Journal articles on the topic 'Змінне теплове навантаження'

To see the other types of publications on this topic, follow the link: Змінне теплове навантаження.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 journal articles for your research on the topic 'Змінне теплове навантаження.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Трушляков, Е. І., М. І. Радченко, А. А. Зубарєв, and В. С. Ткаченко. "Підхід до визначення складових теплового навантаження систем кондиціонування припливного повітря." Refrigeration Engineering and Technology 54, no. 5 (October 30, 2018): 17–22. http://dx.doi.org/10.15673/ret.v54i5.1245.

Full text
Abstract:
Запропоновано підхід до визначення складових теплового навантаження системи кондиціонування припливного повітря (СКПП) з урахуванням поточних кліматичних умов експлуатації, який базується на гіпотезі розкладання поточних змінних теплових навантажень на відносно стабільну складову як базову для вибору встановленої (проектної) холодопродуктивності холодильної машини, що працює на номінальних або близьких йому режимах, і нестабільне теплове навантаження, що припадає на попереднє охолодження зовнішнього повітря при змінних поточних зовнішніх температурах. Для обґрунтування підходу до вибору складових теплового навантаження СКПП виконаний аналіз поточних значень питомих теплових навантажень на холодильну машину СКПП при охолодженні зовнішнього повітря від його змінної поточної температури до температур 10, 15 і 20 ºС. Показано, що виходячи з різного темпу приросту річного виробітку холоду, обумовленого зміною теплового навантаження у відповідності з поточними кліматичними умовами протягом року, необхідно вибирати таке проектне теплове навантаження на холодильну машину СКПП охолодження повітря (її встановлену потужність охолодження), яке забезпечує досягнення максимального або близького йому річного виробітку холоду при відносно високих темпах його збільшення. При цьому значення теплового навантаження, що припадає на попереднє охолодження зовнішнього повітря, розраховують за залишковим принципом як різницю раціонального загального теплового навантаження і її базової відносно стабільної складової. Запропонований метод доцільно використовувати при розрахунку проектної базової холодопродуктивності холодильної машини СКПП, що працює на номінальному або близьких йому режимах, і бустерной складової теплового навантаження на попереднє охолодження зовнішнього повітря при змінних поточних зовнішніх температурах з використанням енергозберігаючих методів: акумуляції надлишкового (невикористаного) холоду при знижених поточних теплових навантаженнях на СКПП і його витрачання на попереднє охолодження зовнішнього повітря, річкупераціі охолоджуючого потенціалу повітря, яке відводиться для попереднього охолодження зовнішнього повітря.
APA, Harvard, Vancouver, ISO, and other styles
2

Трушляков, Є. І., М. І. Радченко, С. А. Кантор, and В. С. Ткаченко. "Підхід до аналізу ефективності використання встановленої холодопродуктивності систем кондиціювання припливного повітря." Refrigeration Engineering and Technology 54, no. 6 (December 30, 2018): 12–17. http://dx.doi.org/10.15673/ret.v54i6.1256.

Full text
Abstract:
Запропоновано підхід до аналізу ефективності використання встановленої (проектної) холодопродуктивності холодильних машин систем кондиціювання припливного повітря (СКПП) з урахуванням змін теплових навантажень у відповідності з поточними кліматичними умовами. При цьому порівнюють потенційно можливе вироблення холоду (виходячи з наявної встановленої холодопродуктивності) за певний період, як приклад – за найбільш теплий липень місяць, з її використанням на попереднє охолодження зовнішнього повітря до певної проміжної (порогової) температури, і подальше глибоке охолодження повітря при відносно стабільному тепловому навантаженні. Висунуто гіпотезу попередньої оцінки доцільності застосування регулювання холодопродуктивності за співвідношенням сумарних за деякий проміжок часу використання холоду на охолодження зовнішнього повітря і потенційно можливого вироблення холоду при повній реалізації наявної встановленої холодопродуктивності СКПП. Запропонований підхід до вибору раціональної встановленої холодопродуктивності СКПП та її розподілу відповідно до характеру зміни теплового навантаження у відповідності з поточними кліматичними умовами доцільно використовувати для визначення областей ефективного застосування енергозберігаючих способів реалізації холодопродуктивності, зокрема, акумуляцією та використанням надлишку холодопродуктивності при змінних теплових навантаженнях, частотного або іншого способу регулювання холодопродуктивності компресорів при відхиленнях теплового навантаження від номінального.
APA, Harvard, Vancouver, ISO, and other styles
3

Демченко, Володимир Георгійович, and Аліна Василівна Коник. "Основні аспекти процесів теплоакумулювання." Scientific Works 84, no. 1 (December 14, 2020): 48–53. http://dx.doi.org/10.15673/swonaft.v84i1.1868.

Full text
Abstract:
Системи та обладнання для зберігання теплової енергії є ключовими елементами при розгортанні відновлюваної теплової енергетики, актуальність якої на даному етапі розвитку набуває масштабного значення. Представлена стаття охоплює короткий аналіз сучасного стану основних технологій інтенсифікації процесів збереження теплоти, аналіз основних технологічних, технічних аспектів, що виникають при розробці теплових акумуляторів та за реальних умов їх експлуатації. Зокрема, обґрунтовано доцільність застосування теплового акумулювання, проаналізовано шляхи підвищення ефективності економії енергії, визначено основні аспекти процесів акумуляції теплоти. При обґрунтуванні доцільності застосування теплового акумулювання проаналізовано співвідношення поверхні та об’єму теплового акумулятора, що тісно пов'язані з розмірами складових елементів та продуктивністю системи зберігання теплоти. Це співвідношення теоретично вказує, як можливо підвищити коефіцієнт корисної дії та продуктивність систем зберігання теплової енергії. Доведено підвищення ефективності та економії енергії при врахуванні сезонних факторів та пікових навантажень. Розглянуто основні аспекти технологічної інтенсифікації процесів акумуляції теплоти, які полягають у подоланні теплової стратифікації рідинних теплових акумуляторів, обґрунтуванні модульного дизайну конструкції, посиленні передачі теплоти та маси, а також в зміні властивостей матеріалу при фазовому переході. Розглянуті аспекти при їх реалізації дозволяють оптимізувати роботу генеруючого обладнання з максимально можливим ККД системи теплопостачання, шляхом вирівнювання графіку навантаження у співвідношенні «генерація - споживання», а також розвантажити технологічне обладнання, знизити споживання паливно-енергетичних ресурсів. Як наслідок, знижується собівартість отриманої енергії та зменшуються шкідливі викиди в оточуюче середовище.
APA, Harvard, Vancouver, ISO, and other styles
4

Журавльов, Ю. І. "УПРАВЛІННЯ ТЕПЛОВИМ РЕЖИМОМ ТЕРМОЕЛЕКТРИЧНИХ ОХОЛОДЖУВАЧІВ У НЕРІВНОМІРНОМУ ПОЛІ ТЕМПЕРАТУР." Таврійський науковий вісник. Серія: Технічні науки, no. 1 (April 8, 2022): 22–35. http://dx.doi.org/10.32851/tnv-tech.2022.1.3.

Full text
Abstract:
У статті представлено аналіз моделі управління термоелектричним пристроєм забезпечення теплових режимів радіоелектронної апаратури, показники надійності якої суттєво визначаються температурою елементів. Модельні дослідження проведено для умов неоднорідного температурного поля в діапазонах типових перепадів температур, струмових режимів роботи та потужності розсіяння. Аналіз проведено для різних відношень висоти до площі перетину гілок термоелектричних елементів. Розкрито перевагу розподіленого активного термоелектричного охолодження радіоелектронних систем із просторово рознесеними теплонавантаженими елементами порівняно із загальним охолодженням. Розглянуто можливість оптимального управління тепловим режимом комплексу термоелектричних охолоджувачів із послідовним електричним з’єднанням за різного рівня охолодження й теплового навантаження. Визначено основні параметри, показники надійності та динамічні характеристики охолоджувачів. Проаналізовано струмові режими у процесі побудови комплексу з урахуванням енергетичних, масогабаритних характеристик і характеристик надійності. Проведено порівняльний аналіз основних параметрів, показників надійності та динамічних характеристик комплексу термоелектричних охолоджувачів за різного рівня охолодження, заданої уніфікації геометрії гілок термоелементів і струмових режимів роботи. Результати досліджень показали можливість управління тепловим режимом комплексу термоелектричних охолоджувачів за рахунок вибору теплового режиму роботи з урахуванням значущості кожного з обмежувальних факторів за масогабаритними, енергетичними й динамічними характеристиками. У процесі вибору струмових режимів ураховано взаємний вплив кожного з обмежувальних факторів, за допомогою зміни яких під час проєктування системи забезпечення теплових режимів можна вибрати компромісні режими роботи.
APA, Harvard, Vancouver, ISO, and other styles
5

Жихаpєва, Н. В., Є. О. Бабой, and А. М. Басов. "Підвищення енергоефективності багатозональних VRF систем кондиціювання повітря." Refrigeration Engineering and Technology 54, no. 6 (December 30, 2018): 45–49. http://dx.doi.org/10.15673/ret.v54i6.1260.

Full text
Abstract:
Визначено енергозберігаючі заходи підвищення енергоефективності в області кондиціювання за допомогою методів математичного моделювання схемно-технічних рішень і режимів роботи обладнання систем кондиціювання громадських об'єктів при використанні сучасних VRF систем. Розроблена комплексна модель оптимізації систем кондиціювання громадських об'єктів. Ця модель враховує не тільки нестаціонарне зовнішнє і внутрішнє теплове навантаження в приміщенні, але також і фактори по мінімізації змінної частини наведених витрат, пов'язаних з витратами енергії. Протестована цільова функція оптимізації спільної сумарної величини капітальних і експлуатаційних витрат на тепловий захист приміщень і кліматичне енергозберігаюче обладнання протягом терміну їх експлуатації із забезпеченням найменших приведених витрат. Можливості енергозбереження проведені при розрахунку універсальної цільової функції та програм математичного моделювання щодо визначення термінів окупності та величин цільової функції для порівнюваних варіантів. Проведений порівняльний аналіз на базі розробленої математичної моделі Daikin, Mitsubishi Electric, Fujitsu, Mitsubishi Heavy для об'єктів, які працюють протягом добового циклу в екстремально-нестаціонарному режимі. До таких об'єктів громадського призначення можна віднести театри, ресторани, заводські їдальні, конференц-зали тощо. При розрахунках за цією моделлю можна отримати термін окупності обладнання із застосуванням економічно-доцільної товщини ізоляції.
APA, Harvard, Vancouver, ISO, and other styles
6

Мельник, В., and Б. Цимбал. "Аналіз конструкцій фундаментних паль." Науковий журнал «Інженерія природокористування», no. 3(13) (February 6, 2020): 6–23. http://dx.doi.org/10.37700/enm.2019.3(13).6-23.

Full text
Abstract:
В роботі представлено аналіз конструктивних особливостей, недоліків та переваг фундаментних паль з теплообмінниками та без них їх. Встановлено, що більшість паль має складну форму теплообмінника або самої палі. Теплообмінники можуть бути одинарні, подвійні та потрійні U-подібної, W-подібної та спіральної форми. Найбільш перспективними є палі з U-подібними теплообмінниками. Їх застосування виключає механічне навантаження на стіни будівлі. Немає додаткових втрат на буріння свердловини. Вони мають збільшену теплову ефективність і низькі гідродинамічні втрати на перекачку теплоносія. Особливо це справедливо при використанні теплообмінників з паралельними подвійними U-подібними трубами. В таких конструкціях проблема порушення герметичності зведена до мінімуму і, відповідно, досягається належний рівень екологічної безпеки. Водночас, використання рідини як теплоносія, за рахунок зміни температури, тиску та її об’єму може призвести до руйнування, спочатку труб теплообмінників, а потім і конструкції палі. Наявність розчиненого кисню в рідинному теплоносії сприяє появі наскрізної корозії труб теплообмінників і, як наслідок, руйнуванню залізобетонної конструкції палі в цілому. Використання труб теплообмінників у якості арматури також може приводити до їх ушкодження і, відповідно, до приведених вище проблем. Проведений аналіз відомої інформації стосовно фундаментних паль дозволяє сформувати вимоги до перспективних конструкцій енергетичних паль і в перспективі дасть можливість розробити нову конструкцію забивної палі з U-подібним теплообмінником в якій враховані всі приведені в роботі недоліки. Перш за все потрібно провести оптимізацію конструкції теплообмінника, а саме, геометрію поперечного перетину труб, форму укладки труб в тілі палі, методи фіксації труб тепло-обмінника в тілі палі та кількість таких фіксаторів.
APA, Harvard, Vancouver, ISO, and other styles
7

Yershov, Roman, and Volodymyr Voytenko. "ЧАСТОТНО-ІМПУЛЬСНИЙ МОДУЛЯТОР З АДАПТИВНОЮ КОРЕКЦІЄЮ ТРИВАЛОСТІ ІМПУЛЬСУ." TECHNICAL SCIENCES AND TECHNOLOGIES, no. 1(19) (2020): 177–90. http://dx.doi.org/10.25140/2411-5363-2020-1(19)-177-190.

Full text
Abstract:
Актуальність теми дослідження. Вирішення ряду таких актуальних проблем імпульсних напівпровідникових перетворювачів енергії (ІНПП) для бортових систем, що входять до складу рухомих платформ і безпілотних літальних апаратів (БПЛА), як підвищення точності стабілізації цільового параметру (кута, швидкості, напруги, струму), а також покращення динаміки систем автоматичного керування, масо-габаритних та теплових характеристик можливо шляхом розробки нових структур ІНПП та алгоритмів керування ними. Постановка проблеми. Зміна періоду та форми резонансної кривої (РК) напруги/струму в квазірезонансних імпульсних перетворювачах (КРІП) в залежності від імпедансу навантаження призводить до неузгодженості сигналу закриття силового транзисторного ключа (СТК) з моментом переходу РК через нульове значення, а отже, – до різкого зниження ККД системи. Аналіз останніх досліджень і публікацій. Типові реалізації частотно-імпульсних модуляторів (ЧІМ) містять у своєму складі керований напругою генератор та одновібратор, а повністю керовані рішення виконують на основі реверсивних лічильників та керуючого автомату. В якості новітніх ланок ЧІМ для задач керування ІНПП вводяться спостерігачі імпедансу навантаження та модулятори, побудовані на кільцевих зсувних регістрах та лініях затримки. Швидкодія ЧІМ підвищується за рахунок каскадування та використання табличного синтезу сигналу. Виділення недосліджених частин загальної проблеми. Існуючі рішення не корегують тривалість імпульсу керування СТК для забезпечення його комутації при нульових значеннях напруги/струму, що нівелює можливість практичного втілення КРІП з широким діапазоном навантажень. Постановка завдання. Стаття присвячена розробці структури цифрового частотно-імпульсного модулятора з адаптивною корекцією тривалості імпульсу (ЦЧІМ-АКТІ) та метода автоматичного слідкування за РК з метою прогнозування її переходу через нуль. Викладення основного матеріалу. Запропонована схемотехнічна структура та алгоритм функціонування модулятора у складі блоків ЦЧІМ та АКТІ на основі декількох цифрових автоматів, набору лічильників та арифметико-логічних пристроїв. Пара зовнішніх гістерезисних компараторів детектує перехід резонансної кривої через порогові рівні, розміщені симетрично відносно нульового рівня. Висновки відповідно до статті. Створено новий завершений цифровий блок, який реалізований на основі програмованої логічної інтегрованої схеми (ПЛІС) з використанням мови VHDL. Введення цього блоку до складу стабілізатора напруги ланки постійного струму (ЛПС) на основі КРІП в електроприводі точного позиціювання рухомої платформи з безколекторним двигуном постійного струму (БДПС) дозволяє стабілізувати напругу ЛПС з точністю до 1%. Роздільна здатність за часом ширини імпульсу та паузи не перевищує 5нс.
APA, Harvard, Vancouver, ISO, and other styles
8

Осадчук, Є. О., and О. С. Тітлов. "Пошук енергоефективних режимів роботи систем отримання води з атмосферного повітря на базі абсорбційних водоаміачних термотрансформаторів тепла і сонячних колекторів." Refrigeration Engineering and Technology 56, no. 3-4 (January 11, 2021): 78–91. http://dx.doi.org/10.15673/ret.v56i3-4.1951.

Full text
Abstract:
В роботі показано, що система отримання води з атмосферного повітря з джерелом тепла від сонячних колекторів і з абсорбційним водоаміачним термотрансформатором тепла (АВТТ), з підтискаючим бустер-компресором перед конденсатором, може бути працездатною з джерелами тепла від 85 °С. Порівняльний аналіз енергетичних витрат на стиснення пари робочого тіла в АВТТ з підтискаючим бустер-компресором і в парокомпресорному термотрансформаторі тепла (ПКТТ) показав перевагу АВТТ, як при експлуатації в помірному, так і тропічному кліматі. Проведено розрахунки максимальної енергоефективності АВТТ, яка в розглянутому діапазоні параметрів досягається при тиску генерації 1,0 МПа, і в умовах помірного клімату залежить від масової частки «міцного» водоаміачного розчину (ВАР) та температури випаровування. Найбільш енергоефективним є режим роботи АВТТ з температурою в випарнику 5 °С. У цьому випадку має місце і мінімальна кратність циркуляції ВАР, що знижує витрату робочого тіла і, відповідно, теплове навантаження генератора та спрощує рішення задачі охолодження абсорбера. Практично у всіх розглянутих кліматичних зонах з дефіцитом водних ресурсів процес отримання води з атмосферного повітря найбільш енерговитратний в зимовий період року, а найбільш енергоефективний – в літній. У літній період року питомі енерговитрати чисельно однакові при зміні кінцевої температури в процесі охолодження від 5 до 15 °С. Це дозволить організувати енергозберігаючий процес роботи термотрансформаторів тепла різного типу за рахунок підвищення температури кипіння у випарнику. Розроблено варіант системи отримання води в транспортному виконанні, яка призначена для роботи в польових умовах в автономному режимі
APA, Harvard, Vancouver, ISO, and other styles
9

Тарарака, Валерій Дмитрович, Юрій Олександрович Подчашинський, Ларіна Олексіївна Чепюк, Юрій Олександрович Шавурський, and Надія Юріївна Мазурчук. "Формулювання та аналіз вимог до метрологічного забезпечення інформаційно-вимірювальної системи обліку газу." Технічна інженерія, no. 2(88) (November 30, 2021): 86–94. http://dx.doi.org/10.26642/ten-2021-2(88)-86-94.

Full text
Abstract:
Застосування інформаційно-вимірювальних систем у нафтогазовій галузі допомагає покращити комерційний облік витрати газу, що подається споживачам з метою забезпечення взаєморозрахунків із споживачами. Газорозподільні станції (ГРС) є одними з основних об’єктів магістральних газопроводів. Газорозподільні станції призначені для виконання таких операцій: приймання газу з магістрального газопроводу; очищення газу від механічних домішок; зниження тиску до заданої величини; автоматична підтримка тиску на заданому рівні; розподіл газу по споживачах; вимірювання кількості газу. Крім того, на газорозподільній станції здійснюється вторинна одоризація газу. Незалежно від пропускної здатності, кількості споживачів, тиску на вході і виході, характеру зміни навантаження (витрати газу) технологічна схема газорозподільної станції складається з таких основних вузлів: схема підключення ГРС до газопроводів, очищення газу, регулювання тиску, вимірювання витрати газу і контрольно-вимірювальних приладів (КВП), одоризації газу. Вузол вимірювання витрати та кількості природного газу (далі вузол обліку газу) призначений для вимірювання, реєстрації результатів вимірювань і розрахунків обсягу газу, зведеного до стандартних умов, а також за необхідності визначення його показників якості, враховуючи компонентний склад, щільність, вологість, питому теплоту згоряння. Виконано аналіз різних типів витратомірів та обрано ультразвуковий витратомір.
APA, Harvard, Vancouver, ISO, and other styles
10

Лисак, О. В. "АНАЛІЗ СИСТЕМИ ЦЕНТРАЛЬНОГО ТЕПЛОПОСТАЧАННЯ ЗА ВИКОРИСТАННЯ СЕЗОННОГО ГЕОТЕРМАЛЬНОГО АКУМУЛЮВАННЯ В КОМБІНАЦІЇ З СИСТЕМОЮ ВИРОБНИЦТВА ТА СПОЖИВАННЯ ВОДНЮ." Vidnovluvana energetika, no. 3(62) (September 28, 2020): 70–88. http://dx.doi.org/10.36296/1819-8058.2020.3(62).70-88.

Full text
Abstract:
Метою статті є аналіз застосування системи центрального теплопостачання за використання сезонного геотермального акумулювання в комбінації з системою виробництва та споживання водню в загальному комплексі забезпечення енергетичних потреб будівель та супутньої інфраструктури переважно завдяки відновлюваним джерелам енергії (ВДЕ). Щодо частки в теплозабезпеченні, то система з використанням сезонного геотермального акумулювання слугує основним джерелом теплопостачання, а система з застосуванням водню є допоміжним джерелом енергії, призначеним для забезпечення теплоспоживання в період «пікового» навантаження. В даній роботі увагу до використання водню привернуто через необхідність відмови від традиційних джерел енергії, зокрема природного газу, як пікового та резервного джерела енергії в системі комбінованого центрального теплопостачання. Хоча основна частина статті присвячена проблематиці систем центрального теплопостачання, робота також розглядає інші елементи енергозабезпечення житлових будівель та супутньої інфраструктури. Зокрема, увагу приділено ВДЕ, які характеризуються змінним характером генерації електроенергії та теплоти у часі, та їх зв’язку з загальною енергомережею. Також показано, як надлишок електроенергії від ВДЕ слугує джерелом для генерації водню. Отриманий водень й використовуватиметься як для системи водневого теплопостачання, так і для потенційного забезпечення паливом водневого транспорту. Оскільки в процесі генерації теплоти від утилізації водню застосовуються паливні елементи, то окрім теплоти, такі системи здатні виробляти й електроенергію. В роботі надана класифікація систем сезонного геотермального акумулювання, проаналізовано схеми та принцип їх роботи, а також наведено їх порівняння. Було проведено попередній аналіз економічної доцільності систем центрального теплопостачання за використання сезонного геотермального акумулювання в Україні. Для цього було виконано порівняння дійсної вартості центрального теплопостачання в Україні (яке здійснюється переважно за рахунок природного газу) з номінальною вартістю центрального теплопостачання за використання сезонного геотермального акумулювання. Економічний аналіз показав, що у випадку України нормована вартість системи центрального теплопостачання до складу якої входить сезонний геотермальний акумулятор, в якому застосовано технологію свердловин, є вищою на 80…200 % за вартість центрального теплопостачання від традиційних джерел енергії. Водночас, системи з застосуванням штучних озер можуть бути дешевшими на 20 %, але їх встановлення потребуватиме значних початкових інвестицій. Бібл. 50, табл. 3, рис. 4.
APA, Harvard, Vancouver, ISO, and other styles
11

Павлова, І. В. "ОСОБЛИВОСТІ ФОРМУВАННЯ ПРООКСИДАНТНО-АНТИОКСИДАНТНОГО ГОМЕОСТАЗУ У СПЕРМІ КНУРІВ-ПЛІДНИКІВ ЗА ДІЇ ТЕПЛОВОГО СТРЕСУ." Вісник Полтавської державної аграрної академії, no. 1 (March 25, 2022): 126–33. http://dx.doi.org/10.31210/visnyk2022.01.16.

Full text
Abstract:
Теплові навантаження на тварин в літній період представляють суттєву загрозу для отримання не тільки якісної спермопродукції, але й загалом спричиняє падіння продуктивних властивостей. Метою дослідження було визначити дію теплового стресу на прооксидантно-антиоксидантний гомеостаз в спермі кнурів-плідників різних порід. У досліді використовували кнурів-плідників двох порід полтавської м’ясної (ПМ) та червоно-білої м’ясної (ЧБП), аналогів за віком, живою масою та якістю спермопродукції. Встановлено, що в період теплового стресу в спермі кнурів-плідників прооксидантно-антиоксидантний гомеостаз зміщується в бік прискорення процесів пероксидного окислення: стабільне зростання в спермі ПМ породи кількості дієнівих кон’югатів і ТБК-активних сполук; ЧБП породи мав негативний ефект до 40 днів експерименту з подальшим розвитком адаптаційної реакції. Такі зміни супроводжувалися зниженням активності супероксиддисмутази в ПМ (p<0,01) і вмісту відновленого глутатіону та аскорбінової кислоти з одночасним підвищенням рівня каталази. Виявлений неоднаковий вплив теплового стресу на формування прооксидантно-антиоксидантного гомеостазу у спермі тварин різних порід. Встановлено, що інактивація (активність СОД) активних форм Оксигену має вірогідно вищу функціональну активність спермотозоїдів (р<0,01) у представників ЧБП порівняно із ПМ породами. При цьому рівень насиченості відновленим глутатіоном і дегідроаскорбіновою кислотою у спермі був вищим у тварин ПМ породи. Встановлено, що у представників породи ЧБП в період досліду із збільшенням інтенсивності перебігу окисних процесів, спостерігався прояв адаптації до несприятливого впливу надвисоких температур на 70-ту добу.
APA, Harvard, Vancouver, ISO, and other styles
12

Demeshok, Olga. "ПОЛОЖЕННЯ ФІЗИЧНОЇ ЕКОНОМІЇ В КОНТЕКСТІ ЗАБЕЗПЕЧЕННЯ ГОМЕОСТАЗУ СТАЛОГО ГОСПОДАРЮВАННЯ." Європейський науковий журнал Економічних та Фінансових інновацій 2, no. 6 (December 23, 2020): 156–64. http://dx.doi.org/10.32750/2020-0214.

Full text
Abstract:
На сучасному етапі розвитку виробництва та забезпечення сталого господарювання виникає необхідність подолання неузгодженостей між рівнем технологічного процесу та засобами, що підтримують екологічну безпеку життєдіяльності людини. Таким чином, постає необхідність у пошуку інноваційних шляхи для забезпечення економічного зростання та синхронного покращення екологічних показників виробничих процесів. Перші систематизовані погляди, що вказують на енергетичний характер суспільного багатства, описані в минулому столітті українським мислителем Сергієм Подолинським. Він виклав основні положення теорії розвитку суспільства, що базується на використанні людиною природної енергії, а сама людина розглядалася С. Подолинським як теплова машина. Нинішні норми навантаження господарської діяльності на наземні ландшафтні системи є за своєю суттю санітарно-гігієнічними, оскільки вони спрямовані передусім на інтереси людини і не пов'язані з біофізичними критеріями збереження довкілля. Дотримання принципів побудови екологічно сталої економіки, зорієнтованих на запобігання негативним природним змінам потребує формування відповідної статистики біофізичних параметрів. Найкращим розв'язанням даної проблеми є вироблення комплексної державної програми екологічного нормування, яка повинна спрямовувати екологічну безпеку України на досягнення конкретних природоохоронних результатів. Поточним заходом, що має упередити екологізацію управління природокористуванням, повинно стати законодавче закріплення вимог обов'язкового проведення державної і громадської екологічної експертизи планів і проектів. При цьому підприємства і відомства самостійно проводити таку експертизу не мають права. Проблема рівноваги у природі безпосередньо входила до кола досліджуваних В.І. Вернадським. Учений глибоко осягав її теорію. Виходячи зі своїх дослідницьких потреб, він створив власну наукову типологію різновидів гомеостазу – стану рівноваги динамічного середовища, у якому відбуваються біологічні процеси. Учений довів, що усі явища всюди підпорядковані законам рівноваги і повинні бути виражені числами.
APA, Harvard, Vancouver, ISO, and other styles
13

Рудик, Олександр Юхимович. "Методика використання ІКТ у курсі «Контроль якості покриттів»." Theory and methods of e-learning 3 (February 11, 2014): 273–78. http://dx.doi.org/10.55056/e-learn.v3i1.349.

Full text
Abstract:
Підвищення рівня надійності і збільшення ресурсу машин та інших об’єктів техніки можливо тільки за умови випуску продукції високої якості у всіх галузях машинобудування. Це вимагає безперервного вдосконалення технології виробництва і методів контролю якості покриттів. У даний час все більш широкого поширення набуває 100%-вий неруйнівний контроль покриттів на окремих етапах виробництва. Для забезпечення високої експлуатаційної надійності машин і механізмів велике значення має також періодичний контроль їх стану без демонтажу або з обмеженим розбиранням, який проводиться при обслуговуванні в експлуатації або при ремонті.Висока якість машин, приладів, устаткування – основа успішної експлуатації, отримання великого економічного ефекту, конкурентоспроможності на світовому ринку. Тому комплекс глибоких знань і певних навичок в області контролю якості покриттів є необхідною складовою частиною професійної підготовки фахівців з машинобудування.Існуючі методики викладання інженерних дисциплін, як правило, не відповідають змінам у розвитку суспільства. У зв’язку з невеликим обсягом годин, що приділяються на вивчення дисципліни, й сучасними високими вимогам до рівня підготовки фахівців такий курс необхідно ввести не традиційним способом, а з використанням інформаційних технологій. Для цього:– студенти повинні мати попередню комп’ютерну підготовку;– викладач повинен розробити відповідну технологію навчання.Відомо [1], що під технологією навчання мається на увазі системна категорія, орієнтована на дидактичне застосування наукового знання, наукові підходи до аналізу й організації навчального процесу з урахуванням емпіричних інновацій викладачів і спрямованості на досягнення високих результатів у розвитку особистості студентів.Суть пропонованої технології полягає у створенні модульного середовища навчання (МСН) «Контроль якості покриттів» і впровадженні його у процес навчання, що забезпечує систематизацію навчання й формалізацію інформації. Метою технології є індивідуалізація навчання, а визначеність МСН полягає в її алгоритмічній структурі. Тому зміст МСН розроблений у вигляді систематизуючої ієрархічної схеми, куди увійшли основні розділи робочої програми курсу. Структура МСН складається з наступних блоків:1. «Методичне забезпечення дисципліни», у якому пропонуються відповідні дії, що сприяють засвоєнню інформації на заданому рівні:– першоджерела;– робоча програма;– робочий план;– опис дисципліни;– загальні методичні вказівки;– методичні вказівки до вивчення лекційного матеріалу;– методичні вказівки до виконання самостійної роботи;– методичні вказівки до виконання лабораторних робіт;– методичні вказівки до виконання домашнього завдання №1;– методичні вказівки до виконання домашнього завдання №2;– зразок титульної сторінки домашнього завдання.2. «Лекції», у якому представлені html-файли відповідного лекційного матеріалу, контрольні питання й тести до кожної теми:– дефекти і фізико-хімічні властивості покриттів;– оцінка механічних властивостей покриттів; класифікація видів і методів неруйнівного контролю (НК); візуально-оптичний, радіохвильовий і тепловий види НК;– вихореструмовий і радіаційний види неруйнівного контролю покриттів;– магнітний та електричний види НК покриттів;– акустичний метод НК покриттів;– НК покриттів проникаючими речовинами;– технологічні випробування покриттів;– методи і засоби статистичного контролю якості; автоматизація контролю якості покриттів.Викладання лекцій проводиться у режимі комп’ютерної презентації.3. «Самостійне опрацювання теоретичного матеріалу» з тестами.Відомо, що викладач у процесі своєї роботи повинен не тільки передавати студентам певний об’єм інформації, але і прагнути сформувати у них потребу самостійно здобувати знання, застосовуючи різні засоби, зокрема комп’ютерні. Чим краще організована самостійна пізнавальна активність студентів, тим ефективніше і якісніше проходить навчання. Тому деякі матеріали, що відносяться до лекційних тем, пропонуються для самостійного вивчення. При цьому організований доступ студентів до розділів МСН без звернення за допомогою до викладача. При необхідності подальшого використання матеріалів МСН можна копіювати ресурси, компонувати, редагувати і згодом відтворювати їх.4. «Лабораторні роботи» з інструкціями з техніки безпеки при виконанні робіт у лабораторіях і при роботі на персональному комп’ютері й з тестами до кожної теми:– вплив товщини покриття на міцність деталі;– контроль мікротвердості покриттів;– моделювання технологічних випробувань покриттів;– контроль внутрішніх напружень покриттів;– вплив дефектів покриття на якість деталі;– корозійний та електрохімічний контроль якості покриттів;– використання х– та s–діаграм для визначення причин погіршення якості покриттів.5. «Домашні завдання» (умова з варіантами даних і методичні вказівки до виконання, зразок оформлення):– оцінити вплив мікротвердості покриття на міцність деталі;– оцінити вплив корозії покриття на міцність деталі.Для ефективного використання МСН необхідне його планомірне включення в учбовий процес. Тому ще на етапі тематичного планування були розглянуті варіанти можливого використання усіх модулів МНС.Для розвитку розумової діяльності студентів і виховання у них пізнавальної активності самостійну роботу потрібно добре методично забезпечити. У свою чергу, ефективність самостійної роботи студентів багато в чому залежить від своєчасного контролю за її ходом. Тому для оцінки ефективності використання ІКТ у учбовому процесі створена система визначення якості навчання і на її основі побудовані тестові процедури оцінки знань з усіх тем курсу. Перевірку і контроль знань студентів можна здійснити як під час занять, так й інтерактивно. Основними перевагами програми автоматизованого контролю знань є:– випадковий характер вибору тестових завдань, порядок проходження завдань і відповідей, що сприяє об’єктивності оцінок;– представлення варіантів відповідей у вигляді формул і малюнків, що дозволяє розширити коло текстових завдань;– диференційована оцінка кожного варіанту відповіді, що забезпечує детальний аналіз результатів тестування.Комп’ютерне тестування дозволяє [2] розширити можливості проведення індивідуально адаптованих процедур контролю і коректування знань конкретних тем, підвищити об’єктивності контролю знань студентів, забезпечити можливість проведення їх попереднього самоконтролю, підвищити рівень стандартизації вимог до об’єму і якості знань та умінь.Розв’язування експрес-тестів проходить під час лабораторних занять протягом фіксованого проміжку часу. Крім режиму контролю передбачений режим навчання.Важливим елементом навчання є використання моделюючих програм у процесі навчання. У цьому випадку студенти самостійно задають різні параметри задачі, що дає можливість детальніше перевірити характер поведінки моделі за різних умов.Особливістю МСН є застосування комп’ютерного моделювання для лабораторних робіт, оскільки постійні бюджетні проблеми останніх років виключають придбання необхідних установок і приладів. Моделювання контролю якості покриттів дозволило істотно наситити заняття експериментальним і теоретичним змістом. При цьому учбові і учбово-дослідницькі задачі розв’язуються як з формуванням практичних навиків у вивченні фізичних явищ, так і дослідницького мислення, а розроблені методичні вказівки дозволяють разом з типовими лабораторними роботами виконувати роботи евристичного змісту. І, що особливо важливо, використання ІКТ, методів комп’ютерного моделювання дозволяє істотно розширити можливості лабораторних робіт.Використання електронних лабораторних робіт дозволяє більш повно реалізувати диференційований підхід у процесі навчання, ніж роботи і завдання на паперових носіях. Це пов’язано з можливістю включення в роботи необхідної кількості завдань різного рівня складності або об’єму. Істотною перевагою є можливість легко адаптувати наявні роботи до нових версій програм, що з’являються [3].Домашні завдання також виконуються з використанням САПР: на етапі побудови 3D моделі деталі з покриттям студенти працюють в SolidWorks; потім, перейшовши до реальної конструкції, використовують SimulationXpress і SolidWorks Simulation (додатки для аналізу проектних розв’язків, повністю інтегровані в SolidWorks). Оформлення робочої документації досягається засобами Microsoft Office. Така організація роботи дозволяє у процесі навчання побудувати модель контролю якості покриттів на якісно новому рівні й підготувати студентів до використання сучасних інструментаріїв інженера.В SolidWorks Simulation студенти виконують наступне:– прикладають до деталей з покриттями рівномірний або нерівномірний тиск в будь-якому напрямі, сили із змінним розподілом, гравітаційні та відцентрові навантаження, опорну та дистанційну силу;– призначають не тільки ізотропні, а й ортотропні та анізотропні матеріали;– застосовують дію температур на різні ділянки деталі (умови теплообміну: температура, конвекція, випромінювання, теплова потужність і тепловий потік; автоматично прочитується профіль температур, наявний в розрахунку температур, і проводиться аналіз термічного напруження);– знаходять оптимальний розв’язок, який відповідає обмеженням геометрії та поведінки; якщо допущення лінійного статичного аналізу незастосовні, застосовують нелінійний аналіз– за допомогою аналізу втоми оцінюють ефект циклічних навантажень у моделі;– при аналізі випробування на ударне навантаження вирішують динамічну проблему (створюють епюру і будують графік реакції моделі у вигляді тимчасової залежності);– обробляють результати частотного і поздовжнього вигину, термічного і нелінійного навантажень, випробування на ударне навантаження й аналіз втоми;– будують епюри поздовжніх сил, деформацій, переміщень, результатів для сил реакції, форм втрати стійкості, резонансних форм коливань, результатів розподілу температур, градієнтів температур і теплового потоку;– проводять аналізи контактів у збираннях з тертям, посадок з натягом або гарячих посадок, аналізи опору термічного контакту.Змінюючи при чисельному моделюванні деякі вхідні параметри, експериментатор може прослідити за змінами, які відбуваються з моделлю. Основна перевага методу полягає у тому, що він дозволяє не тільки поспостерігати, але і передбачити результат експерименту за якихось особливих умов.Метод чисельного моделювання має наступні переваги перед іншими традиційними методами [4]:– дає можливість змоделювати ефекти, вивчення яких в реальних умовах неможливе або дуже важке з технологічних причин;– дозволяє моделювати і вивчати явища, які передбачаються будь-якими теоріями;– є екологічно чистим і не представляє небезпеки для природи і людини;– забезпечує наочність і доступний у використанні.Але щоб приймати технічно грамотні рішення при роботі з САПР, необхідно уміти правильно сприймати і осмислювати результати обчислень. Цілеспрямований пошук шляхом ряду проб оптимального або раціонального рішення у проектних задачах набагато цікавіший і повчальніший для майбутнього інженера, ніж отримання тільки одного оптимального проекту, який не можна поліпшити і ні з чим порівняти.При великій кількості варіантів проекту аналіз машинних розрахунків дозволяє виявити основні закономірності зміни характеристик проекту від варійованих проектних змінних і сприяє тим самим швидкому і глибокому вивченню властивостей об’єктів проектування.Упровадження сучасних САПР для контролю якості покриттів не тільки забезпечує підвищення рівня комп’ютеризації інженерної праці, але й дозволяє приймати оптимальні рішення. При створенні і використанні таких систем сучасний інженер повинен мати навички роботи з комп’ютерними системами, уміти розробляти математичні моделі формування параметрів оцінки якості покриттів.У цих умовах молодий інженер не має достатнього резерву часу для надбання на виробництві необхідних навичок моделювання складних процесів і систем – він повинен одержати такі навички у процесі навчання у вузі. Таким чином, йдеться про володіння прийомами постановки і розв’язування конструкторсько-технологічних задач сучасними методами моделювання.
APA, Harvard, Vancouver, ISO, and other styles
14

Оборський, Геннадій Олександрович, and Анатолій Миколайович Бундюк. "ДОСЛІДЖЕННЯ ДИНАМІЧНИХ ХАРАКТЕРИСТИК ТЕПЛОВОГО КОНТУРУ КОГЕНЕРАЦІЙНОЇ ЕНЕРГЕТИЧНОЇ УСТАНОВКИ ПРИ ЗМІНІ ЇЇ ЕЛЕКТРИЧНОГО НАВАНТАЖЕННЯ." Scientific Works 2, no. 83 (December 28, 2019). http://dx.doi.org/10.15673/swonaft.v2i83.1523.

Full text
Abstract:
Дослідження динамічних характеристик теплового контуру когенераційної енергетичної установки при зміні її електричного навантаження. Когенераційна енергетична установка (КЕУ) включає два технологічних контури: контур генерації електричної енергії і контур генерації теплової енергії. Залежно від зовнішнього споживача електричного навантаження КЕУ може переходити на режими експлуатації з частковими навантаженнями. Перехід когенераційної установки на режими часткових електричних навантажень призводить до зміни технологічних параметрів і динамічних характеристик установки. Метою роботи є проведення моделювання та аналізу динамічних властивостей теплового контуру КЕУ при зміні електричного навантаження в діапазоні 100% - 50% і визначення динамічних характеристик теплового контуру для кожного з навантажень. Для опису динамічних властивостей газо-водяного поверхневого теплоутилізатора, водо-водяного підігрівача опалення і гарячого водопостачання, що входять в тепловий контур КЕУ, отримано математичну модель, що складається з дев’яти диференційних рівнянь першого порядку. Динаміка теплообмінних апаратів описуються диференційними рівняннями для гріючого середовища, для середовища, що нагрівається і для металу стінки трубок теплообмінника. Аналіз динамічних характеристик елементів теплового контуру показав їх суттєву зміну при зниженні електричного навантаження когенераційної енергетичної установки до 50%. Зі зниженням електричного навантаження по всіх каналах спостерігається зростання значень постійних часу і часу запізнювання і зниження значень коефіцієнтів передачі. Це свідчить про зростання інерційності в контурі і зниження збурюючих впливів на вихідні параметри. Чим нижче електричне навантаження, тим менш ефективним буде регулюючий вплив на регульований параметр.
APA, Harvard, Vancouver, ISO, and other styles
15

Moskvitina, Anna, and Mariia Shyshyna. "ANALYSIS OF TEMPERATURE FIELD IN THE ROOM WITH VARIABLE THERMAL LOADS DURING THE AIR CONDITIONING SYSTEMS OPERATION." Young Scientist 3, no. 79 (March 2020). http://dx.doi.org/10.32839/2304-5809/2020-3-79-40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography