Academic literature on the topic 'Динамічний вимірювач'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Динамічний вимірювач.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Динамічний вимірювач"

1

Хрульов, Микола Васильович, and Генадій Васильович Кривоус. "СПОСІБ КОМПЕНСАЦІЇ ДИНАМІЧНОЇ ПОХИБКИ МЕТОДУ ВИМІРЮВАННЯ ПЕРЕМІЩЕННЯ ЗА ДОПОМОГОЮ ВИМІРЮВАЛЬНОГО ПЕРЕТВОРЮВАЧА ТИПУ ІНДУКТОСИН, ЩО БАЗУЄТЬСЯ НА ВИМІРЮВАННІ ЗСУВУ ФАЗИ." Вісник Черкаського державного технологічного університету, no. 2 (June 22, 2021): 39–48. http://dx.doi.org/10.24025/2306-4412.2.2021.234976.

Full text
Abstract:
Датчики типу індуктосин широко застосовуються для вимірювання переміщення в різних технічних і технологічних галузях. Вони відзначаються надійністю, довговічністю, низькою статичною похибкою вимірювання, простотою обслуговування. Нині в експлуатації знаходиться значна кількість обладнання, в якому використовуються вимірювачі переміщення на основі датчиків типу індуктосин. Одним із методів вимірювання переміщення з використанням індуктосинів є метод, що базується на перетворенні кутового переміщення в фазу, істотним недоліком якого є наявність динамічної похибки методу вимірювання. Таким чином, завдання компенсації динамічної похибки методу вимірювання переміщення за допомогою вимірювального перетворювача типу індуктосин, що базується на вимірюванні зсуву фази, є актуальним і становить певний науковий і практичний інтерес. У статті розглянуто спосіб компенсації динамічної похибки методу вимірювання переміщення за допомогою вимірювального перетворювача типу індуктосин, що базується на вимірюванні зсуву фази, який не потребує застосування додаткових приладів для визначення швидкості переміщення заготовки, наприклад тахогенераторів. Для визначення швидкості переміщення заготовки пропонується використовувати дані, отримані при вимірюванні переміщення за допомогою вимірювального перетворювача типу індуктосин із застосуванням методу вимірювання, що базується на вимірюванні зсуву фази. Відзначено, що запропоноване рішення дасть можливість повністю компенсувати абсолютну динамічну похибку розглянутого методу вимірювання переміщення тільки для випадків рівномірного або рівноприскореного руху. В реальності характер руху виконавчого органу визначається роботою конкретного типу електроприводу і його складових частин, а саме системи управління, електродвигуна, а також характеристиками технологічного обладнання. У загальному випадку для визначення впливу обладнання на абсолютну динамічну похибку необхідно проводити статистичні дослідження для конкретного типу електроприводу і техноло-гічного обладнання. Для реалізації розглянутого способу компенсації динамічної похибки запропоновано модернізовану структуру мікроконтролерного вимірювача переміщення з використанням індуктосину як датчика положення. Застосування методу компенсації динамічної похибки дасть змогу істотно розширити експлуатаційні характеристики методу вимірювання, а саме – підвищити точність вимірювання, й істотно збільшити максимальне значення швидкості переміщення заготовки.
APA, Harvard, Vancouver, ISO, and other styles
2

Охріменко, О. "МЕТОДИ ПІДВИЩЕННЯ ТОЧНОСТІ ПОЗИЦІОНУВАННЯ ОБ’ЄКТІВ ЗАСОБАМИ СУПУТНИКОВОЇ НАВІГАЦІЇ." Vodnij transport, no. 2(30) (February 27, 2020): 16–22. http://dx.doi.org/10.33298/2226-8553.2020.2.30.02.

Full text
Abstract:
Розглянуто аналіз засобів обробки навігаційних даних у системах відстеження рухомих об’єктів, а саме розглянуто метод який підвищує точність вимірювання координат, це алгоритм фільтрації Каймана .Значною мірою це стосується різних рухомих об’єктів -організації руху повітряного ,морського, річкового, автомобільного й залізничного транспорту, а також використання сучасних супутникових навігаційних систем у суміжних областях, таких як геодезія й картографія, землевпорядження, моніторинг земної поверхні. Розглянуто Алгоритм фільтрації Калмана – послідовний рекурсивний алгоритм, який використовує прийняту модель динамічної системи для отримання оцінки, що може бути істотно скоригована в результаті аналізу кожної нової вибірки вимірювань у часовій послідовності. Це рекурентний метод, який можна віднести за своїм алгоритмом до метода заміщення. Алгоритм фільтрації Калмана застосовується в процесі управління багатьма складними динамічними системами, так як це математичний апарат, який дозволяє згладжувати дані на льоту, не накопичуючи їх для аналізу. При управлінні динамічною системою, перш за все, необхідно повністю знати її фазовий стан в кожен момент часу,але виміряти всі змінні, якими необхідно управляти, не завжди можливо, і в цих випадках фільтр Калмана є тим засобом, який дозволяє відновити відсутню інформацію за допомогою наявних неточних (зашумленних) вимірювань. Ключові слова: супутникові навігаційні системи, методи обробки навігаційних даних, точність вимірювання координат, метод Калмана
APA, Harvard, Vancouver, ISO, and other styles
3

ГЛУХОВСЬКИЙ, В. П., and С. М. САМОЙЛЕНКО. "ВИЗНАЧЕННЯ КЛАСУ МІЦНОСТІ БЕТОНУ ЗА ДИНАМІЧНИМ МОДУЛЕМ ПРУЖНОСТІ ПРИ УЛЬТРАЗВУКОВИХ ВИПРОБУВАННЯХ." Наука та будівництво 26, no. 4 (February 12, 2021): 33–36. http://dx.doi.org/10.33644/scienceandconstruction.v26i4.4.

Full text
Abstract:
Клас міцності бетону встановлюється за середньою міцністю і його однорідністю в контрольованій партії. За відсутності прямої функціональної залежності, основою отримання таких показників, ультразвуковим імпульсним методом, є градуювальні залежності між міцністю бетону на стиск і швидкістю (часом) поширення ультразвуку у бетоні. При випробуваннях стандартні процедури передбачають встановлення нових або коригування базових залежностей шляхом паралельних механічних випробувань зразків бетону відібраних з конструкцій. Недотримання таких вимог може призвести до значних похибок, при визначенні міцності і однорідності бетону, і як наслідок, до недостовірної оцінки класу міцності бетону в конструкціях.Характеристикою міцності бетону, функціонально пов'язаною з швидкостями поздовжніх і поперечних хвиль у зразках, є динамічний модуль пружності. Сучасні технічні засоби дозволяють однозначно ідентифікувати і з високою точністю вимірювати швидкості таких хвиль, що значно спрощує його визначення.Застосування динамічного модуля пружності для оцінки класу міцності бетону в конструкціях потребує обґрунтування його зв’язку з нормованими показниками міцності. Згідно будівельних норм таким показником є початковий модуль пружності, що відповідає конкретному класу міцності бетону.Проаналізована і експериментально підтверджена відповідність динамічного модуля пружності, початковому модулю пружності, для важкого бетону.В практичних роботах, це дає змогу застосовувати визначені за результатами акустичних вимірювань фактичні показники динамічних модулів пружності, для переходу до класів міцності бетону в конструкціях. При випробуваннях бетону ультразвуковим імпульсним методом, у разі неможливості відбору зразків для порівняльних випробувань, зв’язок динамічного модуля пружності з класом міцності бетону дозволяє коректно вибирати базову градуювальну залежність для конкретного діапазону міцності.
APA, Harvard, Vancouver, ISO, and other styles
4

Dashchenko, O. F., L. V. Kolomiets, and O. M. Lymarenko. "Improving the accuracy of dynamic mass calculation." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 2 (June 15, 2015): 19–23. http://dx.doi.org/10.15276/opu.2.46.2015.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ковалюк, З. Д., М. М. Пирля, В. Б. Боледзюк, and В. В. Шевчик. "Барична та тензочутливість шаруватих напівпровідників InSe та GaSe." Ukrainian Journal of Physics 56, no. 4 (February 14, 2022): 366. http://dx.doi.org/10.15407/ujpe56.4.366.

Full text
Abstract:
Одержано експериментальні результати по дослідженню баричної чутливості шаруватих напівпровідникових кристалів InSe, GaSe та їх металевих інтеркалятів. Результати вимірювань дозволили визначити коефіцієнт баричної (динамічної) чутливості для даних сполук. Високі значення коефіцієнта баричної чутливості монокристалів InSe, GaSe та їх інтеркалятів (kP ≈ 10–8–10–7 Па–1) для швидкозмінних тисків відкрили можливість для їх використання у ролі чутливих елементів індикаторів перевантажень (акселерометрів). З проведених вимірювань та розрахунків для структур шаруватий напівпровідник–кремній встановлено, що в області відносних деформацій ~10–5 Па–1 коефіцієнт тензочутливості kT = 1300–1500, в області відносних деформацій ~10–4 Па–1 значення kT = 300. Визначено, що тензочутливість інтеркалятів шаруватих кристалів залежить від ступеня перекриття орбіт атомів інтеркальованої домішки та її концентрації.
APA, Harvard, Vancouver, ISO, and other styles
6

Демідов, Б. О., Д. А. Гриб, С. І. Хмелевський, and О. О. Хмелевська. "Методичні підходи до створення програмних динамічних статистичних еквівалентів елементів зразків озброєння і військової техніки." Системи озброєння і військова техніка, no. 4 (68) (December 24, 2021): 77–83. http://dx.doi.org/10.30748/soivt.2021.68.11.

Full text
Abstract:
У статті розглядаються науково-методичні положення про обчислювальні експериментальні і програмні динамічні статистичні еквіваленти (ДСЕ), що використовуються для створення імітаційних моделей складних зразків озброєння і військової техніки та їх програмного забезпечення. Наведена модель похибки вимірювань інформаційно-вимірювальної системи, що може бути корисною при заміні реального об’єкту ДCЕ, адекватним із точністю до заданих статистичних характеристик. Наводяться типові приклади, що підтверджують необхідність (доцільність) застосування вказаних методичних засобів при передпроєктних дослідженнях, зовнішньому проектуванні і під час дослідження проблем обґрунтування і вибору обрисів, передпроєктних конструкторських рішень і варіантів використання за призначенням нових зразків ОВТ і у тих випадках, коли створення цих засобів здійснюється із значними витратами ресурсів.
APA, Harvard, Vancouver, ISO, and other styles
7

Mashchenko, V. А., V. P. Kvasnikov, N. А. Borduk, and T. N. Shevchuk. "DETERMINATION OF DINAMIC MODULES OF ELASTIC OF POLYMER AUXETICS WITH THE HELP OF PULSE IMMERSION MEASUREMENTS OF PROPAGETION VELOSITIES OF ULTRASONIC WAVES." Key title: Zbìrnik naukovih pracʹ Odesʹkoï deržavnoï akademìï tehnìčnogo regulûvannâ ta âkostì -, no. 1(14) (2019): 13–18. http://dx.doi.org/10.32684/2412-5288-2019-1-14-13-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Дітчук, Роман Львович, and Ірина Олександрівна Шипова. "Система навчальних самостійних робіт на уроках математики." Theory and methods of learning mathematics, physics, informatics 1, no. 1 (April 25, 2014): 61–70. http://dx.doi.org/10.55056/tmn.v1i1.446.

Full text
Abstract:
Всі реформи, яких зазнавала наша школа з 30-х років ХХ ст., не зачіпали основ традиційного гербартиансько-колективістського навчального процесу, що і зараз здійснюється за схемою: “вчитель навчає – учні вчаться – вчитель відповідає за їх навчаність”. Нинішня реформа в галузі освіти передбачає в кінцевому результаті (на нашу думку, це повинно статися вже в недалекій перспективі) корінну зміну навчального процесу в школі.Згідно Концепції реформи, школа повинна готувати підростаюче покоління до життя, в школі діти мали б навчатися не абстрактним, в одірваним від дійсності знанням, а тому, що їм буде потрібно в майбутньому реальному житті. Цінними рисами характеру і якостями розуму, що дуже потрібні людині і життєвих обставинах, є самостійність, здатність робити оптимальні вибори, здатність відповідати за свої вчинки. Щоб сформувати такі якості впродовж тривалого періоду, потрібно змінити навчальний процес. Його схема могла бути хоча б такою: “вчитель навчає – учні вчаться – вчитель індивідуально ставить проблеми (завдання, проекти) – учень самостійно їх виконує – учень відповідає за свою навченість”. Це дало б змогу: а) різко збільшити роль самої дитини у виборі прийнятної для неї системи знань і рівня її засвоєння; б) активізувати навчальну самостійну діяльність школярів на уроках і в позаурочний час; в) забезпечити набуття індивідуального досвіду самою дитиною; г) встановити відповідальність школярів за наслідки своєї учбової діяльності.Самостійність формується під час самостійної діяльності. Школяр у процесі навчання на уроках повинен систематично самостійно вчитися. Вчитель просто зобов’язаний організовувати навчальний процес, в якому постійно проходить самостійна навчальна діяльність школярів. Разом з тим, ми вважаємо, що самостійне учення школярів з математики організовується переважно вже після їхнього навчання в процесі пояснення вчителя і виконання ними домашнього завдання, тобто тоді, коли в учнів сформовані, хоч би на формальному рівні, математичне поняття і вивчення їх перші властивості.Під навчальною самостійною роботою на уроці будемо розуміти метод навчання, в якому переважає індивідуальна самостійна діяльність школяра, що здійснюється за наперед заготовленими завданнями під керівництвом вчителя і, в разі потреби, з його невеликою допомогою.Сформулюємо ряд вимог до організації навчальних самостійних робіт на уроках математики.1. Кожна навчальна самостійна робота будується, виходячи з мети уроку і потреб формування навчально-пізнавальної діяльності учнів.2. Самостійні роботи повинні бути переважно навчальними, а не контролюючими, тобто метою роботи є навчання школярів, а не контроль знань та вмінь. Це сприяє більшій свободі дій учнів під час виконання роботи.3. Завдання повинні ставитися так, щоб учні сприйняли його як власну пізнавальну мету і активно намагалися досягти її. Це створює мотив діяльності школярів.4. При організації самостійної роботи враховуються індивідуальні особливості дітей. З цієї причини завдання на самостійну роботу повинне бути здебільшого індивідуальними, а не спільними для всіх учнів. Якщо завдання індивідуальне, то дії і мислення учня не залежать від дій його товаришів, він знаходиться в автономних умовах зростає його активність бо відсутня установка на спільну роботу, дитина працює у відповідності з природним темпом роботи. Нами давно помічено, що коли ті, що вчаться, працюють за індивідуальними завданнями, то їх навчальна активність різко зростає.5. Учень не мусить виконувати всі задачі одержаного завдання і не повинен наводити розв’язання кожної задачі.6. Управління пізнавальною діяльністю учнів вчитель здійснює вербальними, дидактичними або технічними засобами.Зворотній зв’язок від учнів класу, зайнятих самостійною роботою, вчитель одержує, перебуваючи весь час серед них і постійно проводячи спостереження: одним він підказує, інших консультує, за третім слідкує, когось похвалить, комусь зверне увагу і т.д.Кожна навчальна самостійна робота триває від 15 до 45 хвилин уроку.Разом з тим самостійну роботу ми трактуємо значно ширше – як самостійне виконання школярем великого завдання, що має єдину мету і потребує значних пізнавальних або практичних зусиль з боку виконуючого. Таке завдання має назву проекту. Завданнями-проектами можуть бути розв’язання системи типових (базових) задач (в кількості 15-20) із значної теми, побудови серії графіків функцій, встановлення властивостей математичного поняття, складання опорного конспекту значної теми тощо. Розширена самостійна робота (виконання проектів) може тривати 2-3 уроки і завершуватись в позаурочний час. За виконаний проект учень звітується перед вчителем і товаришами по класу. Звіти можуть проходити в різній формі: учні відмічають у вивішаній на стіні класу таблиці номери розв’язаних задач напроти свого прізвища, як це робив В.Ф. Шаталов, урочистий захист виконаного завдання перед учнями класу, перевірка комісією, в яку входять вчитель і декілька учнів, представлених проектів тощо. Захищені проекту оцінюються, і оцінка є своєрідним допуском до модульно-тематичної атестації.В педагогіці відомий принцип позитивного емоційного фону навчання. Оскільки навчання перестає бути авторитарним, то цей принцип набиратиме все більшого значення.Суть його полягає в тому, що робота, якою людина захоплена, виконується нею швидше і дає кращий результат. І, навпаки, робота, яка супроводиться негативними емоціями, не мобілізує сили, а пригнічує їх і тому є мало ефективною. Без натхнення, писав В.О. Сухомлинський, навчання перетворюється для дітей в муку.Процес навчання, який в сучасній школі в основному впливає на мислення і пам’ять дітей, повинен також сильно діяти на їх почуття і уяву. Для цього в методиці математики застосовують, так званий, ефект яскравої плями: використання вчителем кольору, несподіваних прийомів, цікавих повідомлень, задач з цікавої математики тощо. В цьому ж ключі можуть використовуватись різні і різноманітні, доцільно підібрані методи навчання.Виходячи з принципу позитивного емоційного фону навчання, скажемо, що навчальні самостійні роботи, які застосовує вчитель математики на уроках, повинні бути різними і різноманітними.Аналіз педагогічної літератури, яка стосується самостійних робіт на уроках з різних предметів, опрацювання методичних джерел з питань ефективності навчання математиці, власний досвід роботи дають можливість описати основні види навчальних самостійних робіт, які застосовуються на уроках математики.1. Тренувальні роботи за зразком.Використовуються для закріплення знань і відпрацювання вмінь розв’язувати задачі певного типу.Загальна схема такого виду роботи: розв’язується фронтально задача, яка служить зразком, аналогічну або подібну задачу учні розв’язують самостійно.Змінювати будову самостійної роботи можна, виходячи із різних прийомів пред’явлення задачі-зразка: зразок залишається на дошці, запис зразка витирається, розв’язання задачі-зразка проводиться в розгорнутому виді, у згорнутому виді, дається лише план розв’язання.В залежності від способу пред’явлення зразка, від того, як його сприймають учні, маємо різні можливості побудови цього виду робіт. Розв’язання задачі-зразка виконуєтьсяЦе розв’язанняУчні1.1. вчителем;1.2. учнем2.1. в розгорнутому вигляді;2.2. в згорнутому вигляді;2.3. у вигляді плану або схеми.3.1. залишається на дошці;3.2. витирається;3.3. є в посібнику чи дидактичній картці.4.1. вивчають і записують зразок у зошитах;4.2. розгортають роз­в’язання задачі-зразка;4.3. згортають роз­в’язання задачі-зразка;4.4. розв’язують задачу-зразок на основі поданого плану;4.5. усно вивчають зразок і переносять спосіб розв’язання на аналогічну задачу.2. Напівсамостійні роботи.Ці роботи займають проміжне місце між фронтальною формою роботи і методом самостійної роботи.Схема організації напівсамостійних робіт: план розв’язання задачі знаходиться колективно під керівництвом вчителя, а саме розв’язання здійснюється учнями самостійно.І тут є різні можливості побудови роботи: план розв’язання задачі, наприклад, може бути знайдений вчителем в ході показових, відкритих міркувань, може бути знайдений одним або кількома учнями або колективно багатьма учнями. Одержаний план розв’язання задачі можна записати на дошці або обмежитися усним повторенням і т.д.Такий вид роботи корисно використовувати при опрацюванні задач, розв’язання яких приводить до одержання нових знань або нових способів дій.3. Пошукові роботи із вказівкамиВикористовуються для розв’язання пізнавальних задач, що містять нові знання для дітей, в результаті розв’язання цих задач вони відкривають для себе нову інформацію.Учням пропонується завдання, що містить 3-4 більш складні задачі. Бажано, щоб завдання було однаковим для всіх учнів класу. Учні пробують розв’язувати задачі самостійно, звертаються до вчителя за допомогою і одержують її у вигляді підказок, вказівок або рекомендацій.4. Варіативні роботи.Це роботи, які виконуються за варіативними завданнями, тобто такими завданнями, в яких змінюється умова, вимога або умова і вимога задачі одночасно.Прикладами таких завдань є: 1) як зміниться значення дробу , якщо: а) чисельник дробу збільшити в 2 рази; б) знаменник дробу збільшити в два рази; в) чисельник і знаменник дробу збільшити в 2 рази; г) чисельник збільшити в два рази, а знаменник зменшити в 2 рази?5. СпостереженняЦе метод навчання, при якому учень веде спостереження за досліджуваним об’єктом, не втручаючись у його природний стан.Спостереження організовується для самостійного висловлення учнями догадки про певну математичну закономірність, що має місце в спостережуваному об’єкті. Вчитель вказує учням мету, що і для чого спостерігати, дає певний план спостереження і збору інформації, пояснює, яку роботу потрібно виконати.Різновидності спостереження: 1) попереднє спостереження перед вивченням нової теми; 2) спостереження в процесі вивчення нової теми, коли учні відкривають і самі обґрунтовують (можливо, за допомогою підручника) нову для них закономірність; 3) узагальнююче спостереження. В цьому випадку розв’язується пізнавальна задача на основі співставлення і порівняння конкретного матеріалу, виділення ознак спільних для різних об’єктів, за якими можна узагальнювати.6. Дослід (експеримент)Тут учень втручається в спостережуваний об’єкт, змінюючи певним чином умови чи елементи об’єкту. Під час проведення досліду учні розглядають різні частинні випадки і на основі накопиченої інформації у них виникає догадка – відкриття математичної закономірності. Учні повинні розуміти, що цю догадку потрібно довести або спростувати.Різновидності досліду: 1) індукція. Наприклад, встановлення формули загального члена арифметичної або геометричної прогресії; 2) широкий дослід – всі учні класу розглядають велику кількість частинних випадків, а результати співпадають.Досліджувані об’єкти – математичні тексти, малюнки, динамічні моделі.7. Опрацювання тексту підручника (робота з підручником).Організовується при вивченні нового матеріалу, при повторенні. Самостійній роботі з підручником передує підготовчий етап, організований вчителем. Тут проводиться мотивація, ставиться мета, дається інструкція і система питань, на які учні повинні відповідати.Після опрацювання нового матеріалу вчитель організовує перевірку рівня засвоєності його шляхом усного відтворення, відповідей на питання, вміння розв’язувати тренувальні вправи.Різновидності роботи: 1) опрацювання нового матеріалу за підручниками вдома; 2) те ж на уроці.8. Оцінка тексту підручника або оцінка розв’язування задачі (коментування).Суть цього виду самостійної роботи полягає в поясненні учням певного тексту або розв’язання задачі з коментуванням своєї оцінки.Різновидності роботи: 1) коментування тексту підручника; 2) коментування способу доведення теореми або розв’язання задачі.9. Складання плану опрацьованого тексту або складання опорного конспекту.Після пояснення вчителем нового матеріалу або після самостійного опрацювання учнями тексту підручника їм пропонується скласти опорний конспект вивченої теми, схему доведення теореми або план опрацьованого тексту.Слід мати на увазі, що опорний конспект – це стислий виклад матеріалу даної теми, записаний певними символами і значками, з опорою на другу сигнальну систему, тобто на слово і символ. За таким конспектом, опираючись на засвоєні сигнали, учень може швидко розгорнути доведення теореми чи відтворити вивчений матеріал.10. Складання задач.Наведемо декілька прикладів організації такого виду робіт.1) Зразу після засвоєння учнями математичного поняття або його властивостей вчитель пропонує їм скласти задачі по цьому матеріалу. Розглядаються пропозиції учнів, вибираються найбільш вдалі зразки вправ і переходять до закріплення теорії задачами з підручника.2) Після закріплення вивченого теоретичного матеріалу задачами вчитель пропонує скласти учням свої задачі по аналогії.3) В кінці вивчення значної теми можна оголосити конкурс на створення або відшукання оригінальних задач по цій темі.11. Практичні роботи.Практична робота – це робота, спрямована на застосування набутих знань в практичній діяльності учня. Під час практичної роботи учні залучаються до виконання вимірювань, обчислень, малюнків фігур, виготовлення нескладних моделей тощо.Різновидності практичних робіт: 1) розв’язання на уроці задач практичного змісту; 2) виконання вдома завдань практичного змісту з використанням вимірювань, обчислень, креслень; 3) роботи на місцевості (вимірні роботи); 4) графічні роботи (виконання графіків, функцій, малюнків геометричних фігур у паралельній проекції); 5) виготовлення розгорток геометричних тіл та їх моделей.12. Повторення.Мета цих робіт – повторити раніш
APA, Harvard, Vancouver, ISO, and other styles
9

Гуржій, Андрій Миколайович, Валерій Яковлевич Жуйков, Анатолій Тимофійович Орлов, Віктор Михайлович Співак, Олександр Володимирович Богдан, Микола Іванович Шут, Людмила Юріївна Благодаренко, et al. "Викладання фізики з використанням вітчизняної електронної цифрової лабораторії, створеної на основі ІКТ." Theory and methods of e-learning 4 (February 17, 2014): 69–78. http://dx.doi.org/10.55056/e-learn.v4i1.372.

Full text
Abstract:
У зв’язку із загальною інформатизацією освіти і швидким розвитком цифрових засобів обробки інформації назріла необхідність впровадження в лабораторні практикуми вищих та середніх навчальних закладів цифрових засобів збору, обробки та оформлення експериментальних результатів, в тому числі під час виконання лабораторних робот з основ електротехнічних пристроїв та систем. При цьому надмірне захоплення віртуальними лабораторними роботами на основі комп’ютерного моделювання в порівнянні з реальним (натурним) експериментом може призводити до втрати особової орієнтації в технології освіти і відсутності надалі у випускників навчальних закладів ряду практичних навичок.У той же час світові компанії, що спеціалізуються в учбово-технічних засобах, переходять на випуск учбового устаткування, що узгоджується з комп’ютерною технікою: аналого-цифрових перетворювачів і датчиків фізико-хімічних величин, учбових приладів керованих цифро-аналоговими пристроями, автоматизованих учбово-експеримен­тальних комплексів, учбових експериментальних установок дистанційного доступу.У зв’язку із цим в області реального експерименту відбувається поступовий розвиток інформаційних джерел складної структури, до яких, у тому числі, відносяться комп’ютерні лабораторії, що останнім часом оформлюються у новий засіб реалізації учбового натурного експерименту – цифрові електронні лабораторії (ЦЕЛ).Відомі цифрові лабораторії для шкільних курсів фізики, хімії та біології (найбільш розповсюджені компаній Vernier Software & Technology, USA та Fourier Systems Inc., Israel) можуть бути використані у ВНЗ України, але вони мають обмежений набір датчиків, необхідність періодичного ручного калібрування, використовують застарілий та чутливий до електромагнітних завад аналоговий інтерфейс та спрощене програмне забезпечення, що не дозволяє проводити статистичну обробку результатів експерименту та з урахуванням низької розрядності аналого-цифрових перетворювачів не може використовуватись для проведення науково-дослідних робіт у вищих навчальних закладах, що є однією із складових підготовки висококваліфікованих спеціалістів, особливо в університетах, які мають статус дослідницьких.Із вітчизняних аналогів відомі окремі компоненти цифрових лабораторій, що випускаються ТОВ «фірма «ІТМ» м. Харків. Вони поступаються продукції компаній Vernier Software & Technology, USA та Fourier Systems Inc. та мають близькі цінові характеристики на окремі компоненти. Тому необхідність розробки вітчизняної цифрової навчальної лабораторії є нагальною, проблематика досліджень та предмет розробки актуальні.Метою проекту є створення сучасної вітчизняної цифрової електронної лабораторії та відпрацювання рекомендацій по використанню у викладанні на її основі базового переліку науково-природничих та біомедичних дисциплін у ВНЗ I-IV рівнів акредитації при значному зменшенні витрат на закупку приладів, комп’ютерної техніки та навчального-методичного забезпечення. В роботі використані попередні дослідження НДІ Прикладної електроніки НТУУ «КПІ» в галузі МЕМС-технологій (micro-electro-mechanical) при створенні датчиків фізичних величин, виконано огляд технічних та методичних рішень, на яких базуються існуючі навчальні цифрові лабораторії та датчики, розроблені схемотехнічні рішення датчиків фізичних величин, проведено конструювання МЕМС – первинних перетворювачів, та пристроїв реєстрації інформації. Розроблені прикладні програми інтерфейсу пристроїв збору інформації та вбудованих мікроконтролерів датчиків. Сформульовані вихідні дані для розробки бездротового інтерфейсу датчиків та програмного забезпечення цифрової лабораторії.Таким чином, у даній роботі пропонується нова вітчизняна цифрова електронна лабораторія, що складається з конструкторської документації та дослідних зразків обладнання, програмного забезпечення та розробленого єдиного підходу до складання навчальних методик для цифрових лабораторій, проведення лабораторних практикумів з метою економії коштів під час створення нових лабораторних робіт із реєстрацією даних, обробки результатів вимірювань та оформленням результатів експерименту за допомогою комп’ютерної техніки.Цифрова електронна лабораторія складається із таких складових частин: набірного поля (НП); комплектів модулів (М) із стандартизованим вихідним інтерфейсом, з яких складається лабораторний макет для досліджування об’єкту (це – набір електронних елементів: резисторів, ємностей, котушок індуктивності, цифро-аналогових та аналого-цифрових перетворювачів (ЦАП та АЦП відповідно)) та різноманітних датчиків фізичних величин; комп’ютерів студента (планшетного комп’ютера або спеціалізованого комп’ютера) з інтерфейсами для датчиків; багатовходових пристроїв збору даних та їх перетворення у вигляд, узгоджений з інтерфейсом комп’ютера (реєстратор інформації або Data Logger); комп’ютер викладача (або серверний комп’ютер із спеціалізованим програмним забезпеченням); пристрої зворотного зв’язку (актюатори), що керуються комп’ютером; трансивери для бездротового прийому та передачі інформації з НП.Таким чином, з’являється новий клас бездротових мереж малої дальності. Ці мережі мають ряд особливостей. Пристрої, що входять в ці мережі, мають невеликі розміри і живляться в основному від батарей. Ці мережі є Ad-Hoc мережами – високоспеціалізованими мережами з динамічною зміною кількісного складу мережі. У зв’язку з цим виникають завдання створення та функціонування даних мереж – організація додавання і видалення пристроїв, аутентифікація пристроїв, ефективна маршрутизація, безпека даних, що передаються, «живучість» мережі, продовження часу автономної роботи кінцевих пристроїв.Протокол ZigBee визначає характер роботи мережі датчиків. Пристрої утворюють ієрархічну мережу, яка може містити координатор, маршрутизатори і кінцеві пристрої. Коренем мережі являється координатор ZigBee. Маршрутизатори можуть враховувати ієрархію, можлива також оптимізація інформаційних потоків. Координатор ZigBee визначає мережу і встановлює для неї оптимальні параметри. Маршрутизатори ZigBee підключаються до мережі або через координатор ZigBee, або через інші маршрутизатори, які вже входять у мережу. Кінцеві пристрої можуть з’єднуватися з довільним маршрутизатором ZigBee або координатором ZigBee. По замовчуванню трафік повідомлень розповсюджується по вітках ієрархії. Якщо маршрутизатори мають відповідні можливості, вони можуть визначати оптимізовані маршрути до визначеної точки і зберігати їх для подальшого використання в таблицях маршрутизації.В основі будь-якого елементу для мережі ZigBee лежить трансивер. Активно розробляються різного роду трансивери та мікроконтролери, в які потім завантажується ряд керуючих програм (стек протоколів ZigBee). Так як розробки ведуться багатьма компаніями, то розглянемо та порівняємо новинки трансиверів тільки кількох виробників: СС2530 (Texas Instruments), AT86RF212 (Atmel), MRF24J40 (Microchip).Texas Instruments випускає широкий асортимент трансиверів. Основні з них: CC2480, СС2420, CC2430, CC2431, CC2520, CC2591. Всі вони відрізняються за характеристиками та якісними показниками. Новинка від TI – мікросхема СС2530, що підтримує стандарт IEEE 802.15.4, призначена для організації мереж стандарту ZigBee Pro, а також засобів дистанційного керування на базі ZigBee RF4CE і обладнання стандарту Smart Energy. ІС СС2530 об’єднує в одному кристалі РЧ-трансивер і мікроконтролер, ядро якого сумісне зі стандартним ядром 8051 і відрізняється від нього поліпшеною швидкодією. ІС випускається в чотирьох виконаннях CC2530F32/64/128/256, що розрізняються обсягом флеш-пам’яті – 32/64/128/256 Кбайт, відповідно. В усьому іншому всі ІС ідентичні: вони поставляються в мініатюрному RoHS-сумісному корпусі QFN40 розмірами 6×6 мм і мають однакові робочі характеристики. СС2530 являє собою істотно покращений варіант мікросхеми СС2430. З точки зору технічних параметрів і функціональних можливостей мікросхема СС2530 перевершує або не поступається CC2430. Однак через підвищену вихідну потужність (4,5 дБм) незначно виріс струм споживання (з 27 до 34 мА) при передачі. Крім того, ці мікросхеми мають різні корпуси і кількість виводів (рис. 1). Рис. 1. Трансивери СС2530, СС2430 та СС2520 фірми Texas Instruments AT86RF212 – малопотужний і низьковольтний РЧ-трансивер діапазону 800/900 МГц, який спеціально розроблений для недорогих IEEE 802.15.4 ZigBee-сумісних пристроїв, а також для ISM-пристроїв з підвищеними швидкостями передачі даних. Працюючи в діапазонах частот менше 1 ГГц, він підтримує передачу даних на малих швидкостях (20 і 40 Кбіт/с) за стандартом IEEE 802.15.4-2003, а також має опціональну можливість передачі на підвищених швидкостях (100 і 250 Кбіт/с) при використанні модуляції O-QPSK у відповідності зі стандартом IEEE 802.15.4-2006. Більше того, при використанні спеціальних високошвидкісних режимів, можлива передача на швидкості до 1000 Кбіт/с. AT86RF212 можна вважати функціональним блоком, який з’єднує антену з інтерфейсом SPI. Всі критичні для РЧ тракту компоненти, за винятком антени, кварцового резонатора і блокувальних конденсаторів, інтегровані в ІС. Для поліпшення загальносистемної енергоефективності та розвантаження керуючого мікроконтролера в ІС інтегровані прискорювачі мережевих протоколів (MAC) і AES- шифрування.Компанія Microchip Technology виробляє 8-, 16- і 32- розрядні мікроконтролери та цифрові сигнальні контролери, а також аналогові мікросхеми і мікросхеми Flash-пам’яті. На даний момент фірма випускає передавачі, приймачі та трансивери для реалізації рішень для IEEE 802.15.4/ZigBee, IEEE 802.11/Wi-Fi, а також субгігагерцового ISM-діапазону. Наявність у «портфелі» компанії PIC-мікроконтролерів, аналогових мікросхем і мікросхем пам’яті дозволяє їй запропонувати клієнтам комплексні рішення для бездротових рішень. MRF24J40 – однокристальний приймач, що відповідає стандарту IEEE 802.15.4 для бездротових рішень ISM-діапазону 2,405–2,48 ГГц. Цей трансивер містить фізичний (PHY) і MAC-функціонал. Разом з мікроспоживаючими PIC-мікроконтролерами і готовими стеками MiWi і ZigBee трансивер дозволяє реалізувати як прості (на базі стека MiWi), так і складніші (сертифіковані для роботи в мережах ZigBee) персональні бездротові мережі (Wireless Personal Area Network, WPAN) для портативних пристроїв з батарейним живленням. Наявність MAC-рівня допомагає зменшити навантаження на керуючий мікроконтролер і дозволяє використовувати недорогі 8-розрядні мікроконтролери для побудови радіомереж.Ряд компаній випускає завершені модулі ZigBee (рис. 2). Це невеликі плати (2÷5 кв.см.), на яких встановлено чіп трансивера, керуючий мікроконтролер і необхідні дискретні елементи. У керуючий мікроконтролер, у залежності від бажання і можливості виробника закладається або повний стек протоколів ZigBee, або інша програма, що реалізує можливість простого зв’язку між однотипними модулями. В останньому випадку модулі іменуються ZigBee-готовими (ZigBee-ready) або ZigBee-сумісними (ZigBee compliant).Всі модулі дуже прості в застосуванні – вони містять широко поширені інтерфейси (UART, SPI) і управляються за допомогою невеликого набору нескладних команд. Застосовуючи такі модулі, розробник позбавлений від роботи з високочастотними компонентами, так як на платі присутній ВЧ трансивер, вся необхідна «обв’язка» і антена. Модулі містять цифрові й аналогові входи, інтерфейс RS-232 і, в деяких випадках, вільну пам’ять для прикладного програмного забезпечення. Рис. 2. Модуль ZigBee із трансивером MRF24J40 компанії Microchip Для прикладу, компанія Jennic випускає лінійку ZigBee-сумісних радіомодулів, побудованих на низькоспоживаючому бездротовому мікроконтролері JN5121. Застосування радіомодуля значно полегшує процес розробки ZigBee-мережі, звільняючи розробника від необхідності конструювання високочастотної частини виробу. Використовуючи готовий радіомодуль, розробник отримує доступ до всіх аналогових і цифрових портів вводу-виводу чіпу JN5121, таймерам, послідовного порту і інших послідовних інтерфейсів. У серію входять модулі з керамічної антеною або SMA-коннектором з дальністю зв’язку до 200 метрів. Розмір модуля 18×30 мм. Версія модуля з підсилювачем потужності і підсилювачем вхідного сигналу має розмір 18×40 мм і забезпечує дальність зв’язку більше 1 км. Кожен модуль поставляється з вбудованим стеком протоколу рівня 802.15.4 MAC або ZigBee-стеком.За висновками експертів з аналізу ринку сьогодні одним з найперспективніших є ринок мікросистемних технологій, що сягнув 40 млрд. доларів станом на 2006 рік зі значними показниками росту. Самі мікросистемні технології (МСТ) почали розвиватися ще з середини ХХ ст. і, отримуючи щоразу нові поштовхи з боку нових винаходів, чергових удосконалень технологій, нових галузей науки та техніки, динамічно розвиваються і дедалі ширше застосовуються у широкому спектрі промислової продукції у всьому світі.Прилад МЕМС є об’єднанням електричних та механічних елементів в одну систему дуже мініатюрних розмірів (значення розмірів механічних елементів найчастіше лежать у мікронному діапазоні), і достатньо часто такий прилад містить мікрокомп’ютерну схему керування для здійснення запрограмованих дій у системі та обміну інформацією з іншими приладами та системами.Навіть з побіжного аналізу структури МЕМС зрозуміло, що сумарний технологічний процес є дуже складним і тривалим. Так, залежно від складності пристрою технологічний процес його виготовлення, навіть із застосуванням сучасних технологій, може тривати від кількох днів до кількох десятків днів. Попри саме виготовлення, доволі тривалими є перевірка та відбраковування. Часто виготовляється відразу партія однотипних пристроїв, причому вихід якісної продукції часто не перевищує 2 %.Для виготовлення сучасних МЕМС використовується широка гама матеріалів: різноманітні метали у чистому вигляді та у сплавах, неметали, мінеральні сполуки та органічні матеріали. Звичайно, намагаються використовувати якомога меншу кількість різнорідних матеріалів, щоби покращити технологічність МЕМС та знизити собівартість продукції. Тому розширення спектра матеріалів прийнятне лише за наявності специфічних вимог до елементів пристрою.Спектр наявних типів сенсорів в арсеналі конструктора значно ширший та різноманітніший, що зумовлено багатоплановим застосуванням МЕМС. Переважно використовуються ємнісні, п’єзоелектричні, тензорезистивні, терморезистивні, фотоелектричні сенсори, сенсори на ефекті Холла тощо. Розроблені авторами в НДІ Прикладної електроніки МЕМС-датчики, їх характеристики, маса та розміри наведені у табл. 1.Таблиця 1 №з/пМЕМС-датчикиТипи датчиківДіапазони вимірюваньГабарити, маса1.Відносного тиску, тензорезистивніДВТ-060ДВТ-1160,01–300 МПа∅3,5–36 мм,5–130 г2.Абсолютного тиску,тензорезистивніДАТ-0220,01–60 МПа∅16 мм,20–50 г3.Абсолютного тиску, ємнісніДАТЄ-0090,05–1 МПа5×5 мм4.Лінійного прискорення,тензорезистивніДЛП-077±(500–100 000) м/с224×24×8 мм,100 г5.Лінійного прискорення,ємнісніАЛЄ-049АЛЄ-050±(5,6–1200) м/с235×35×22 мм, 75 г6.Кутової швидкості,ємнісніДКШ-011100–1000 °/с
APA, Harvard, Vancouver, ISO, and other styles
10

Кіяновська, Наталія Михайлівна. "Модель використання інформаційно-комунікаційних технологій навчання у фундаментальній підготовці майбутніх інженерів: досвід США." Theory and methods of e-learning 4 (February 28, 2014): 122–33. http://dx.doi.org/10.55056/e-learn.v4i1.380.

Full text
Abstract:
Одним із перспективних підходів до організації навчального процесу є модель інтеграції технологій навчання: традиційного та дистанційного, електронного, мобільного. Інтеграція аудиторної та позааудиторної роботи в процесі навчання можлива за рахунок використання педагогічних технологій та сучасних ІКТ, зокрема, засобів електронного, дистанційного, мобільного навчання. Для того, щоб процес інтеграції був найефективнішим, викладачу необхідно управляти, регулювати та контролювати діяльність студентів [1].З практичної точки зору класичний підхід до ІКТ в освіті включає «політику / стратегію – вклад – процес – продукт / результати». Для того, щоб інтеграція ІКТ в національні системи освіти стала ефективною, потрібно відповідне поєднання наступних політичних і практичних чинників [2]: 1) чіткі цілі та створення національної програми по підтримці використання ІКТ в освіті; 2) допомога та стимулювання як державних, так і приватних навчальних закладів до придбання обладнання ІКТ (наприклад, шляхом цільового державного фінансування, включаючи кошти на технічне обслуговування; податкових знижок на обладнання ІКТ та програмне забезпечення для навчальних закладів; інвестицій або спонсорства досліджень з розвитку недорогого обладнання та програмного забезпечення ІКТ, тощо); 3) пристосування навчальних програм до впровадження ІКТ, розвиток і придбання стандартних якісних електронних навчальних посібників та програмного забезпечення; 4) розробка програм масової підготовки викладачів до використання ІКТ; 5) умотивованість викладачів та студентів організовувати процес навчання із залученням ІКТ; 6) адекватний рівень національного моніторингу та система оцінки, що дозволяють регулярно визначати результати та дієвість, а також заздалегідь виявляти недоліки з метою підвищення ефективності стратегії.Виданий Департаментом освіти США Національний план освітніх ІКТ у 2010 році являє собою модель навчання, що базується на використанні ІКТ та включає в себе цілі і рекомендації в п’яти основних областях: навчання, оцінювання, викладацька діяльність, засоби і продуктивність [3]. Розглянемо, як інтерпретується кожна із зазначених областей.Навчання. Викладачі мають підготувати студентів до навчання впродовж всього життя за межами аудиторії, тому необхідно змінити зміст та засоби навчання для того, щоб відповідати тому, що людина повинна знати, як вона набуває знання, де і коли вона навчається, і змінити уявлення про те, хто повинен навчатися. В XXI столітті необхідно використовувати доступні ІКТ навчання для мотивації й натхнення студентів різного віку.Складні і швидко змінні потреби світової економіки говорять про необхідний зміст навчання і про тих, кого потрібно навчати. Використання ІКТ дозволяє впливати на знання і розуміння навчального матеріалу.На рис. 1 показана модель навчання, що базується на використанні ІКТ. На відміну від традиційного навчання в аудиторії, де найчастіше один викладач передає один і той же навчальний матеріал всім студентам однаково, модель навчання із використанням ІКТ ставить студента у центр і дає йому можливість взяти під контроль своє індивідуальне навчання, забезпечуючи гнучкість у кількох вимірах. Основний набір стандартних знань, вмінь та навичок утворюють основу того, що всі студенти повинні вивчати, але, крім того, студенти та викладачі мають можливість вибору у навчанні: великі групи чи малі групи, діяльність у відповідності з індивідуальними цілями, потребами та інтересами.В цій моделі навчання підтримується ІКТ, надаючи зручні середовища та інструменти для розуміння і запам’ятовування змісту навчання. Залучення ІКТ навчання забезпечує доступ до більш широкого і більш гнучкого набору навчальних ресурсів, ніж є в аудиторіях, підключення до ширшої і більш гнучкої кількості «викладачів», включаючи викладачів ВНЗ, батьків, експертів і наставників за межами аудиторії. Досвід ефективного навчання може бути індивідуальним або диференційованим для окремих однолітків, персональних навчальних мереж, онлайн навчання та керованих курсів, експертизи та авторитетних джерел, однолітків із подібними інтересами, даними та ресурсами, навчальних спільнот, засобів навчання, управління інформацією та засобів зв’язку, викладачів, батьків, тренерів та інструкторів і студентів.Для конкретних дисциплін, хоча і існують стандарти змісту навчання, модель навчання із використанням ІКТ дає зрозуміти, яким чином можна проводити навчання. Серед всіх можливих варіантів будується власний проект навчання, що розв’язує проблеми реальної значимості. Добре продумані плани індивідуального навчання допомагають студентам отримати знання з конкретних дисциплін, а також підтримують розробку спеціалізованого адаптивного досвіду, що може бути застосований і в інших дисциплінах. Рис. 1. Модель навчання із використанням ІКТ у США [3] Згідно з Національним планом освітніх ІКТ Департаменту освіти США індивідуалізація, диференціація і персоналізація стали ключовими поняттями у сфері освіти [3]. Індивідуалізація розглядається як підхід, що визначає потрібний темп у навчанні різних студентів. При цьому навчальні цілі однакові для всіх студентів, але студенти можуть вивчати матеріал з різною швидкістю в залежності від їх потреб у навчанні. Диференціація розглядається як підхід, що ураховує переваги різних студентів. Цілі навчання однакові для всіх студентів, але методи навчання варіюються в залежності від уподобань кожного студента або потреб студентів. Персоналізація розглядається як підхід, за якого вивчаються навчальні потреби студентів із урахуванням навчальних переваг та конкретних інтересів різних студентів. Персоналізація включає в себе диференціацію та індивідуалізацію.Викладачі постійно мають визначати необхідний рівень знань та вмінь студентів. На сучасному етапі в навчанні, крім знань з конкретних дисциплін, студент має володіти критичним мисленням, умінням комплексно вирішувати проблеми, бути готовим до співпраці. Крім того, студент має відповідати таким категоріям: інформаційна грамотність (здатність ідентифікувати, знаходити, оцінювати та використовувати дані для різних цілей); медіаграмотність (здатність до використання і розуміння засобів масової інформації, а також ефективного спілкування, використовуючи різні типи носіїв); можливість оцінювати і використовувати інформаційно-комунікаційні технології, відповідно вести себе в соціально прийнятних Інтернет-спільнотах, а також розумітися в питанні навколишньої конфіденційності та безпеки. Все це вимагає базового розуміння самих ІКТ і здатності використовувати їх в повсякденному житті.Навчаючи, викладачі мають враховувати те, що студенти не можуть вивчити все, що їм потрібно знати в житті, і економічна реальність така, що більшість людей будуть змінювати місце роботи протягом всього життя. Тому необхідно привити адаптивні навички навчання, що поєднують зміст знань із можливістю дізнатися щось нове.Найчастіше у навчанні прийнято використовувати такі веб-ресурси і технології, як вікі, блоги та інший вміст, що створюють користувачі для дослідження та підтримки співпраці і спілкування у роботі. Для студентів ці інструменти створюють нові навчальні можливості, що дозволяють їм подолати реальні проблеми, розробити стратегії пошуку, оцінити довіру і авторитет веб-сайтів і авторів, а також створювати і спілкуватися за допомогою мультимедіа. Так, при вивченні вищої математики, інтерактивні графіки та статистичні програми роблять складні теми більш доступним для всіх студентів і допомагають їм підключатися до навчального матеріалу, що має відношення до їх спеціальності.ІКТ можуть бути використані для забезпечення більших можливостей у навчанні у поєднанні з традиційним методам навчання. Із використанням ІКТ можна подавати навчальні матеріали, вибираючи різні типи носіїв, та сприяти засвоєнню знань, вибираючи інтерактивні інструменти, до яких відносяться інтерактивні тематичні карти, хронології, що забезпечують візуальний зв’язок між наявними знаннями і новими ідеями.Із використанням ІКТ розширюються засоби навчання студентів: 1) забезпечується допомога студентам у процесі навчання; 2) надаються інструменти для спілкування у процесі навчання (це можна зробити через веб-інтерфейс мультимедіа, мультимедійні презентації, тощо); 3) сприяють виникненню Інтернет-спільнот, де студенти можуть підтримувати один одного у дослідженнях та розвивати більш глибоке розуміння нових понять, обмінюватися ресурсами, працювати разом поза ВНЗ і отримувати можливості експертизи, керівництва та підтримки.Для стимулювання мотивації до взаємодії із використанням ІКТ можна: 1) підвищувати інтерес та увагу студентів; 2) підтримувати зусилля та академічну мотивацію; 3) розробляти позитивний імідж студента, який постійно навчається.Оскільки людині впродовж всього життя доводиться навчатися, то ключовим фактором постійного і безперервного навчання є розуміння можливостей ІКТ. Використання ІКТ в навчанні надає студентам прямий доступ до навчальних матеріалів та надає можливості будувати свої знання організовано і доступно. Це дає можливість студентам взяти під контроль і персоналізувати їх навчання.Оцінювання. В системі освіти на всіх рівнях планується використовувати можливості ІКТ для планування змісту навчального матеріалу, що є актуальним на момент навчання, і використовувати ці дані для безперервного вдосконалення навчальних програм. Оцінювання, що проводиться сьогодні в ВНЗ, спрямоване показувати кінцевий результат процесу навчання. При цьому не відбувається оцінка мислення студента в процесі навчання, а це могло б допомогти їм навчитися краще.У процес оцінювання необхідно уводити поліпшення, що включають в себе пошук нових та більш ефективних способів оцінювання. Необхідно проводити оцінювання в ході навчання таким чином, щоб мати змогу поліпшити успішність студентів в процесі навчання, залучати зацікавлені сторони (роботодавців) у процес розробки, проведення та використання оцінок студентів.Існує багато прикладів використання ІКТ для комплексного оцінювання знань студентів. Ці приклади ілюструють, як використання ІКТ змінило характер опитування студентів, воно залежить від характеру викладання та апробації теоретичного матеріалу. Впровадження ІКТ дозволяє представити дисципліни, системи, моделі і дані різними способами, що раніше були недоступними. Із залученням ІКТ у процес навчання можна демонструвати динамічні моделі систем; оцінювати студентів, запропонувавши їм проводити експерименти із маніпулюванням параметрів, записом даних та графіків і описом їх результатів.Ще однією перевагою використання ІКТ для оцінювання є те, що з їх допомогою можна оцінити навчальні досягнення студента в аудиторії та за її межами.В рамках проекту «Національна оцінка освітніх досягнень» (The National Assessment of Educational Progress – NAEP) розроблено і представлено навчальні середовища, що надають можливість проводити оцінювання студентів при виконанні ними складних завдань і вирішенні проблемних ситуацій. Використання ІКТ для проведення оцінювання сприяє поліпшенню якості навчання. На відміну від проведення підсумкового оцінювання, використання корекційного оцінювання (тобто оцінювання, що дозволяє студенту побачити та виправити свої помилки в процесі виконання запропонованих завдань, наприклад, тестування з фізики, запропоноване Дж. Р. Мінстрелом (J. R. Minstrell) – www.diagnoser.com), може допомогти підвищити рівень знань студентів.Під час аудиторних занять викладачі регулярно намагаються з’ясувати рівень знань студентів, проводячи опитування. Але це надає можливість оцінити лише незначну кількість студентів, нічого не говорячи про знання та розуміння навчального матеріалу іншими студентами. Для вирішення цієї проблеми вивчається можливість використання різних технологій на аудиторних заняттях в якості «інструменту» для оцінювання. Одним із прикладів є використання тестових програм, що пропонують декілька варіантів відповідей на питання, до складу яких включено як істинні так і неправдиві відповіді. Студенти можуть отримати корисні відомості із запропонованих відповідей на подібні питання, якщо вони ретельно розроблені.При навчанні студентів із використанням засобів Інтернет існують різні варіанти використання доступних Інтернет-технологій для проведення формуючого оцінювання. Використовуючи онлайн програми, можна отримати детальні дані про рівень досягнень студентів, що не завжди можливо в рамках традиційних методів навчання. При виконанні завдань студентами програмно можна з’ясувати час, що витрачають студенти на виконання завдань, кількість спроб на розв’язання завдань, кількість підказок даних студенту, розподіл часу в різних частинах даного завдання.У моделі навчання, де студенти самі обирають доступні засоби навчання, оцінювання виступає в новій ролі – визначення рівня знань студента з метою розробки подальшого унікального плану навчання для конкретного студента. Із використанням такого адаптивного оцінювання забезпечується диференціація навчання.В системі освіти в США на всіх рівнях застосовуються можливості Інтернет-технологій для вимірювання знань студентів, що надає можливість використовувати дані оцінки для безперервного вдосконалення процесу навчання.Для проведення вдосконалення процесу навчання необхідні наступні дії [3]:1) на рівні держави, районів необхідно проектувати, розробляти і здійснювати оцінювання, що дає студентам, викладачам та іншим зацікавленим сторонам своєчасні та актуальні дані про навчальні досягнення студентів для підвищення рівня та навчальної практики студентів;2) науковий потенціал викладачів освітніх установ, а також розробників Інтернет-технологій використовувати для поліпшення оцінювання в процесі навчання. Із використанням Інтернет-технологій можна проводити вимірювання ефективності навчання, забезпечуючи систему освіти можливостями проектування, розробки та перевірки нових і більш ефективних методів оцінювання;3) проведення наукових досліджень для з’ясування того, як із використанням технологій, таких як моделювання, навчальні середовища, віртуальні світи, інтерактивні ігри та навчальні програми, можна заохочувати та підвищувати мотивацію студентів при оцінці складних навичок;4) проведення наукових досліджень і розробок із проведення об’єктивного оцінювання (без оцінювання сторонніх здібностей студента). Для того, щоб оцінки були об’єктивними, вони повинні вимірювати потрібні якості та не повинні залежати від зовнішніх факторів;5) перегляд практики, стратегії і правил забезпечення конфіденційності та захисту даних про одержані оцінки студентів, при одночасному забезпеченні моделі оцінок, що включає в себе постійний збір і обмін даними для безперервного вдосконалення процесу оцінювання.Всі студенти повинні мати право на доступ до даних про власні оцінки у вигляді електронних записів, дізнаючись таким чином рівень своїх знань. У той же час, дані по студентам повинні бути відкритими і для інших студентів.Викладацька діяльність. Викладачі можуть індивідуально або колективно підвищувати свій професійний рівень, використовуючи всі доступні технології. Вони можуть отримати доступ до даних, змісту, ресурсів, відомостей і передового досвіду навчання, що сприяє розширенню можливостей викладачів і надихає їх на забезпечення більш ефективного навчання студентів.Багато викладачів працюють поодинці, не спілкуючись з колегами або викладачами з інших ВНЗ. Професійний розвиток зазвичай проводиться на короткому, фрагментарному і епізодичному семінарі, що пропонує мало можливостей для використання отриманих матеріалів на практиці. Основна аудиторна робота викладача на практиці зводиться до перевірки набутих знань студентами. Багато викладачів не мають відомостей, часу, або стимулу для постійного підвищення свого професійного рівня щороку. Так само, як використання ІКТ може допомогти поліпшити процес навчання та оцінювання, використання ІКТ може допомогти краще підготуватися до ефективного викладання, підвищити професійний рівень. Використання ІКТ дозволяє зробити перехід до нової моделі зв’язаного навчання.У зв’язаному навчанні викладачі мають отримувати повний доступ до даних про процес навчання студентів та аналітичні інструменти для обробки цих даних. Їм необхідно забезпечити комунікацію зі своїми студентами, доступ до даних, ресурсів і систем підтримки навчання, що дозволить їм створювати, управляти і оцінювати досягнення навчання студентів в позааудиторний час. Викладачі також можуть отримати доступ до ресурсів, що надають можливість підвищити свій професійний рівень (рис. 2). Рис. 2. Модель зв’язаного навчання викладачів Оскільки середовище навчання постійно ускладнюється, у зв’язаному навчанні забезпечу
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Динамічний вимірювач"

1

Чижевський, Т. Е., and Андрій Павлович Полив'янчук. "Аналіз методів динамічних вимірювань вмісту твердих частинок у відпрацьованих газах дизелів." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/46532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Куц, Юрій Вікторович, and Yurii Kuts. "Метод підвищення точності вимірювань радіосигналів при адаптивній фільтрації." Master's thesis, ТНТУ ім. І. Пулюя, Факультет прикладних інформаційних технологій та електроінженерії, кафедра біотехнічних систем, 2021. http://elartu.tntu.edu.ua/handle/lib/36525.

Full text
Abstract:
В кваліфікаційній роботі розроблено алгоритм адаптивного пошуку оптимальних параметрів фільтра, зокрема, проведений аналіз досліджуваної системи на основі трьох вхідних сигналів: синусоїдальний, функція Хевісайду, імпульсний, та визначено що найбільш якісно та ефективно фільтрує сигнал фільтр Чебишева. Динамічна похибка із застосуванням цього фільтру зменшилася до 2 разів.
The qualification work developed an algorithm for adaptive search of optimal filter parameters, in particular, the analysis of the studied system based on three input signals: sinusoidal, Heaviside function, pulse, and determined that the most efficient and effective filtering signal Chebyshev filter. The dynamic error with this filter has been reduced up to 2 times.
ВСТУП 9 РОЗДІ 1. ОСНОВНА ЧАСТИНА 11 1.1. Загальна характеристика та визначення динамічної похибки 11 1.2. Спектральні методи фільтрації вимірювальних сигналів 15 1.2.1. Фільтрація вимірювальних сигналів методом поліноміальної ортогоналізації 15 1.2.2. Фільтрація вимірювальних сигналів формуванням рядів Фур'є 15 1.3. Екстремальний метод фільтрації вимірювальних сигналів 21 1.4. Метод введення в структуру коригувальних ланок 22 1.5. Висновки до розділу 1 23 РОЗДІЛ 2. ОСНОВНА ЧАСТИНА 24 2.1. Загальні уявлення про фільтри 24 2.2. Необхідність дискретних фільтрів 29 2.3. Обмеження точності дискретних фільтрів 30 2.4. КІХ-фільтри з лінійною фазово-частотною характеристикою 31 2.5. Проектування КІХ-фільтрів 31 2.6. Типи дискретних фільтрів 32 2.7. Порівняння між КІХ- та БІХ-фільтрами 34 2.8 Порівняння аналогових та дискретних фільтрів 34 2.9 Висновки до розділу 2 35 РОЗДІЛ 3. НАУКОВО-ДОСЛІДНА ЧАСТИНА 36 3.1. Постановка задачі 36 3.2. Використання програмного середовища MATLAB 37 3.3. Поняття адаптивного фільтра 38 3.4. Алгоритм корекції динамічної похибки 39 3.5. Розрахунок СКВ 39 3.6. Критерій мінімуму СКВ 41 3.7. Безперервна модель 42 3.8. Фільтрація сигналів 43 3.9. Математичне моделювання системи 47 3.10. Прямокутне вікно 48 3.10.1. Перевірка роботи вимірювальної системи на основі функції Хевісайду на вході ВП 48 3.10.2. Перевірка роботи вимірювальної системи на основі імпульсного сигналу на вході ВП 54 3.11. Трикутне вікно 60 3.11.1. Перевірка роботи вимірювальної системи на основі функції Хевісайду на вході ВП 60 3.11.2. Перевірка роботи вимірювальної системи на основі імпульсного сигналу на вході ВП 65 3.12. Висновки до розділу 3 73 РОЗДІЛ 4. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 74 4.1. Охорона праці 74 4.2. Безпека в надзвичайних ситуаціях 76 4.3. Висновки до розділу 4 80 ВИСНОВКИ 81 СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ 82 Додаток А. Лістинг програми прямокутного вікна 84 Додаток Б. Лістинг програми трикутного вікна 86 Додаток В. Лістинг програми прямокутного вікна 88 Додаток Г. Копія тези конференції 90
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography