеними амплітудами і початковими фазами зменшити глибину провалів в діаграмі спрямованості в певних кутових секторах.. У таких антенах зазвичай відсутній фазовий центр, тому в математичній моделі зони виявлення враховані не тільки амплітудні, а й фазові характеристики антени. Це дозволило врахувати відмінності фаз полів у напрямках на ціль і точку відображення й уточнити результат інтерференції прямих і відбитих хвиль. Проведено розрахунки зон виявлення, що ілюструють вплив на їх параметри електричних властивостей землі, висот підйому антени і її нахилу відносно горизонту. Математична модель реалізована за допомогою доступного і простого комп'ютерного математичного пакета Mathcad. Комп'ютерна модель дозволяє при змінах конструкції антени або електричних параметрів Землі оперативно оцінювати зони виявлення та можливості їх управління для поліпшення умов виявлення цілей під певними кутами місця.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Координати початкових умов"

1

Руденко, Р. О., and Наталія Андріївна Марченко. "Розробка математичного і програмного забезпечення для розв'язання диференціальних рівнянь за допомогою нейронних мереж." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/49110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography